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Abstract: The article concerns the issue of automatic recognition of the moment of achieving the
desired degree of training of an operator of devices used in precision agriculture. The aim of the
research was to build a neural model that recognizes when an operator has acquired the skill of
operating modern navigation on parallel strips used in precision agriculture. To conduct the test,
a standard device to assist the operator in guiding the machine along given paths, eliminating overlaps,
was selected. The thesis was proven that the moment of operator training (meaning driving along
designated paths with an accuracy of up to eight centimeters) can be automatically recognized by a
properly selected artificial neural network. This network was learned on the basis of data collected
during the observation of the operator training process, using a criterion defined by experts. The data
collected in the form of photos of the actual and designated route was converted into numerical data
and entered into the network input. The output shows the binary evaluation of the trip. It has been
shown that the developed neural model will allow the determining of the moment when operators
acquire the skills to drive a vehicle along the indicated path and thus shorten the training time.
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1. Introduction

The development of agricultural mechanization meant that the work of a modern operator is less
and less dependent on the direct operation of an agricultural machine [1] (pp. 138–139). The operator’s
main task is usually to manage processes by efficiently operating automated and computerized
signaling and control devices [2] (pp. 12–15). Monitoring the work of machines with the use of
appropriate signaling and control devices cooperating with those machines is one of the opportunities
of using modern, precision agriculture systems. These systems not only enable the positioning of a
tractor or agricultural machine in the field, but, above all, support the operator’s work by accurately
guiding the vehicle along a designated path [3] (pp. 120–122). However, to keep the vehicle in the right
course in the field, the operator must acquire the skills to properly read the navigation panel indications
and to drive the vehicle according to those indications. From the navigation panel, the operator
can read the current vehicle position and direction of travel in relation to the entire recorded area.
A practical difficulty that can be encountered by tractor operators cooperating with navigation systems
on parallel strips is the problem of maintaining a straight drive line, without deviations greater than
20–30 cm, especially when driving on a field with uneven borders or situated on a hill [3] (pp. 120–122).
The pace of acquiring skills for faultless driving in a designated track is different for each operator.
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Observation of the field from the tractor cabin does not allow for reliable assessment of test drives
(performed during the operator training), and the small size of the navigation screen prevents accurate
analysis of the entire trajectory. For this reason, it is difficult to determine when the operator will
acquire relevant skills. On the other hand, objective determination of this moment also allows for
deciding when the training may be interrupted. Early termination of the training (once it is certain
that the operator already has the required skills) can lead to significant savings in time and material
resources (e.g., fuel needed to perform training drives).

A lot of scientific research in the field of artificial intelligence focuses on the implementation of
IT tools for autonomous driving of vehicles, including agricultural or forestry tractors, after crops.
Autonomous driving of agricultural machinery using information from the Global Navigation Satellite
System (GNSS) is an issue developed in many countries around the world [4]. Machine constructors,
in cooperation with IT specialists, create unmanned ground vehicles, which are a perfect solution for
modern, intelligent farms. Examples of such solutions are described by Gonzales de Santos et al. [5],
Chemhengcharoen et al. [6], Hasníková et al. [7] or Petterson [8]. Autonomous vehicles guarantee
optimal use of the field surface and perfectly even passages. However, they are still too expensive
for most farmers. It therefore seems that good training of the navigation operator on parallel lanes
will provide a similar effect at lower costs. Automatic path tracking keeps you in control of the ride.
Samuel et al. [9] wrote about the use of artificial intelligence to control an autonomous vehicle using
path tracking, and Ashraf et al. [10] used neural networks for vehicle navigation on sloping terrain.
So far, however, no artificial intelligence tools have been used to support real operator training.

2. Purpose and Scope of the Research

The objective of the research was to build a neural model that recognizes when an operator
acquired the skill of operating modern navigation on parallel strips used in precision agriculture.
The neural model that recognizes the moment of operator training will determine the speed (pace) of
acquiring professional skills. Having a tool that allows monitor of the progress of operator training
will reduce training time.

Based on the presented research objective, the following hypothesis was formulated: the moment
of achieving the desired degree of operator training can be automatically recognized by a properly
selected artificial neural network, learned on the basis of data collected during observation of the
training process of other operators, using a criterion specified by experts.

To prove the hypothesis, the following stages of research were required:

• conducting training for 15 potential operators of a vehicle cooperating with navigation on parallel
strips by a person supervising the training;

• collecting data characterizing the trajectory of the vehicle controlled by the operator during
the training;

• assessment of operator skills by the person supervising the researches, according to accepted and
justified criteria;

• developing a collection that teaches an artificial neural network based on the results of experimental
research conducted;

• determining the structure of the neural model and its teaching;
• analysis of results of teaching of developed neural networks.

The term “potential operators” was used above. This concept was used by the authors to explain
that the aim of the experiment was not to professionally prepare farmers, but to determine the speed of
learning how to operate the Local Positioning System (LPS, a technology used to obtain information
about the position or location of objects in relation to a local field or area). In fact, acquiring these skills
means that each operator participating in the training is no longer “potential”, but is an operator in the
full sense of the word. This means that it can drive the vehicle along the paths assigned to it with the
appropriate, set accuracy.
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3. Research Methodology

3.1. Data

In order to check the level of difficulty in operating the signaling and control devices equipped
with the LPS (Local Positioning System), training was provided for fifteen potential operators of the
vehicle cooperating with the Trimble navigation panel. The Trimble CFX 750 model was used for
the tests because it was the equipment of the Laboratory of Precision Agriculture of the University
of Agriculture. Due to the high operating costs of the agricultural tractor, a passenger car equipped
with a fully functional steering system was used for field tests. The experiments included training
for six women and nine men aged 19–58. The average age was 34 years. Table 1 presents the general
characteristics of the group of people.

Table 1. Characteristics of people participating in field experiments.

Designation of the Person
Participating in the Experiment

Gender of the Person
(F—Female, M—Male)

Age
(Years)

Work Experience *
(Years)

Knowledge of the LPS System
(According to the Adopted Scale **)

A F 29 4 +
B F 29 11 +
C F 23 2 +
D F 29 1 +
E F 53 35 +
F F 19 1 +
G M 34 17 ++
H M 53 36 ++
I M 29 11 +
J M 24 6 ++
K M 30 9 +
L M 31 4 +
M M 58 41 ++
N M 36 18 ++
O M 34 17 +

* Work experience is understood as the time of having a driving license. **,+—theoretical knowledge of the LPS
(Local Positioning System), ++—theoretical and practical knowledge of the LPS. Practical knowledge of the LPS
system means that the person participating in the experiment operated the navigation panel on parallel strips at
least once in their life.

The training of potential device operators was conducted by a real trainer (fully trained device
operator) who followed and recorded the results of the training during few dozen test drives.
The number of drives averaged 46 and was partially selected arbitrarily, according to the subjective
opinion of the supervisor, i.e., the trainer. Based on the observation of the course of drives, the trainer
decided to stop training at a moment when during a minimum of three consecutive drives the trajectory
was as close as possible to the preset trajectory, because it turned out that, with a 100% probability,
the operator who drove correctly three times is able to do it correctly again. In practice, this meant
that the path made by the operator coincided with the set path (parallel to the previously made).
The arbitrariness of the decision was based on the fact that the result of the trainer’s observation
decided to end the training of a given operator (or further continuation of the training).

The number of correctly made drives depended on the operator’s level of training. The better the
mastery of the technique (method) of driving, the greater the probability of keeping the established
driving route; and vice versa: the less trained the operator, the more difficult it is to maintain the preset
route of drive.

The arbitrariness of the decision on three subsequent, correctly made drives as a criterion for
sufficient operator training, resulted from observations conducted by the trainer. The idea of assessing
the correctness of driving a preset track with a vehicle by a learning operator is presented in Figure 1.
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Figure 1. Horizontal plan showing the preset driving track and the actual driving track; (a)—tractor 
driving direction on a 20 m track, tolerance deviation strip 0.16 m, (b)—correct drive (driving track 
maintained in the tolerated deviations track), (c,d)—incorrect drives; despite the differences, 
classified the same, i.e., as an incorrect drive, (e)—spatial parameters of deviations of the actual drive 
track from the preset track. 

The course of field experiments was as follows: 

1. The operator was tasked with driving the preset track by the trainer explaining how to keep the 
vehicle on the designated section. 

2. The operator started the engine: after switching on the gear, driving at a speed of 6–7 km/h, the 
operator drove the preset distance (observing the vehicle position on the GPS screen), 

3. The driving parameters, i.e., the current position of the vehicle, were recorded in the form of 
photographs (Figure 2). 

4. Recorded momentary vehicle positions were formatted for further (computer) analysis using a 
graphic-numerical conversion program. 

5. Converted numerical data (in the x and y coordinate system, as in Figure 3) formed a database 
characterizing the given drive. 

 
Figure 2. Image seen by the operator on the screen of the Trimble CFX 750 navigation panel—sample 
recording of the preset (red line) and actual (blue line) vehicle track. 

Figure 1. Horizontal plan showing the preset driving track and the actual driving track; (a)—tractor
driving direction on a 20 m track, tolerance deviation strip 0.16 m, (b)—correct drive (driving track
maintained in the tolerated deviations track), (c,d)—incorrect drives; despite the differences, classified
the same, i.e., as an incorrect drive, (e)—spatial parameters of deviations of the actual drive track from
the preset track.

The course of field experiments was as follows:

1. The operator was tasked with driving the preset track by the trainer explaining how to keep the
vehicle on the designated section.

2. The operator started the engine: after switching on the gear, driving at a speed of 6–7 km/h,
the operator drove the preset distance (observing the vehicle position on the GPS screen),

3. The driving parameters, i.e., the current position of the vehicle, were recorded in the form of
photographs (Figure 2).

4. Recorded momentary vehicle positions were formatted for further (computer) analysis using a
graphic-numerical conversion program.

5. Converted numerical data (in the x and y coordinate system, as in Figure 3) formed a database
characterizing the given drive.
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Figure 3. Determined vehicle position at points A and B, in the x and y system, expressed by the
number of pixels on the screen (after conversion to numerical data).

Figure 2 shows the discrepancy between the path given to the operator and the actual path.
After each (incorrect) drive, the operator received recommendations from the instructor to better control
straightness of the drive and use of navigation indications. Navigation indications mean not only the
displayed, instantaneous vehicle positions relative to the preset track, but also three-color signaling
electronic elements (diodes) located in the upper part of the navigation panel housing. The correct
position of the vehicle relative to the designated track (i.e., location in the strip of tolerated deviations
0.16 m wide) is signaled by three green diodes. Each tilting of the vehicle axis to the right, outside the
tolerance range is signaled by red diodes on the left and vice versa: any tilting of the vehicle axis to
the left is signaled by red diodes on the right. The total number of indicator diodes is 27 (three green
and 24 red ones). The list of available options of the navigation panel settings (i.e., menu) allows to
manually set the width of the tolerated deviations strip and the width of the deviation (called in the
menu as the stroke value) from this strip corresponding to one red diode.

A stroke value of 0.08 m was programmed in the experiment because it is the width corresponding
to one pixel in the image.

The collected photos, on which both routes overlap, have been ordered in the order of drives and
cataloged separately for each operator.

3.2. Data Conversion

The collected images of the training process (i.e., individual drives, on the basis of which
conclusions were drawn about the current skills of the operator) were converted into numerical tables.
Coordinates <xiR, yiR> of individual points of the actual trajectory of the machine and <xiZ, yiZ> of the
preset (determined) trajectory were recorded in those tables (two for each photographic registration of
the drive). The number of pixels recorded on each preset trajectory was p = 479. The number of pixels
recorded on each real trajectory was p’ = 234. Since the actual route section was always 20 m, it was
calculated that one pixel in the image corresponds to a distance of 0.08 m. Entering all values of the
vectors <x> and <y>, which are a digital representation of both routes, would cause the size of the
network to be too large (caused by too many input vectors). The issue of input data representation
was solved by determining the differences of the real trajectory from the preset trajectory. Because
the x vectors of both routes have the same position (xiR = xiZ), and the trajectories: the real and the
preset ones differ in the position of the y vectors, the sets of the blue and red strips coordinates have
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been put together, and the absolute value of the difference of vectors: yiZ and yiR was calculated.
Calculations were made for all drives of each operator.

During the drive, the operator was maintaining or was not maintaining the vehicle on a preset
track. The track was 20 m long (234 pixels on the recorder screen). Each position of the vehicle along
the track (x axis) corresponds to the difference in position of the vehicle relative to a preset track,
expressed on the y axis. Pairs of numbers xnyn correspond to the momentary position of the vehicle.

The variability of differences in deviations from a preset track was expressed by the function
y = f(x) as a polynomial. The physical interpretation of a polynomial is as follows: if the momentary
position of the vehicle on the track is known (x axis), then the polynomial allows to determine the
deviation from the track. The polynomial, obtained (by approximation) based on data from one drive,
had the following form: y = an−1xn−1 + anxn + . . . + a1x1 + a2x0.

Thanks to the introduction of polynomial approximation at the input of the neural network
assessing the correctness of the drive, several (three or four) polynomial coefficients (real numbers
multiplied by the powers of x) describing the errors made during this drive could be introduced
instead of 234 coordinate pairs describing the preset and actual vehicle trajectory. Only thanks to this
task was it possible to effectively use a neural network of reasonable sizes (in the sense of the number
of input elements and, consequently, the number of weighting factors necessary to be determined
during the teaching process).

Polynomials were determined using the function p = polyfit() in the Matlab program.
The approximation polynomial degree N = 3 was determined. At N > 3 all coefficients a ix for
values i > 3 were zero. However, with the degree of polynomial N = 3, most coefficients at the highest
power were still zero, therefore the following two values of the approximation polynomial degree were
considered: N = 2 and N = 3.

All entered data—separately for each drive—formulated second and third degree polynomials.
The usefulness of second and third degree polynomials for teaching the neural networks was
evaluated experimentally by introducing the coefficients of those polynomials into the calculations.
Experiments with neural networks have shown that both polynomials are useful in this case,
although the network using the second degree polynomial coefficients achieved greater efficiency
(i.e., learned better).

Below are examples of coefficients of polynomials with the degree N = 2 and N = 3 describing
the drives considered to be correct (Table 2) and the drives with too large deviation from the preset
trajectory (Table 3).

Table 2. Polynomial coefficients with the degree N = 2 and N = 3 for selected correct drives
(i.e., drives maintained in the designated driving track).

Polynomial Coefficients
with a Degree N = 2

Polynomial Coefficients
with a Degree N = 3

a2 a1 a0 a3 a2 a1 a0

0.0000 −0.0015 1.1931 0.0000 −0.0001 0.0254 −1.9389
0.0000 0.0000 1.0000 −0.0000 0.0000 −0.0000 1.0000
0.0000 −0.0011 1.1821 −0.0000 0.0000 −0.0053 1.6847

Table 3. Polynomial coefficients with the degree N = 2 and N = 3 for selected incorrect drives
(i.e., drives outside the designated driving track).

Polynomial Coefficients
with a Degree N = 2

Polynomial Coefficients
with a Degree N = 3

a2 a1 a0 a3 a2 a1 a0

0.0002 −0.1368 28.4187 0.0000 −0.0001 −0.0501 18.2690
0.0001 −0.0432 8.3167 0.0000 −0.0001 0.0076 2.4524
0.0000 −0.0289 5.7749 0.0000 −0.0006 0.2091 −22.1769
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In fact, the coefficients of polynomials, in the whole range of their variability, express various
variants of the operator’s training level (acquisition of driving skills).

In theory, it is possible that the coefficients are the same for the same operator—or different
operators. This would mean that (practically), the method of driving by the operator (operators) is
identical (exactly reproducible method). The vehicle along the entire route (measuring section) would
follow exactly the same track (each x value would have the same y value).

However, in practice the polynomial coefficients are different for each drive (and for each operator).
This means that each of the operators drove the vehicle differently. Although driving was different,
it was possible to determine—according to the adopted criterion, i.e., the correct three drives—at
which time the driver has already acquired the appropriate skills. Different cases (made paths),
formally described with polynomials with different coefficients an, an–1, . . . , a1, a0, teach the neural
network to recognize the moment of acquiring driving skills.

The method of presenting input data in the form of polynomial coefficients approximating
the trajectory error was developed on the basis of research work conducted by the Szymczyk [11]
(pp. 955–960), in which the problem of assessing the usefulness of neural networks for analysis,
processing and interpretation of GPR signals was considered. The authors’ review of the literature
shows that the method presented in the article has not yet been used to solve the problem of training
operators of equipment used in precision agriculture.

3.3. Application of Polynomial Coefficients for Neural Network Learning

Polynomial coefficients in the three-way system, i.e., polynomial coefficients of three successive
drives were introduced to teach the neural network. For example: the first group were drives numbered
1, 2 and 3, the second group were drives 2, 3 and 4, the third group were drives 3, 4 and 5, etc. The idea
was to make a decision about a satisfactory level of operator training based on observations of repetitive
correct drives. Incidental (accidental) single correct drives occurring in insufficiently trained operators
did not lead to wrong decisions.

A binary assessment of three consecutive drives was introduced to the output of the neural
network. This rating was only 1 if all three consecutive drives were correct. By giving each drive
a score of 0–1, the neural network was learned to detect this stage of training (in the literal sense:
those three successive drives) when the operator was already trained (has correctly driven on the
designated section).

A general, simplified diagram of the neural networks used is shown in Figures 4 and 5.
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The prepared teaching set included 657 drive packages for each of the polynomial stages considered
together with the assessment of each three drives. Assessments determining the operator’s level of
training ranged from 0–1. Therefore, the problem analyzed in the work was based on the classification
into two groups: a group of correct drives maintained in a preset track (assessed as 1) and a group
of drives with too large deviation from the preset track (assessed as 0). In the analyzed problem, the
elements (objects) in each group are represented in the same way—as polynomial coefficients of the
same degree, but each object differs from other objects by the values of the coefficients. Taking into
account the analysis of the literature on the subject [11] (pp. 955–960) [12–17], it was found that for
the problem presented in the paper the most useful would be: multilayer perceptron network—MLP
(Multilayer Perceptron) and a network with radial base functions—RBF (Radial Basis Function).

MLP networks are widely used in many areas because they are universal approximators and
excellent pattern classifiers [18]. On the other hand, neural networks with radial base functions (RBFs)
are also used in solving classification problems, because they are distinguished by properties that
allow better mapping of the local characteristics of the modeled process. The purpose of classifying
network training is to model a data generator to provide the best possible prediction when input data
is known [19]. The problem of selecting the number of hidden layer neurons, which largely determines
the effectiveness of the network (i.e., the degree of mapping accuracy) and the ability to generalize the
network, was solved by using the Automatic Network Designer module that is part of the Statistica
Neural Networks StatSoft package.

The experiment analyzed neural networks of various architectures, including those with many
hidden layers. The use of many hidden values may result in the network overfitting, consisting in
the network’s over-adaptation only to the training data. To avoid this problem, the data set has been
divided into: training data, test data and validation data. In addition, a series of experiments were
carried out iteratively with each network configuration and the best configurations (that is, those with
the lowest validation error values) were kept.

4. Analysis of Modeling Results

The neural model of operator’s cooperation with the vehicle driven according to the indications
of navigation on parallel strips was subjected to learning. To conduct the simulation, a database was
developed containing 657 test drive packages with their binary assessment. The designed network
using the second degree polynomial coefficients consisted of nine neurons for each input layer vector
and one neuron in the output layer. For the network learned based on the third degree polynomial
coefficients, the number of neurons in the input layer vector was 12. Those numbers (9 and 12) result
from the number of coefficients of polynomials N = 2 and N = 3 degree describing three consecutive
drives. One thousand MLP networks using N = 2 polynomial coefficients and 1000 MLP networks
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using N = 3 polynomial coefficients were created. The minimum number of neurons in the hidden
layer was 1 and the maximum number of neurons in the hidden layer was 25.

The best results were achieved by the MLP 9–22–2 network. Therefore, it is a MLP network with
nine input neurons, 22 hidden layer neurons and two output neurons. This network has achieved
learning quality of over 99%, using the BFGS learning algorithm. The first layer of neurons (i.e., the input
layer) has a permanently hidden activation function (here: exponential function). The second layer
(i.e., the hidden neuron layer) uses the so-called output activation function to process the entered
data. The most commonly used functions include: linear, logistic, softmax ones. To solve the problem
considered in the paper, the softmax function was selected (automatically, in the Statistica Neural
Networks StatSoft package)—the network with the best parameters (i.e., with the highest efficiency)
used this activation function.

After analyzing various structures of the neural network using the polynomial coefficients with a
degree of N = 3, it was empirically confirmed that the best learning results are achieved by a network of
16 neurons in a hidden layer (MLP network 12-16-2). The selected network achieves learning quality of
over 98%, using the BFGS learning algorithm and the output softmax activation function. The quality
of this network is comparatively as high as the quality of the MLP network using second degree
coefficients (the difference is only approx. 0.23%).

After testing the MLP network learning results, 1000 RBF networks using N = 2 polynomial
coefficients and 1000 RBF networks using N = 3 polynomial coefficients were created. The minimum
number of neurons in the hidden layer was 1 and the maximum number of neurons in the hidden
layer was 25. The analysis of the tested network structures showed that the RBF network using the
polynomial coefficients with the degree N = 2 achieves the best learning results for 2 and 15 neurons in
the hidden layer (RBF 9-2-2 and RBF 9-15-2 networks). The effectiveness of those networks is high and
amounts to over 98.5%, using the RBFT learning algorithm and the output softmax activation function.
The result achieved by this network is less than 0.5% lower than the quality of the best MLP network
using the same learning set (over 99%). After analyzing various structures of the neural network
using the polynomial coefficients with a degree of N = 3, it was empirically confirmed that the best
learning results are achieved by a network of 19 neurons in a hidden layer (RBF network 12-19-2).
The effectiveness of this network is almost 98%. This result, as in the case of the RBF network using
second-degree coefficients, is slightly lower than the effectiveness of the MLP network learned on the
basis of the same data (this difference is less than 1%).

Based on the conducted experiments, it was found that despite the common opinion in the
literature [20] (pp. 31–38) [21] (pp. 210–216), that radial networks are much better suited than MLP
networks for solving tasks in the category of solving patterns, the tested MLP networks achieved a
slightly better efficiency, i.e., the learning error of those networks, was less than the learning error of
the RBF networks.

For a thorough analysis of the error, the process of teaching the network with selected architectures
(i.e., with the highest efficiency—networks using the second-degree coefficients with the architecture
9-22-2 and networks using the third-degree coefficients with the architecture 12-16-2) was checked in
the Matlab environment. Due to the random selection of input neurons by the network and another
network learning algorithm, the learning results (i.e., the quality of the network) may differ from those
presented in Section 4. In addition, the Neural Network Toolbox package only allows the selection of
a tool (i.e., a neural network) due to its purpose, apart from the choice of the type of network being
tested. Therefore, a pattern recognition network was used by selecting the Pattern Recognition Tool.
Figures 6 and 7 show a general structure diagram of both neural networks described using the Neural
Network Pattern Recognition Tool from the Neural Network Toolbox package in Matlab environment.
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During network teaching, the input data, according to the principles of neural network learning,
were divided into three sets. The first set, learning set, included 459 packages (70% of all data).
The second set (validation set), used for validation and protection against the effects of network
overlearning, included 99 packets (15% of all data), similarly to the third set, used for testing the
network, i.e., checking its ability to generalize (test set). The distribution of training data set was the
same for both networks.

A maximum learning time of 1000 epochs was assumed for network learning. The epoch is the
process of processing the entire learning sequence. This process is repeated until the epoch error
falls below the allowable error. However, in reality, this time was much shorter and amounted to
104 epochs for the network using second degree coefficients and 12 epochs for the network using third
degree coefficients. Figure 8 presents windows describing the learning process of one of the analyzed
networks in the Matlab environment.

Assessment of Network Efficiency and Error Behavior

The effectiveness of the artificial neural network in the process of preset classification was assessed
using indicators for the effectiveness assessment. Those indicators included: LQ learning quality,
VQ validation quality, TQ testing quality, LE learning error, VE validation error, TE testing error and
average error. Those indicators were read from the error matrix generated in Matlab (Figures 9 and 10).
Errors from all three sets: learning, validation and test mean the value of incorrectly classifying of
objects from one class to another.
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As can be seen in the figures, the average learning error for a network using the second degree
polynomial coefficients did not exceed 2%, and, for a network using the third degree polynomial
coefficients, it was much higher and amounted to 9.6%. The average network quality was respectively
98.2% for networks using second degree coefficients and 90.4% for networks using third degree
polynomial coefficients.

The characteristics of error changes during the entire learning process of both neural networks are
shown in Figures 11 and 12.
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The moment when the error calculated for the validation set begins to increase (instead of
decreasing with the decrease of the error for the learning set) signals the effect of overfitting the
network [11]. The graphs show that for a network using second degree coefficients this moment
occurred in the 98th epoch of the learning process (Figure 11), and for a network using the third degree
coefficients—in the sixth epoch of the learning process (Figure 12).

The graphs in Figures 11 and 12 show the process of reducing the average error. In order to
examine the errors made by the network for individual data, one should analyze the histograms of the
error values presented for both networks in Figures 13 and 14, respectively.
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The assessment of the operation of the network using the second degree coefficients on the basis
of the error histogram shows that the network recognizes correct and incorrect drive packets with a
very small error. The vertical orange line on the histogram indicates a zero error. As can be seen in
Figure 13, the largest bars of errors made by the network are located near zero. Larger error values
were rare and occurred mostly in the training set [11] (pp. 955–960).

The histogram shown in Figure 14 shows the errors made by the network using third degree
coefficients. As you can see in the histogram, the bars representing individual errors are larger than
those in the histogram of Figure 13, and the bars of the largest errors are further away from zero.
Although the network made the most errors in the learning set, and the error values are close to zero,
it has a slightly lower efficiency than a network using second degree coefficients.

The value of the mean absolute error MAE (mean absolute error) was also calculated according to
the formula:

MAE = 1/m
∑

_(τ = 1)ˆm
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Table 4. MAE and RMSE error values of selected neural networks.

MAE RMSE

Selected neural network using polynomial coefficients with the degree N = 2 0.052632 0.229416
Selected neural network using polynomial coefficients with the degree N = 3 0.087719 0.296174

Both networks learned to recognize the operator’s level of learning are very likely to indicate
when he acquired the right skills. However, to solve the problem posed in the article, a network using
second-degree coefficients should be used, because this network is characterized by the highest quality
in all: teaching, test and validation sets.

5. Discussion

The scope of the research included the issues of training the operator of selected devices used
in precision agriculture. The main research problem was the analysis of the possibility of using an
artificial neural network to assess the degree of training of the operator of a vehicle driven according
to the indications of the navigation panel on parallel lanes. A neural model was used to prove the
research goal. The task of the analyzed neural network was to assign information on sufficient or
insufficient training of the operator driving the agricultural tractor in accordance with the navigation
panel indications. The use of artificial intelligence methods in agriculture is wide-ranging, but so
far these methods have not been used to assess the degree of training of operators. Their level of
training was judged arbitrarily by observation. For this reason, the training time was often too long,
which generated, for example, costs related to the fuel needed to perform test drives.

The presented results confirm the effectiveness of the applied drive classification process based on
the method using an artificial neural network. The simulation results clearly confirm the hypothesis
formulated, assuming that the moment of training operators can be automatically recognized by a
properly selected artificial neural network, learned on the basis of data collected during the observation
of the operator training process, using a criterion specified by experts.

6. Conclusions

The following conclusions emerge from the tests and analyzes conducted:

1. Artificial neural networks can automatically recognize the moment of sufficient training of an
operator driving a vehicle according to the indications of navigation on parallel strips.

2. This network can be learned on the basis of empirical data collected during the observation of the
operator training process under the control of experienced instructors who assess the level of
training according to the adopted assessment criterion.

3. An artificial neural network implemented in the driver training monitoring device will allow
tracking of training progress and signaling the achievement of the required level of training
(in some cases this may mean a shortening of the training cycle, and sometimes it may mean that,
despite the completion of the assumed number of exercises, the operator still does not have the
required level of skill).

4. A number of drivers acquire the desired tractor steering skills faster than the training program
requires. Identification of such drivers allows to reduce training costs (as they do not have to
continue training until the end of the planned program).

5. Replacing the supervision of a real trainer with the assessment of drives made automatically by
means of an artificial neural network will allow the subjective assessment to be replaced by an
objective assessment generated by an electronic device, which may increase the effectiveness
of training.

6. A review of the literature made by the authors permits the statement that the solution to the
scientific problem has features of originality, because the method proposed in the article using an
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artificial neural network has not yet been used to solve the problem of assessing the degree of
operator training.

As mentioned in the introduction, many scientists conduct research on the automatic driving of
a vehicle along designated paths [9,10]. Farmers who use precision driving navigation often cannot
benefit from the knowledge of an expert to objectively assess their skills, as was the case with the
research training for this article. Implementation of a system based on the operation of artificial neural
networks, which will enable automatic recognition of the operator’s training, not only provide him
with confidence in operation, but also shorten the time of possible training or self-training.
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