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Abstract: One of the most important concerns in the planning and operation of an electric power
generation system is the effective scheduling of all power generation facilities to meet growing power
demand. Economic load dispatch (ELD) is a phenomenon where an optimal combination of power
generating units is selected in such a way as to minimize the total fuel cost while satisfying the load
demand, subject to operational constraints. Different numerical and metaheuristic optimization
techniques have gained prominent importance and are widely used to solve the nonlinear problem.
Although metaheuristic techniques have a good convergence rate than numerical techniques, however,
their implementation seems difficult in the presence of nonlinear and dynamic parameters. This work
is devoted to solving the ELD problem with the integration of variable energy resources using a
modified directional bat algorithm (dBA). Then the proposed technique is validated via different
realistic test cases consisting of thermal and renewable energy sources (RESs). From simulation
results, it is observed that dBA reduces the operational cost with less computational time and has
better convergence characteristics than that of standard BA and other popular techniques like particle
swarm optimization (PSO) and genetic algorithm (GA).

Keywords: renewables incorporated ELD problem; directional bat algorithm (dBA); operational cost;
convergence characteristics

1. Introduction

In a power system’s operation and control, the cost of electric power generation is a major
concern due to increased demand in residential and commercial sectors. Due to interconnection
among distributed electrical networks, the reduction of electric energy charges is of utmost importance.
Even a minor decrease in electric energy cost creates a huge impact on the economics of the overall
power system. Economic load dispatch (ELD), a subset of the unit commitment problem, is considered
an extremely significant problem that deals with the minimization of a power generation facilities’
operational cost, where the primary job of power system engineers is to consider the economics
of power systems. Moreover, the importance of this problem has greatly increased as it creates an
impact on the environment. Economic dispatch also helps to minimize environmental pollutants to
minimize fuel consumption. Furthermore, to improve the security of an electric system, there is also
an utmost necessity to improve an ELD problem in terms of constraint to prevent any mishap like
power system collapse.
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The economics of any electric power system plays a significant role in encouraging researchers
to find a technique that can reduce power generation cost up to a significant level. Traditionally,
numerical techniques like gradient and Lambda iteration methods have been utilized to solve the ELD
problem. However, due to the penetration of renewable energy resources, the optimization problem
can add more complexity to nonlinear control variables. On the other hand, metaheuristic techniques
are considered highly capable of solving high-dimensional ELD problems with less computational
time. For example, in [1], a novel technique called the modified teaching-learning algorithm (MTLA)
is presented. To overcome the convergence of the local optimum solution, a new stochastic self-adaptive
mutation operator is introduced. Load forecast errors and contingencies of generating units are ignored
in this research. In [2], modified particle swarm optimization (MPSO) is used to solve the ELD problem
involving complex and non-continuous cost functions. This MPSO can deal with all types of constraints
effectively. Furthermore, to speed-up the optimization process, a search space reduction strategy
is proposed. In [3], an effort to find the optimum power combination of units at a minimum cost
and under different power demands is performed using the augmented Lagrangian particle swarm
optimization (ALPSO) technique. In [4], an improved PSO is used to solve the ELD problem, where
a linearly decreasing inertia weight is combined with chaotic sequences to reduce the chances of
premature convergence. However, this work does not consider strategies to reduce computational
time for the high-dimensional ELD problem. In [5], authors proposed a mechanism to solve the
ELD problem considering various practical constraints such as valve point loading (VPL) effects,
ramp rate limits, prohibited operating zones (POZ), and multiple generator fuel options using the
firefly algorithm and its variant, i.e., chaos mutation firefly algorithm (CMFA). The ability of the firefly
algorithm is further enhanced by replacing the control parameters with fixed values. It is then achieved
by self-adaption parameters, which affect solution quality, convergence speed, and reliability.

Similarly, in [6], a cuckoo search algorithm (CSA) is proposed for solving the nonconvex ELD
problem by considering its various practical constraints. In [7], an enhanced bee swarm optimization
method is utilized to solve a dynamic ELD problem, while maintaining a balance between exploration
and exploitation. In [8], self-adaptive differential evolution and real coded genetic algorithm (GA)
are proposed to solve the ELD problem. In [9], the dispatching of power is optimized using the
firefly algorithm while avoiding the subjective penalty factors. In [10], a modified cuckoo search
algorithm is proposed to solve the ELD problem considering VPL effects, POZ, losses, and ramp rate
limits. This modification consists of self-adaptive step size and some neighbor study strategies to
improve the performance of the standard cuckoo algorithm. With a high-dimensional test system,
the efficiency of the proposed algorithm is tested. In [11], a modified version of PSO is presented for
the ELD problem by considering different constraints. This makes the algorithm capable of search
around feasible solution areas. In [12], more practical generator constraints like ramp rate limits and
POZ are considered for the ELD problem. In [13], a quantum-inspired PSO is proposed to solve
the ELD problem. By introducing quantum computing theory in the basic PSO, the searchability
and convergence speed increases. In [14], an artificial immune system, evolutionary programming,
and PSO are used for solving the ELD problem. In [15], novel PSO is applied to the ELD problem by
considering the generator constraints. In the standard PSO, some mutation operators are introduced
to improve its exploration capabilities. Mutation operators take charge as soon as the PSO velocity
closes to zero or if it breaks lower and upper boundaries. PSO with mutation operators claims to
outperform PSO easily. In [16], a detailed survey of PSO and its certain modifications is explained,
while [17] deals with the hybridization of PSO with other algorithms to solve the ELD problem. In [18],
ELD and combined economic and emission dispatch (CEED) problem is solved using an interior search
algorithm (ISA). All the above-mentioned references are, however, used to solve all-thermal ELD
problems that do not involve renewables.

However, a bat algorithm has also been found to solve all-thermal ELD problems successfully.
In [19], the ELD problem is solved using a bat algorithm. The bat algorithm has proven to be better than
PSO and the intelligent water drop (IWD) technique. The problem, however, does not include multiple
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fuels and spinning reserve cases. In [20], two different cost functions are considered, i.e., smooth and
non-smooth. A bio-inspired bat optimization problem (BOA) is used for the optimum setting of control
variables. In [21], the ELD problem with a quadratic fuel function is solved using BA. It was proved that
BA is capable of solving complex constraints problems with ease as it is easy to operate. In addition,
the minimization of emission released was also completed. In [22], a BAT algorithm is utilized to solve
the ELD problem. A mathematical model is presented for the ELD problem. In [23], some previous
algorithms like GA, PSO, and BA are reviewed. The original BA is modified to enhance its capabilities.
In [24], a multi-objective self-adaptive BA is introduced to solve a practical environmental and emission
dispatch problem considering valve point effects, transmission losses, and ramp rate limits. BA is
utilized to achieve Pareto optimal solutions. Novel self-adaptive learning is added to improve the
diversity of the population. In [25], a chaotic bat algorithm (CBA), a variant of the bat algorithm,
is used to solve the ELD problem. This variant is obtained by incorporating chaotic sequences in the
original bat algorithm to improve its performance. This less tuning algorithm claimed to perform better
than many algorithms. In [26], an enhanced BA is utilized to solve the ELD problem by considering
different generator constraints. In [27], many of the variants of BA are reviewed and some new variants
are introduced for enhancing the exploration and exploitation capability of this algorithm. In [28],
the novel bat algorithm (NBA) is utilized to solve the ELD problem. In this variant of the bat algorithm,
the doppler effect is introduced. Results claimed that NBA has much better efficiency and robustness
than BA and PSO.

At present, renewables-incorporated ELD problems are gaining much more attention to cope with
the challenge of an energy shortage and the environment and are being solved using metaheuristic
techniques. In [29], a hybrid metaheuristic algorithm RCBA is presented to solve the ELD problem
by incorporating thermal generators and renewables like wind power. This algorithm combines a
chaotic map and random black hole model to avoid premature convergence and move towards the
global area. In [30], the reliability of generators and uncertainty of wind power generation is dealt
with. For considering extreme conditions with probability, forecasting error relating to wind power
generation is modeled as a discretized beta probability distribution function (PDF). In [31], a solution
of optimum power dispatch in an interconnected microgrid is presented. A probabilistic model is
used for a balanced sharing of power at a minimum operating cost. PSO and imperialist competitive
algorithm (ICA) are used for the optimization of the objective function. Results deduced claimed that
optimal sharing between the main grid and microgrid decreases the distribution networks’ cost. In [32],
combined emission economic dispatch (CEED) is applied to a system consisting of thermal units and
photovoltaic (PV) plants. The model considered is a mixed-integer optimization problem (MIOP)
solved using PSO. In [33], ELD is solved using a dynamic adaptive bacterial foraging algorithm (BFA)
with wind power incorporated. It was shown that this variant of BFA mitigates some drawbacks in the
original BFA, such as poor convergence characteristics for high dimensional complex problems. In [34],
a dynamic economic dispatch (DED) for the integration of large-scale renewable energy sources (RESs)
with the ELD problem is reduced into dual stages using Lagrange relaxation where the multiplier
is updated based on the quasi-Newton method. In [35], ELD considering wind power with forecast
error is analyzed. As the wind uncertainty has a huge impact on power dispatch and a risk to the
power grid, these forecast errors need to be minimized. In [36], the economic environmental dispatch
problem is applied to a hybrid power system consisting of solar and wind energies. The strength Pareto
evolutionary algorithm (SPEA) method is employed to solve this problem. In [37], the ELD problem
considering RESs is solved using GA. It is shown that the inclusion of RESs impacts the economics
of the system. However, this technique is not applied to the high-dimensional test case. In [38],
the effect of substantial wind-based capacity on the economic load dispatch problem is considered.
In [39], the ELD problem is considered with RESs. To deal with the uncertainty of wind and solar, their
stochastic nature is modeled by Weibull and Beta distributions. An improved Fireworks algorithm is
used to solve this highly-constrained problem. In [40], Lagrangian relaxation with the incremental
proximal method is used to solve the ELD problem. In [41], combined emission economic dispatch
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(CEED) is solved using the lighting flash algorithm by considering different cases with wind power
penetration, multiple fuel options, and generator constraints. In [42], a cost-effective hybrid microgrid
system is designed with renewable sources like wind, hydrogen-based storage systems, and fuel
cells. This optimal power problem is solved using PSO and is further compared with GA. In [43],
the ELD problem by a microgrid containing solar and wind farms is solved using the reduced gradient
method. It is shown that solar energy should be incorporated with renewable energy credits. In [44],
a control system is presented that is capable of maintaining constant voltage magnitude at the wind
farm terminal. The ELD problem is applied to a system containing thermal and wind power units.
In [45], the ELD problem is solved using the BAT algorithm by including wind power. In the overall
objective function, the stochastic nature of wind power is taken into account. Furthermore, due to the
forecasting errors, imbalance charges (overestimation, underestimation) are also considered.

Unlike other methods, the directional bat algorithm (dBA) evolved as a promising variant of
BA is limitedly used to solve renewables-incorporated ELD problems that have recently received
considerable scholarly attention. The dBA introduces the directional echolocation to the structure
of BA, which may get trapped locally for the complex and constrained dispatch problems, so as to
enhance exploitation and exploration characteristics. To validate the superiority of dBA, in this paper,
the ELD problem with and without renewables considering different test cases is solved using BA and
dBA. With the help of compelling results, it was proved that dBA converges faster with minimized
fitness value, thus justifying the claim that it is more effective than BA and other well-known GA and
PSO techniques.

The paper commences with the formulation of an ELD problem considering combined thermal
and RESs in Section 2. Steps involved in the standard BA with advantages, disadvantages, and a few
variants are highlighted in Section 3. Section 3 also introduces dBA and discusses the steps involved
in implementing this technique. Section 4 shows the simulation results of the test cases with specific
characteristics of particular cases. Finally, the findings of the paper are pointed out in Section 5.

2. Problem Formulation

The objective of this research is to minimize the operating cost of a thermal unit system by
integrating solar PV and wind energy units, subject to power demand and dispatch limitations.

2.1. Thermal Energy

The cost function of a thermal power plant without and with the valve point effect (VPL) is a
second-order polynomial function:

Fi(Pi) =

{
aiP2

i + biPi + ci without VPL
aiP2

i + biPi + ci +
∣∣∣ei × sin( fi × (Pmin

i − Pi))
∣∣∣ with VPL

(1)

where a, b, c, e, and f are fuel cost coefficients of power generation unit i whereas the total cost of j
thermal units is expressed by

∑ j
i=1 Fi(Pi).

2.2. Wind Energy

The power generated by wind turbines can be written as:

Pw =
1
2
(ρAu3) (2)

where ρ is the air density, u3 is wind speed, and A is the windswept area, respectively. The cost
function of wind generation is subject to the investment cost of the equipment and the operation and
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maintenance (O&M) cost of generated energy. However, the capital cost of land, assuming it is a
community-based microgrid where the land is owned by the community [43] is given as:

F(Pw) = aIpPw + GEPw (3)

where a can be expressed as:

a =
r[

1− (1 + r)−N
] (4)

where Pw is the wind generation in (kW), a is an annuitization coefficient (dimensionless), r is the
interest rate (taken as 0.09 for base case), N is the investment lifetime (N = 20 years), Ip is the investment
cost per unit installed power ($/kW), and GE is the O&M cost per unit of generated energy ($/kW),
respectively. In this system, it is assumed that Ip and GE are approximately equal to $1400 and
1.6 cents per kW, respectively.

2.3. Solar PV Energy

The maximum power provided by a solar panel is given by [43]:

Et = 3.24MPV(1− 0.0041× (Tt − 8) × St) (5)

where Et is the output power, MPV is the capacity of each PV panel, Tt is the temperature, and St is
the radiation data at time i, respectively. The cost function of solar generation in [43] involves the
investment cost of the equipment and the O&M cost of the generated energy. However, without the
capital cost of land, it can be expressed as:

F(Ps) = aIpPs + GEPs (6)

where a is written as:
a =

r

[1 + (1 + r)−N]
(7)

where Ps is the solar generation (kW), a is an annuitization coefficient (dimensionless), r is the
interest rate (taken as 0.09 for base case), N is the investment lifetime (taken as N = 20 years), Ip is
the investment costs per unit installed power ($/kW), and GE is the O&M cost per unit generated
energy ($/kW), respectively). In this system, it is assumed that the investment costs per unit installed
power (Ip) and O&M cost per unit generated energy (GE) are approximately equal to $5000 and
1.6 cents per kW, respectively.

In the case of RESs, the generating cost parameter is not taken into account. The RESs that are
considered in this research are wind energy and solar PV energy, whose forecasting is taken from [43]
and is shown in Figure 1. A comprehensive review of the forecasting approaches for wind and solar
power generation can be found in [46].
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2.4. Overall Cost Function Incorporating Renewables

Adding all the cost functions described in (1), (3), and (6) gives the overall cost function as:

FT = Fi(Pi) + F(Pw) + F(Ps) (8)

The following constraints (equalities and inequalities) have been considered while minimizing
the overall cost function.

Power Balance Equation: Neglecting the transmission losses, the total generated power of all the

units (thermals and renewables)
n∑

i=1
(Pi) should be equal to the total system demand PLoad, i.e.,

n∑
i=1

(Pi) = PLoad

Generator Capacity Limits: The power delivered by each generating unit should remain within
its minimum and maximum limits.

Pi,min ≤ Pi ≤ Pi,max

where Pi,min and Pi,max signify the ith generating unit’s minimum and maximum output power,
respectively.

3. A Variant of BA for the ELD Problem

3.1. Overview of BA

This algorithm is inspired by microbats. The rules followed by this algorithm emerge from the
certain behavior of bats, which are discussed as follows [47]:

1. Bats use echolocation to sense distance and to know the difference between food and prey. In our
case, the fitness function is food and bats, which are the possible solutions;

2. The bats fly randomly with some predefined velocity vi at a position xi with a predefined frequency
fi. They can adjust their frequency of pulse emitted;

3. They can vary the rate of pulses by looking at the target proximity;
4. Loudness can be varied from a large positive value to a small value.

Figure 2 shows the flowchart involved in the process. The algorithm progresses by taking the
following steps:

1. Firstly, we initialize the algorithm with maximum iterations, bat population, loudness constant α,
pulse rate constants γ, initial values of loudness, and pulse rates;

2. Give a random position to all bats in the solution space within the lower and upper boundary;
3. Find the best bat position x* and its fitness;
4. Start the process in which the position is updated one by one by:

fi = fmin + ( fmax − fmin)β
vi = vt−1

i + (xt−1
i − x∗) fi

xt
i = xt−1

i + vt
i

(9)

where vt
i is the velocity of bat i at a certain position xt

i at iteration t. There is the global best
position x* among all the bats. Minimum and maximum frequency is selected depending on the
application. The value β will be between 0 and 1.
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5. Now a random number is generated (between 0 and 1) and is compared with pulse rate. Based
on pulse rate, local search is done around the best solution by:

xnew = xold + εAt (10)

6. An existing random solution k is selected with k , i and is compared with the new solution. If it
is better, then update the new solution by:

xnew = xk + εAt (11)

7. The new solution from the previous step will be compared with the existing positions of the
current bat. Furthermore, a random number will again be generated and compared with loudness
At

i of that bat. If the new solution of the previous step is better than the global best solution,
and the random number is less than loudness, then a new solution will be accepted, and the
loudness and pulse rate of that bat will be updated based on the following expressions:

At+1
i = αAt

i
rt+1

i = r0
i [1− e(−γt)]

(12)
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Loudness and pulse rates play a vital role in finding the best result in terms of control exploration
and exploitation. The value of loudness will decrease from a positive value to a certain minimum value,
while the pulse rate will increase from a small value to a large value as the bat finds its prey. α and γ
are the constants of loudness and pulse rate, and the value of α will be any value between 0 and 1 and
γ is greater than 0. Optimum values of α and γ have been selected as 0.9 and 0.98, respectively [47].

Although the bat algorithm comes with the advantages of having a highly efficient, reliable,
easy structure and can be programmed from any programming language easily, it suffers from
limitations of premature convergence, which increases with complexity and bat moves by the
information from the best bat (best bat could be local optimum). This requires a modification in the
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structure of the BA to handle the nonconvex ELD problem. Much research has been done to improve
the exploration and exploitation capabilities of the BA. There are many variants of the BA [27]. Some of
the variants, such as the novel BA [28], enhanced BA [26], chaotic BA [25], and modified BA [23] have
already been applied to solve the ELD problem. In this paper, we are going to apply a dBA to tackle
the renewables-incorporated ELD problem.

3.2. dBA

dBA plays a dual role at different stages of the algorithm. In the beginning, it helps to explore
more search space and as the process moves, the bats move around the leader, which improves the
exploitation ability. It has a strong exploitation process that increases the convergence speed without
being trapped in local optima. By adding a scale factor in the local search step, bats are allowed to
move randomly with large steps. This results in enhancing the exploration capability of the algorithm.
A decrease in the scale factor as the iteration proceeds improves the exploitation capability [48,49].

The procedure followed by dBA is very similar to the original BA; however, some modifications
are made to improve its diversification and intensification [48,49]. Figure 3 shows the flow chart
involved in the dBA process.
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1. Firstly, bats are initialized by giving random positions within the upper and lower boundaries of
each bat;

2. The standard BA has two navigation modes: First, towards the best solution and second, to exploit
the best solution. In directional echolocation, bats move by analyzing their echoes. In addition,
a bat takes help from other bats for better decisions. One of the bat pulses is toward the leader
and another one toward a randomly selected bat. If the food exists around that random bat,
the bat moves toward it otherwise, it moves toward the leader (best bat). Equations (13) and (14)
depict this movement as follows:

xt+1
i = xt

i + (x∗ − xt
i) f1 + (xt

k − xt
i) f2 (13)
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If the food does not exist around the random bat, then a bat will move towards the leader:

xt+1
i = xt

i + (x∗ − xt
i) f1 (14)

where xt
k shows the position of randomly selected bat k where k , i and x∗ shows the position

of the global best. In the above equations, f 1 and f 2 are the frequencies of two pulses which are
assigned as:

f1 = fmin + ( fmax − fmin)rand1
f2 = fmin + ( fmax − fmin)rand2

(15)

where rand1 and rand2 are random numbers between 0 and 1;
3. In the next step, the local search step is done similar to BA. However, the equation is modified by

including a scale factor wt
i as follows:

xt+1
i = xt

i +
〈
At

〉
εwt

i (16)

where
〈
At

〉
is the average loudness and ε has a random value between −1 and 1. The value of wt

i
starts from a large value and then reduces to 1% of a quarter of its length as follows:

wt
i =

(wi0−wiα
1− tmax

)
(t− tmax) + wiα (17)

where wi0 and wiα show the initial and final values, respectively, and t and tmax show the current
and maximum iteration, respectively. The value of wi0 and wiα can be set as:

wi0 = (Ui − Li)/4
wiα = wi0/100

(18)

Here Ui and Li show the upper and lower bounds, respectively;
4. In the next step, which is similar to the standard BA, a random number is compared with loudness,

but unlike the standard BA, a new solution is compared with the existing solution of that bat
(not the global best). This step helps to improve the diversity of the algorithm. If these two
conditions are true, then only new solutions are accepted. The pulse rate has an important role as
it decides a balance between exploration and exploitation. Moreover, the loudness and pulse rate
are updated as follows:

At =
(A0−A∞

1−tmax

)
(t− tmax) + A∞

rt =
( r0−r∞

1−tmax

)
(t− tmax) + r∞

(19)

where A and r show the loudness and pulse rate, respectively. For the best results, the optimum
values recommended in the literature are 0.1 and 0.7 for pulse rate, and 0.9 and 0.6 for loudness;

5. In the last step, the new solution is compared with the global solution. If it has better fitness,
then the global solution is updated [48,49].

4. Simulation Results and Discussion

To validate the successful application of dBA to the ELD problem and to show its superiority
over GA, PSO, and BA, two test systems, namely an IEEE 57-bus system with 7 thermal units driving
from fossil fuels and a high dimensional 15-unit system, with and without renewables, are considered.
A MATLAB environment was used to solve the test systems. Unless otherwise specified, for all the
simulation results, the population and iteration were selected at 100 and 1000, respectively for all
considered optimization algorithms. For BA and dBA algorithms, the values of f min and f max were
set to 0 and 2, respectively, whereas r0 = 0.1, rmax = 0.7, A0 = 0.9, and Amax = 0.6. For PSO, inertial,
personal, and global coefficients were set to 0.9, 2, and 2, respectively. For GA, the selection strategy
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was stochastic uniform, the mutation function was adaptive feasible, and the crossover probability
was set to 0.8. The selection of the parameters is made on the basis of the experiments to ensure a
better solution.

4.1. Case 1: The IEEE 57 Bus System with Seven Thermal Units

4.1.1. Data

An IEEE 57 bus system, which consists of 7 thermal units running from fossil fuels, was considered.
The cost coefficients with minimum and maximum power generation limits are shown in Table 1 [50].
In Table 2, a 24 h load forecasting was selected as a load demand which was to be met. It can be seen

that the maximum power demand at 1600 h is 1800 MW. In this case, Fthermal =
7∑

i=1
Fi(Pi).

Table 1. Cost coefficients of seven thermal units with lower and upper power limits.

Generator a ($/MW2) b ($/MW) c ($) Pmin (MW) Pmax (MW)

1 0.007 7 400 100 575

2 0.0095 10 200 50 100

3 0.009 8.5 220 50 140

4 0.009 11 200 50 100

5 0.008 10.5 240 100 550

6 0.0075 12 200 50 100

7 0.0068 10 180 100 410

Table 2. Demand forecasting over 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Demand
(MW) 800 780 750 750 720 700 700 700 800 900 1000 1200

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Demand
(MW) 1400 1500 1750 1800 1500 900 850 800 780 750 700 800

The data used for RESs are mentioned where the renewables-incorporated ELD problem is
discussed in the following sections/subsections.

4.1.2. Cost Offered by BA and dBA

Table 3 shows the simulation results of BA and dBA in terms of operating costs for a 24 h period.
It can be seen that dBA comparatively gives a lower operating cost, i.e., 288,526 $/day than that of
BA which gives 288,673 $/day. Even for the load demand for each hour, dBA ensured less cost when
compared to BA. This ensures that dBA displays a better chance of finding the solution closer to the
global optimum with regard to the conventional BA. In the second scenario, a seven-unit thermal
system was added with one wind and one solar PV farm. Both BA and dBA were applied to ELD
incorporating renewables. Table 4 shows the result of BA and dBA over a 24 h time period. It is clear
from the results that dBA gives better fitness results when compared to the BA. The dBA is found more
successful in reducing the total cost per day as compared to dBA with or without renewables.

From Figure 4, it can be seen that the operating cost of the system decreases with the incorporation
of solar and wind farms in the system.
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Table 3. BA and dBA on a seven-thermal unit system without renewables.

t
(h)

BA dBA

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

Cost
($/h)

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

Cost
($/h)

1 310.0691 50.4229 139.3672 50 100.1412 50 100 9762.3 298.4298 61.5703 140 50 100 50 100 9759.8

2 290.9093 50 139.0909 50 100 50 100 9538.2 286.5761 53.9338 139.4902 50 100 50 100 9537.9

3 272.9545 50 127.0456 50 100 50 100 9210.4 272.0187 50.0043 127.9772 50 100 50 100 9210.3

4 274.7427 50 125.2577 50 100 50 100 9210.5 271.5529 50 128.4458 50.0014 100 50 100.0001 9210.3

5 259.4567 51.3485 108.9565 50.2387 100 50 100 8891 255.0398 50 114.96 50 100.0003 50 100 8889.7

6 245.5637 50 104.4364 50 100 50 100 8679.9 243.9639 50.0033 106.0329 50 100 50 100 8679.9

7 246.6246 50 103.3755 50 100 50 100 8680 243.7256 50 106.2745 50.0001 100 50 100 8679.9

8 238.2873 50 111.7129 50 100 50 100 8680.4 243.5853 50 106.4148 50 100 50 100 8679.9

9 296.9272 63.8645 139.2085 50 100 50 100 9760 298.3961 61.604 140 50 100 50 100 9759.8

10 358.2764 99.7169 139.9486 50.5802 100.3323 50.5205 100.6255 10,918 338.785 92.757 140 50.1718 100 50 128.2864 10,909

11 375.1164 98.3909 139.0237 62.0253 100 50 175.4441 12,112 371.9944 100 140 67.441 107.4991 50 163.0657 12,108

12 412.0067 99.8622 139.8622 99.8622 160.4408 78.8337 209.1325 14,631 426.0054 99.9996 140 100 151.3067 64.2512 218.4388 14,626

13 574.5894 99.4245 139.5894 96.7237 163.8266 99.4364 226.4103 17,386 481.1635 99.9997 140 100 203.4979 100 275.3393 17,292

14 517.2808 99.9756 139.9756 99.9756 215.7508 99.9756 327.0668 18,695 516.7083 99.9966 139.9939 99.9827 231.9789 100 311.3399 18,691

15 574.9994 99.9994 139.9994 99.9994 325.004 99.9994 409.9994 22,406 575 100 140 100 325 100 410 22,406

16 574.9815 99.9815 139.9815 99.9815 375.1116 99.9815 409.9815 23,212 575 100 140 100 375 100 410 23,211

17 509.9228 99.8615 139.8615 99.8615 255.8211 99.8615 294.8103 18,698 516.0237 100 139.9982 100 233.6462 99.9773 310.3549 18,691

18 360.6688 99.0931 139.9944 50.061 100.061 50.061 100.061 10,918 338.5833 92.8095 140 50.0021 100 50 128.6058 10,909

19 323.4386 68.3125 139.1759 50 100 50 119.0736 10,330 320.393 78.0468 140 50 100 50 111.5603 10,328

20 289.5354 68.0608 139.8835 50.6302 100.6302 50.6302 100.6302 9762.9 298.3036 61.6965 140 50.0001 100 50 100 9759.8

21 291.5612 50 138.4389 50 100 50 100 9538.2 290 50 140 50 100 50 100 9538.1

22 261.7829 50 138.2172 50 100 50 100 9212 271.6896 50.0002 128.3102 50 100 50.0004 100 9210.3

23 243.2984 50 106.7019 50 100 50 100 8679.9 244.0813 50 105.9188 50 100 50 100 8679.9

24 310.4408 50 139.5594 50 100 50 100 9762.2 298.0959 61.9043 140 50 100 50 100 9759.8

Total Cost ($/day) 288,673 Total Cost ($/day) 288,526
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Table 4. BA and dBA on a seven-thermal unit system with renewables (wind and solar).

t
(h)

BA dBA

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

Wind
(MW)

Solar
(MW)

Cost
($/h)

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

Wind
(MW)

Solar
(MW)

Cost
($/h)

1 308.4546 50 139.8458 50 100 50 100 1.7 0 9742.92 297.5162 60.7842 139.9997 50.0001 100 50 100 1.7 0 9740.8

2 282.318552.4223 136.7595 50 100 50 100 8.5 0 9444.65 283.6469 50.0558 137.7975 50 100 50 100 8.5 0 9444.6

3 262.3932 50 128.3369 50 100 50 100 9.27 0 9110.95 266.8788 50 123.8513 50 100 50 100 9.27 0 9110.7

4 258.6982 50 124.6419 50 100 50 100 16.66 0 9031.9 262.9667 50 120.3733 50 100 50 100.0001 16.7 0 9031.7

5 243.8264 50 118.9539 50 100 50 100 7.22 0 8814.52 250.6062 50 112.1739 50 100 50 100 7.22 0 8813.7

6 248.2989 50 96.7612 50 100 50 100 4.91 0.03 8629.47 241.1867 50 103.8734 50 100 50 100 4.91 0.03 8628.6

7 240.6063 50 88.4639 50 100 50 100 14.66 6.27 8465.19 232.0606 50 97.0095 50 100 50 100 14.7 6.27 8464

8 217.1576 50 89.3027 50 100 50 100 26.56 17 8234.75 219.1811 50 87.279 50 100 50.0001 100 26.6 17 8234.7

9 265.3591 50 139.7113 50 100 50 100 20.88 24.1 9267.36 275.0707 50 129.997 50 100 50.0024 100 20.9 24.1 9266

10 348.458650.8649 139.997450.8649 100.864950.8649 100.864917.85 39.4 10,260.6 319.7501 76.1018 139.9973 50 100.001350.0001 106.93 17.9 39.4 10,246

11 374.550998.4651 139.613167.5442 101.6685 50 147.9493 12.8 7.41 11,864.4 365.1241 99.9767 140 63.0469 104.1673 50 157.4756 12.8 7.41 11,863

12 451.210298.5168 139.419798.5708 100 50 239.982918.65 3.65 14,373.3 418.8554 100 140 99.0082 149.230159.593 211.0165 18.7 3.65 14,339

13 468.176999.8158 139.815899.8158 190.391699.8158 255.878914.35 31.9 16,662.8 467.1655 100 140 100 188.8588 100 257.6867 14.4 31.9 16,662

14 574.983799.9837 139.983799.9837 216.070950.1673 281.667610.35 26.8 18,249.8 504.4502 100 140 100 222.0573 100 296.3327 10.4 26.8 18,166

15 574.981399.9813 139.981399.9813 306.773299.9813 409.9813 8.26 10.1 22,121.6 575 100 140 100 306.66 100 410 8.26 10.1 22,121

16 574.998199.9981 139.998199.9981 356.002399.9981 409.998113.71 5.3 22,900.9 575 100 140 100 355.99 100 410 13.7 5.3 22,901

17 574.033999.7617 139.967199.9671 204.820899.9671 268.4729 3.44 9.57 18,548.5 511.3355 100 140 99.9984 229.8833 100 305.7731 3.44 9.57 18,506

18 330.592797.907 134.696152.3771 100 50 130.2475 1.87 2.31 10,865 338.3721 91.9396 140 50.0246 100 50 125.4839 1.87 2.31 10,860

19 329.274 50.2884 139.987950.2884 100.288450.2884 128.8352 0.75 0 10,330.1 321.3166 77.8541 139.9876 50 100 50.0083 110.0839 0.75 0 10,319

20 310.3985 50 139.4316 50 100 50 100 0.17 0 9760.36 309.83 50 140 50 100 50 100 0.17 0 9760.2

21 284.235356.357 139.2578 50 100 50 100 0.15 0 9536.4 286.8948 52.9553 140 50 100 50 100 0.15 0 9536.3

22 264.029 51.4983 134.1629 50 100 50 100 0.31 0 9207.99 272.0281 50 127.662 50 100 50 100 0.31 0 9207

23 244.2126 50 104.7176 50 100 50 100 1.07 0 8668.77 243.2655 50 105.6646 50 100 50 100 1.07 0 8668.8

24 302.386557.3543 139.6794 50 100 50 100 0.58 0 9753.69 297.7595 61.6605 140 50.0002 100 50 100 0.58 0 9753.3

Total Cost ($/day) 283,846 Total Cost ($/day) 283,642
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4.1.3. Characteristics Offered by BA and dBA

Figures 5–9 show the various characteristics of the BA and dBA against test case 1. Figures 5 and 6
show the position of bats for the BA and dBA, respectively. As shown, bats start from random locations
(initial solutions) and converge to the best solution after 1000 iterations. However, in the case of dBA,
the bats are much better optimized. Figure 7a shows that fitness offered by the BA decreases quickly,
which increases the risk of trapping the optimal solution in the local optimum. However, fitness
gradually decreases as the iterations progress in the case of dBA. It has a better chance of moving closer
to the global optimum. Figure 7b shows the magnified view of the cost convergence curve. Figure 8
shows the pulse rate of the best bat which depicts the decrease of pulse rate as the bat finds its prey.
Figure 9 shows the best bat’s loudness, which depicts the increase of loudness as the bat finds its prey.
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4.1.4. Comparison of dBA, BA, PSO, and GA

To further justify the effectiveness of the dBA over BA and other metaheuristic techniques like
PSO and GA, a test case of 1800 MW was taken with 100 population and 1000 iterations. Tables 5
and 6 show the results regarding cost without and with renewables, respectively. It can be seen that
the dBA is better when compared to BA, which in turn dominates PSO and GA. Figure 10 shows the
convergence graph without renewables, whereas Figure 11 shows the convergence with renewables.

Table 5. Cost comparison for 1800 MW demand without renewables.

Algorithm P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

Cost
($/h)

GA 495.2 99.9987 140 99.9905 454.884 99.978 409.916 23,422.78

PSO 575 100 140 100 375.014 100 410 23,211.59

BA 575 99.998 140 99.998 375.012 99.998 409.998 23,211.39

dBA 575 100 140 100 375 100 410 23,211.36

Table 6. Cost comparison for 1800 MW demand with renewables.

Algorithm P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

Wind
(MW)

Solar
(MW)

Cost
($/h)

GA 486.477 99.95 139.988 99.8611 446.64 99.9438 408.14 13.7 5.3 23,124.8

PSO 575 100 140 100 356 100 410 13.71 5.3 22,901.1

BA 574.992 99.99 139.992 99.992 356.04 99.992 409.99 13.71 5.3 22,901.0

dBA 575 100 140 100 355.9 100 410 13.71 5.3 22,899.4
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4.2. Case 2: A 15 Thermal Unit System

4.2.1. Data

The data for a 15-unit system is taken from [12], whereas the solar and wind forecasting data is
taken from [43]. Table 7 shows the cost coefficients and the minimum and maximum power limits of
all 15 thermal units. Table 8 shows the demand forecasting taken into consideration for this case.

Table 7. 15-unit system cost coefficients with lower and upper power limits.

Generator a ($/MW2) b ($/MW) c ($) Pmin (MW) Pmax (MW)

1 0.000299 10.1 671 150 455

2 0.000183 10.2 574 150 455

3 0.001126 8.8 374 20 130

4 0.001126 8.8 374 20 130

5 0.000205 10.4 461 150 470

6 0.000301 10.1 630 135 460

7 0.000364 9.8 548 135 465

8 0.000338 11.2 227 60 300

9 0.000807 11.2 173 25 162

10 0.001203 10.7 175 25 160

11 0.003586 10.2 186 20 80

12 0.005513 9.9 230 20 80

13 0.000371 13.1 225 25 85

14 0.001929 12.1 309 15 55

15 0.004447 12.4 323 15 55

Table 8. Demand forecasting over 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Demand (MW) 1650 1680 1680 1700 1700 1700 2000 2000 2500 2500 2700 2800

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Demand (MW) 2900 3000 3000 3000 3000 2800 2500 2000 1800 1750 1700 1700

4.2.2. Cost Offered by the BA and dBA

In the first scenario where renewables are not taken, both the BA and dBA are applied to a
15-thermal unit system for a 24 h period, and the result is shown in Tables 9 and 10, respectively.
The bat population and iterations are taken as 100 and 1000, respectively. It can be seen that the dBA
gives better fitness when compared to the BA. Similarly, in the second scenario where renewables are
taken, both BA and dBA were applied to 15 thermal units with renewables (one solar and one wind
farm) added for 24 h, and the results are shown in Tables 11 and 12, respectively. For this scenario,
the dBA outperforms the BA in terms of (cost) fitness. The dBA offers not only a minimum cost per
day but also a minimum hourly cost. The dBA is found to be more successful in optimizing the total
operating cost per day than the BA with or without renewables.
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Table 9. The BA on a 15-unit system without renewables.

t
(h)

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

P8
(MW)

P9
(MW)

P10
(MW)

P11
(MW)

P12
(MW)

P13
(MW)

P14
(MW)

P15
(MW)

Cost
($/h)

1 454.5173 150 129.5173 129.5173 251.9314 135 135 60 25 25 20 79.5173 25 15 15 22,261.66

2 454.8183 323.6984 129.8183 129.8183 150 135 135 60 25 25 20 36.8475 25 15 15 22,538.75

3 150 150 129.714 129.714 150 301.9416 463.6332 60 25 25 20 20 25 15 15 22,444.49

4 150 340.2449 129.9185 129.9185 150 459.9185 135 60 25 25 20 20 25 15 15 22,745.36

5 454.6776 150 129.6776 129.6776 150 345.9685 135 60 25 25 20 20 25 15 15 22,737.21

6 150.0393 275.836 129.7813 129.7813 150 135 464.7813 60 25 25 20 79.7813 25 15 15 22,667.74

7 454.603 371.7031 129.603 129.603 150 361.5336 135 60 25 25 78.4422 24.5125 25 15 15 25,840.65

8 150 150 129.8853 129.8853 469.8853 459.8853 305.4591 60 25 25 20 20 25 15 15 25,852.13

9 454.8122 454.8122 129.7939 129.8122 200.4546 459.6958 464.8122 60 25 25 20 20.8072 25 15 15 30,900.62

10 454.9989 454.9989 129.9504 129.9989 150.0139 459.9989 464.9989 60.0139 25.0139 25.0139 20.0139 69.9449 25.0139 15.0139 15.0139 30,896.62

11 454.9945 454.9945 129.9945 129.9945 469.9945 389.895 464.9945 60.0173 25.0173 25.0173 20.0173 20.0173 25.0173 15.0173 15.0173 33,020.56

12 454.7519 454.757 129.757 129.757 319.137 459.757 464.3489 60.0155 161.757 25.2103 20.4444 65.2619 25 15.0464 15 34,162.54

13 454.6133 454.6253 129.6253 129.3646 397.8806 459.6038 464.6253 60 25 159.616 44.1218 65.9254 25 15 15 35,155.73

14 454.9116 454.7211 129.9116 129.9116 469.6113 436.9758 464.9116 60 25 159.769 79.4746 79.8026 25 15 15 36,220.9

15 454.948 454.9247 129.6776 129.9353 469.9107 459.948 464.948 60 25 159.948 79.9179 55.8426 25 15 15 36,214.88

16 454.9006 454.9006 129.9006 129.9006 469.9006 459.9006 464.9006 60 25 97.6973 79.9006 78.2004 25 54.9006 15 36,255.24

17 454.9252 454.9252 129.9252 129.9252 469.9252 459.9252 464.5354 60 25.7849 135.312 79.9252 79.8604 25 15 15.032 36,205.23

18 454.979 425.1479 129.979 129.979 469.979 459.979 464.979 60 25 25 79.979 20 25 15 15 34,068.04

19 454.8777 454.8777 129.8777 129.8777 412.0411 135 464.8777 60 25 25 73.6938 79.8777 25 15 15 30,976.82

20 150 229.2133 129.9615 129.9615 150 459.9615 464.827 60 25 25 79.6877 41.3885 25 15 15 25,755.94

21 341.5044 244.4965 129.8299 129.7027 150 135 464.467 60 25 25 20 20 25 15 15 23,678.85

22 350.5488 454.8629 129.8629 129.8629 150 135 135 60 25 25 20 79.8629 25 15 15 23,271.42

23 150 150 129.6651 20 150 415.4029 464.6651 60 25 25 20 35.2672 25 15 15 22,796.79

24 150 275.788 129.8031 129.8031 150 135 464.8031 60 25 25 20 79.8031 25 15 15 22,667.7

Total Cost ($/day) 679,336
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Table 10. The dBA on a 15-unit system without renewables.

t
(h)

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

P8
(MW)

P9
(MW)

P10
(MW)

P11
(MW)

P12
(MW)

P13
(MW)

P14
(MW)

P15
(MW)

Cost
($/h)

1 268.1071 151.8249 129.9992 130 150 135 465 60 25.05492 25 20 35.00603 25.00067 15.00716 15 22,135.66

2 150 150 130 130 150 285.9036 465 60 25 25 20 34.09638 25 15 15 22,442.49

3 268.191 185.7993 129.9897 129.9897 150 135 464.2456 60 25 25 20 31.79258 25 15 15 22,443.63

4 297.296 176.2702 130 130 150 135 463.4961 60.08577 25 25 20 32.85194 25 15 15.00001 22,649.1

5 258.924 150 129.9675 129.9787 150 206.0509 464.9435 60 25 25 20 25.13593 25 15 15 22,644.91

6 237.1147 150 130 130 150 223.4615 465 60 25 25 20 29.42383 25 15 15 22,644.3

7 326.3309 262.9082 130 129.9779 150 308.7519 464.6059 60 25 25 21.58769 40.46383 25.36109 15.02705 15 25,726.55

8 318.7497 269.8317 129.9986 130 150 331.0041 465 60.1266 25.05721 25 20.13303 20 25 15.06744 15.03519 25,726.83

9 454.9384 455 129.9961 130 152.9831 459.9996 465 60 25.00977 25 36.28722 50.78548 25.00027 15.00029 15 30,893.49

10 455 455 130 130 150 460 465 60 25 25 70 20 25 15 15 30,902.77

11 454.8476 455 129.9879 130 340.1686 459.9999 464.961 60 25 25.07322 20.00291 79.9573 25 15.00162 15 32,998.86

12 455 455 129.9872 130 435.471 460 465 60 25 25.00929 46.37583 58.16277 25 15 15 34,049.35

13 455 455 130 130 470 459.9995 465 60 25 35.02112 79.97935 80 25 15 15 35,113.62

14 455 455 130 130 470 460 465 60 25 135 80 80 25 15 15 36,204.07

15 455 455 130 130 470 460 465 60 25 135 80 80 25 15 15 36,204.07

16 455 455 130 130 470 460 465 60 25 135 80 80 25 15 15 36,204.07

17 455 455 130 130 470 459.9993 464.9835 127.5593 67.45966 25 79.99822 80 25 15 15 36,245.37

18 455 455 130 130 408.7914 460 465 60 25 25 51.20889 80 25 15 15 34,051.09

19 454.43 455 129.9944 129.9912 187.6798 458.2474 465 60 25.08487 25 34.54946 20 25 15.02435 15 30,899.38

20 316.3898 236.9526 129.8654 130 150 360.5217 462.9519 60.09335 25 25 20 28.0467 25 15 15.1786 25,726.8

21 258.5847 159.7468 130 129.9958 150 290.5911 465 60 25 25 20 31.08181 25 15 15 23,669.62

22 297.8829 226.1458 129.9953 129.9953 150 135 464.9858 60 25 25 21.88823 29.10983 25 15 15 23,162.8

23 320.5932 150 129.999 129.9718 150 135 464.996 60 25 25 20.00368 34.43637 25 15 15 22,649.47

24 280.0402 191.7499 130 129.9999 150 135 465 60 25 25 20 33.21005 25 15 15 22,648.73

Total Cost ($/day) 678,037
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Table 11. The BA on a 15-unit system with renewables.

t
(h)

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

P8
(MW)

P9
(MW)

P10
(MW)

P11
(MW)

P12
(MW)

P13
(MW)

P14
(MW)

P15
(MW)

Wind
(MW)

Solar
(MW)

Cost
($/h)

1 281.7092 150.074 129.9947 129.9947 150.074 135.8677 464.9947 60.07397 25.07397 25.07397 20.07397 20.07397 25.07397 15.07397 15.07397 1.7 0 22,121.09

2 150 282.339 129.8138 129.8138 150 135 464.8138 60 25 25.1258 20 44.59409 25 15 15 8.5 0 22,365.49

3 271.9361 454.6985 129.6985 129.6985 150 135 135 60 25 25 79.69852 20 25 15 15 9.27 0 22,464.14

4 150 150 129.8576 129.7729 150 458.6148 310.0953 60 25 25 20 20 25 15 15 16.66 0 22,518.04

5 288.1475 258.7675 129.572 129.7027 150 396.425 135 60 25 25 20 20 25 15.16677 15 7.22 0 22,659.36

6 304.2958 259.0841 129.9838 129.9838 150.0332 381.2783 135.0332 60.03318 25.03318 25.03318 20.03318 20.13603 25.03318 15.03318 15.03318 4.91 0.03 22,681.08

7 289.2473 150 129.7084 129.7084 150.1093 459.7084 464.7084 60.66211 25 25 20 20 25.22125 15 15 14.66 6.27 25,522.44

8 210.5264 150 129.4769 129.9911 150 459.6238 464.2031 60 25 25 20 77.64247 25 15 15 26.56 16.98 25,300.26

9 453.9715 409.3092 129.5264 129.5264 469.1651 135 464.5264 60 25 25 20 79.0455 25 15 15 20.88 24.05 30,516.55

10 454.9222 433.2828 129.7979 129.9222 150 459.9222 464.7754 60 25 25 20 35.15727 25 15 15 17.85 39.37 30,301.17

11 365.4471 454.8837 129.8837 129.8837 469.8837 459.8837 464.8837 60 25 25 20 20 25 15.04069 15 12.8 7.41 32,813.76

12 454.5277 454.5277 128.6792 129.5277 364.225 459.1589 464.5277 60 25 25 79.52773 77.99903 25 15 15 18.65 3.65 33,822.85

13 345.8919 454.7273 129.7273 129.7273 469.7273 459.7273 464.7273 60 25 159.7273 20 79.72728 25 15 15 14.35 31.94 34,697.93

14 454.9462 454.5551 129.9212 129.9462 469.2832 459.9462 464.9462 60 25 159.9088 20 79.38804 25 15 15 10.35 26.81 35,825.6

15 454.9977 454.9977 129.9977 129.9977 469.9977 459.9977 464.9977 109.917 25.04 25.67639 79.99768 79.99768 25.30839 15.7466 54.99303 8.26 10.08 36,098.75

16 454.7627 454.9994 129.9994 129.9994 469.7458 459.9267 464.9994 60.05021 25.05021 116.5125 79.94488 79.84993 25.05021 15.05021 15.05021 13.71 5.3 35,996.9

17 454.9999 454.9999 129.9999 129.9999 469.9999 459.9999 464.9999 81.0129 25.19556 159.9999 20.19556 79.99993 25.19556 15.19556 15.19556 3.44 9.57 36,096.48

18 454.48 454.9925 129.9925 129.9925 243.6014 459.9925 464.8602 60.02893 25.02893 159.9925 78.74649 79.02527 25.02893 15.02893 15.02893 1.87 2.31 34,064.69

19 454.9733 454.9733 129.9733 20.13605 248.3221 459.9733 464.9733 60.13605 25.13605 25.13605 79.97335 20.13605 25.13605 15.13605 15.13605 0.75 0 31,066.12

20 454.7103 150 129.7103 129.7103 150 315.9887 464.7103 60 25 25 20 20 25 15 15 0.17 0 25,733.86

21 150 150 129.4684 129.3103 150 459.4684 367.5487 60 25 25 79.05508 20 25 15 15 0.15 0 23,719.71

22 150 164.7137 129.862 129.4175 150 330.9085 464.862 60 25 25 20 44.92665 25 15 15 0.31 0 23,161.66

23 150 150 129.0845 129.0845 150 459.0845 326.6766 60 25 25 20 20 25 15 15 1.07 0 22,675.97

24 150 320.039 128.7706 129.8505 150 135 464.9429 60 25 25 20 35.81715 25 15 15 0.58 0 22,654.21

Total Cost ($/day) 674,878.1
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Table 12. The dBA on a 15-unit system with renewables.

t
(h)

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

P8
(MW)

P9
(MW)

P10
(MW)

P11
(MW)

P12
(MW)

P13
(MW)

P14
(MW)

P15
(MW)

Wind
(MW)

Solar
(MW)

Cost
($/h)

1 222.3254 150.0718 130 130 150.0163 184.9209 465 60.00281 25 25 20.0149 30.94789 25 15 15.00001 1.7 0 22,116.94

2 174.5542 150.9551 129.9973 129.9874 150.0258 259.3709 464.8492 60.00002 25.00404 25 20.00217 26.7772 25 15 15.01468 8.5 0 22,355.62

3 220.9976 150 130 130 150 209.5001 465 60.00008 25.01496 25 20 30.21716 25 15 15.00009 9.27 0 22346.12

4 179.6374 152.5915 130 129.9492 150.2174 259.4324 464.8455 60.02013 25.00824 25.00812 20.00537 31.63979 25.00361 15.00241 15.00241 16.66 0 22,476.58

5 210.9494 150 129.9983 129.988 150 241.9494 465 60 25.01289 25 20.7229 29.20571 25 15 15 7.22 0 22,572.46

6 228.3645 150.0246 129.9577 130 150.1062 223.8274 464.9199 60 25.00143 25.02728 20.0001 32.82126 25.00898 15.00074 15 4.91 0.03 22,595.21

7 229.6181 455 130 130 150 213.7353 465 60 25 25 20.67627 20 25 15 15.04037 14.66 6.27 25,525.78

8 318.9402 227.2118 130 130 150.1345 318.4998 463.4972 60.07476 25 25 20 33.03786 25.03043 15 15.04323 26.56 16.98 25,278.95

9 455 431.2419 130 130 150.1204 456.2316 465 60.02773 25 25.00001 24.07677 48.36796 25.00773 15 15.00527 20.88 24.05 30,428.2

10 455 427.6109 130 130 150.0329 459.9529 464.994 60 25.01043 25 20 40.17244 25 15.00648 15 17.85 39.37 30,300.58

11 455 455 130 129.9983 295.042 459.8914 465 60 25.02148 25.0011 44.83347 79.99943 25.00329 15 15 12.8 7.41 32,784.96

12 455 455 129.9996 130 387.4157 460 465 60 25 25 50.24593 80 25 15.02408 15.01524 18.65 3.65 33,816.95

13 454.9995 455 130 130 470 459.9999 465 60 25.00067 25.00861 58.27325 65.42811 25 15 15 14.35 31.94 34,619.02

14 455 455 130 130 470 460 465 60 25 97.84 80 80 25 15 15 10.35 26.81 35,797.41

15 455 455 130 130 470 460 465 60 25 116.66 80 80 25 15 15 8.26 10.08 36,003.64

16 455 455 130 130 470 460 465 60 25 115.99 80 80 25 15 15 13.71 5.3 35,996.28

17 455 455 130 130 470 460 465 60 25 121.99 80 80 25 15 15 3.44 9.57 36,062.2

18 455 455 130 130 395.0492 460 465 60 25 25 80 60.77082 25 15 15 1.87 2.31 34,009.18

19 455 454.8161 129.9994 130 150 460 465 60.00101 25 25 39.2392 50.19431 25 15 15 0.75 0 30,887.02

20 395.3524 150 130 130 150 358.3626 465 60 25 25.12926 20.50318 35.50864 25 15 15 0.17 0 25,728.92

21 150 251.779 130 129.9945 150 317.7931 464.9999 60 25 25.00248 20.28195 20 25 15 15 0.15 0 23,676.49

22 251.59 150.009 130 129.962 150 254.3827 465 60 25.03605 25.24237 20.28683 33.14521 25 15 15.05015 0.31 0 23,155.2

23 221.1774 150.6069 130 130 150 247.0148 465 60 25 25 20.13145 20.00069 25 15 15 1.07 0 22,635.45

24 150 318.2863 129.9946 130 150.0123 135 464.8988 60 25 25 20 36.22784 25.00022 15 15 0.58 0 22,652.52

Total Cost ($/day) 673,821.7
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From the above results, it can be seen that the incorporation of solar and wind farms into the
15-unit thermal system saves 4458 $/day in the case of the BA and approximately 4215 $/day in the case
of the dBA. Figure 12 shows this difference clearly.
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4.2.3. Characteristics Offered by BA and dBA

Figures 13–17 show different convergence characteristics of the BA and dBA for selected test Case 2.
The bat population was selected as 100, and total iterations were taken at 1000. Figures 13 and 14 show
the position of bats of the BA and dBA, respectively at the start and after 1000 iterations. As observed
from simulation results, bats start from a random location and converge to the best solution after
1000 iterations. It can also be seen that almost all the bats moved towards the best solution, showing
that the solution is much closer to a global solution. However, in the case of the dBA, the bats are much
better optimized. Figure 15a shows that the BA’s fitness decreases very quickly, which increases the
risk of capturing the local optimum solution. The fitness gradually decreases as the iteration increases.
It gives a better chance of moving the solution closer to the global best position. Figure 15b shows the
magnified view of the cost convergence curve. Figure 16 shows the pulse rate of the best bat, which
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depicts the decrease of pulse rate as the bat finds its prey. Figure 17 shows the best bat’s loudness,
which depicts the increase of loudness as the bat finds its prey.
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4.2.4. Comparison of dBA, BA, PSO, and GA

Simulation results reveal that the variant dBA shows promising results in terms of better quality
and convergence characteristics without being trapped in local optima compared to the conventional
BA. To further validate the applicability of dBA, a test case of 3000 MW demand was taken and solved
with population and iterations of 100 and 1000, respectively, using BA, dBA, PSO, and GA. Table 13
shows the result without renewables and Table 14 with renewables. It can be seen that the dBA tends
to give better fitness than the BA, which in turn gives better results than that of the PSO and GA.
Figures 18 and 19 depict the achievements regarding convergence characteristics.
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Table 13. Cost comparison for 3000 MW demand without renewables.

Algo. P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

P8
(MW)

P9
(MW)

P10
(MW)

P11
(MW)

P12
(MW)

P13
(MW)

P14
(MW)

P15
(MW)

Cost
($/h)

GA 363.492 453.795 129.346 129.728 359.963 375.192 464.217 180.51 148.767 153.632 79.9023 77.2148 39.1577 27.5144 17.5699 3649

PSO 455 455 130 130 470 460 465 93.0009 162 25 20 80 25 15 15 36299

BA 454.98 454.98 129.98 129.98 469.98 459.98 464.98 60.01557 60.10281 159.98 20.01557 79.97995 25.01557 15.01557 15.01557 36242

dBA 455 455 130 130 470 460 465 60 25 135 80 80 25 15 15 36204

Table 14. Cost comparison for 3000 MW demand with renewables.

Algo. P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

P7
(MW)

P8
(MW)

P9
(MW)

P10
(MW)

P11
(MW)

P12
(MW)

P13
(MW)

P14
(MW)

P15
(MW)

Wind
(MW)

Solar
(MW)

Cost
($/h)

GA 359.14 361.427 129.932 129.952 388.694 362.319 390.447 290.997 150.702 153.982 78.889 78.993 55.887 34.555 15.079 13.71 5.3 36,491.1

PSO 455 455 130 130 470 460 465 60 25 75.9902 80 80 25 55 15 13.71 5.3 36,047

BA 454.91 454.909 129.909 129.909 469.909 459.909 464.909 60 25 116.809 79.909 79.909 25 15 15 13.71 5.3 35,996

dBA 455 455 130 130 470 460 465 60 25 115.99 80 80 25 15 15 13.71 5.3 35,995
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For all the scenarios considered in test cases, the dBA always performed better when compared to
the BA and other metaheuristics such as the GA and PSO. This justifies the applicability and potency
of dBA to renewables-incorporated ELD problems.

4.3. Case 3: 6 Thermal Units with Valve Point Effect

4.3.1. Data

An IEEE 30 bus system which consists of six thermal units running from fossil fuels with a valve
point effect, is considered. The cost coefficients with minimum and maximum power generation limits
are shown in Table 15 [26]. In Table 16, a 24 h load forecasting is selected as a load demand which
is to be met. It can be seen that the maximum power demand at 1600 h is 1350 MW. In this case,

Fthermal =
6∑

i=1
Fi(Pi).
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Table 15. Cost coefficients of seven thermal units with lower and upper power limits.

Unit a ($/MW2) b ($/MW) c ($) e f Pmin (MW) Pmax (MW)

1 0.007 7 240 300 0.031 100 500

2 0.0095 10 200 200 0.042 50 200

3 0.009 8.5 220 150 0.063 80 300

4 0.009 11 200 150 0.063 50 150

5 0.008 10.5 220 150 0.063 50 200

6 0.0075 12 190 150 0.063 50 120

Table 16. Demand forecasting over 24 h.

Time (h) 1 2 3 4 5 6 7 8 9 10 11 12

Demand (MW) 800 780 750 750 720 700 700 700 800 900 1000 1200

Time (h) 13 14 15 16 17 18 19 20 21 22 23 24

Demand (MW) 1260 1263 1300 1350 1100 900 850 800 780 750 700 800

The data used for RESs are mentioned where the renewables-incorporated ELD problem is
discussed in the following sections/subsections.

4.3.2. Cost Offered by the BA and dBA

Table 17 shows the simulation results of the aBA and dBA in terms of operating cost for a 24 h
period. It can be seen that the dBA comparatively gives less operating cost, i.e., 262,196.7 $/day
than that of the BA, which gives 263,734.7 $/day. Even for most of the load demand for each hour,
the dBA ensures a lower cost when compared to the BA. This ensures that the dBA displays a better
global optimum solution with regards to the conventional BA. In the second scenario, a six-unit
thermal system was added with one wind and one solar PV farm. Both BA and dBA were applied to
ELD-incorporating renewables. Table 18 shows the result of the BA and dBA over a 24 h time period.
It is clear from the results that the dBA gives better fitness results than the BA. The dBA is found to be
more successful in reducing the total cost per day than the BA with or without renewables.

4.3.3. Comparison with Other Algorithms

To further justify the effectiveness of the dBA over the BA, PSO, GA, and enhanced bat algorithm
(EBA) (another variant of BA), a test case of 1263 MW was taken. A population size of 50 and
200 iterations were taken for this case for all algorithms. The dBA was compared with the EBA, BA,
PSO, and GA for an ELD problem without and with renewables. In [26], the EBA is already applied to
the same 6-unit thermal system, taking the valve point effect. The parameters used for the EBA are the
following: f min = 0, f max = 2, r0 = 0.5, A0 = 0.9, learning factor (ρ‘

init) = 0.65, and modulation Index (n)
= 3. Table 19 shows a comparison of all mentioned techniques for the demand of 1263 MW. It can be
seen that the dBA gives the lowest value when compared to other metaheuristic techniques. Table 20
shows a comparison of the same techniques without the EBA for a demand of 1263 MW. It can be seen
that the dBA still gives the lowest value when compared to other metaheuristic techniques. Figure 20
shows the convergence graph without renewables, whereas Figure 21 shows the convergence with
renewables, both for a load demand of 1263 MW.
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Table 17. The BA and dBA on a six-thermal unit system without renewables.

t
(h)

BA dBA

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

Cost
($/h)

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

Cost
($/h)

1 304.0977 199.8699 145.6583 50.1247 50.1247 50.1247 9738.751 303.1211 50 197.1456 50 149.7333 50 9664.668

2 302.3879 50 277.6122 50 50 50 9360.333 400.2669 50 179.7331 50 50 50 9306.703

3 403.7476 50.0779 145.9411 50.0779 50.0779 50.0779 9065.843 302.6834 117.5835 80 99.8666 99.8666 50 9070.008

4 403.8278 116.1724 80 50 50 50 9074.849 404.0251 50 145.9749 50 50 50 9060.803

5 302.8308 50 80 50 187.1696 50 8837.094 302.6834 124.7998 142.5168 50 50 50 8663.793

6 404.1376 50 95.8625 50 50 50 8527.005 404.0251 65.9749 80 50 50 50 8540.125

7 403.6802 50 80 66.3199 50 50 8562.329 302.6834 50 197.3166 50 50 50 8451.905

8 304.9113 50 195.0889 50 50 50 8460.184 302.6834 50 179.7331 50 67.5835 50 8443.944

9 404.0628 50.0696 195.503 50.2274 50.0696 50.0696 9642.309 302.6834 117.717 179.7331 50 99.8666 50 9535.645

10 302.0052 198.8671 180.2607 50 50 118.8671 11,018.49 302.6834 124.7998 179.7331 50 192.7837 50 10,819.79

11 298.5139 119.4949 279.0726 50 155.4834 97.4355 12,188.55 302.6791 124.7997 272.9238 99.8665 99.8665 99.8643 12,066.25

12 405.8937 196.2599 279.4071 116.9151 150.0368 51.4876 14,667.56 404.0251 200 229.5997 116.7756 149.7331 99.8666 14,613.49

13 405.654 198.2898 257.4718 149.9055 198.6867 50 15,458.83 404.0251 199.5997 229.5997 149.7331 177.176 99.8666 15,423

14 499.7773 199.4551 264.276 50 199.4917 50 15,545.15 404.0251 180.176 229.5997 149.7331 199.5997 99.8666 15,459.25

15 499.9861 121.895 229.7232 149.6276 199.9861 98.782 15,923.5 496.4093 124.7986 279.4612 149.7312 149.7331 99.8665 15,899.96

16 499.7221 199.5299 251.3507 149.8015 199.596 50 16,678.19 500 199.5997 251.0676 99.8666 199.5997 99.8666 16,668

17 410.8341 199.6708 229.0246 50.0123 111.3209 99.1373 13,400.56 404.0303 199.5999 246.6364 99.8667 50 99.8667 13,397.62

18 302.8311 125.9796 222.1654 149.0241 50 50 10,863.54 302.6834 117.9839 229.5997 50 149.7331 50 10,767.51

19 495.3723 124.6277 80 50 50 50 10,415.96 404.0251 116.2418 179.7331 50 50 50 10,156.68

20 404.015 50.1457 195.4023 50.1457 50.1457 50.1457 9642.712 302.6834 124.7998 179.7331 50 50 92.7837 9604.737

21 302.2643 50 129.2625 50 198.4738 50 9408.851 400.2669 50 179.7331 50 50 50 9306.703

22 404.6521 50 145.348 50 50 50 9064.374 302.6834 67.717 229.5997 50 50 50 9048.594

23 404.2485 50 80 50 65.7516 50 8548.91 302.6834 67.5835 80 149.7331 50 50 8634.162

24 403.986 50 196.0141 50 50 50 9640.874 403.9045 116.2324 129.8639 50 50 50 9593.417

Total Cost ($/day) 263,734.7 Total Cost ($/day) 262,196.7
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Table 18. The BA and dBA on a six-thermal unit system with renewables (wind and solar).

t
(h)

BA dBA

P1
(MW)

P2
(MW)

P3
(MW)

P4
(MW)

P5
(MW)

P6
(MW)

Wind
(MW)

Solar
(MW) Cost P1

(MW)
P2

(MW)
P3

(MW)
P4

(MW)
P5

(MW)
P6

(MW)
Wind
(MW)

Solar
(MW)

Cost
($/h)

1 407.261 50 191.0391 50 50 50 1.7 0 9623.146 302.6924 50 229.6642 50 115.9815 50 302.6924 0 9626.532

2 403.9725 50 80 137.5276 50 50 8.5 0 9454.004 216.713 124.8317 179.7337 50.3936 149.8281 50.0001 216.713 0 9422.702

3 407.4166 52.8849 80 100.4289 50 50 9.27 0 8997.98 302.1017 109.632 179.253 50 50 50 302.1017 0 8912.984

4 302.8392 50 229.3799 51.1211 50 50 16.7 0 8743.5 302.8251 50 130.7264 99.9077 99.8885 50 302.8251 0 8767.597

5 301.2707 50 211.5096 50 50 50 7.22 0 8625.025 302.6834 50 80 80.3635 149.7331 50 302.6834 0 8746.108

6 309.4563 50 185.6037 50 50 50 4.91 0.03 8371.869 302.6977 61.0559 179.8242 50.0208 50.0004 51.4948 302.6977 0.03 8357.135

7 399.07 50 80 50 50 50 14.7 6.27 8222.705 302.6795 50 176.3905 50 50 50 302.6795 6.27 8101.709

8 303.8568 122.6032 80 50 50 50 26.6 17 7916.233 226.7368 50 129.9616 99.8799 99.8826 50 226.7368 17 8147.866

9 300.4229 127.362 177.1759 50.0366 50.0366 50.0366 20.9 24.1 9027.041 302.6734 50.1159 129.9708 99.9166 99.5375 72.8991 302.6734 24.1 9195.099

10 404.5675 50 232.997 55.2156 50 50 17.9 39.4 10,125.3 404.0079 58.2945 179.8913 99.9727 50.5936 50.0207 404.0079 39.4 10,114.19

11 405.3966 130.018 185.9864 103.5525 50.1832 104.6533 12.8 7.41 11,927.35 404.0191 50 179.7296 146.318 149.7246 50 404.0191 7.41 11,788.42

12 402.9712 199.5415 276.0535 96.2798 152.7847 50.0694 18.7 3.65 14,292.73 404.4885 124.7998 279.4668 119.2786 149.8399 99.8314 404.4885 3.65 14,334.4

13 499.4858 189.1041 227.7647 147.7838 99.5717 50 14.4 31.9 14,891.31 404.1383 130.5086 229.6849 149.6973 199.6692 100.0118 404.1383 31.9 14,727.89

14 403.9604 196.115 278.8123 50 199.2537 97.6997 10.4 26.8 14,922.88 404.0251 193.019 229.563 149.7223 199.536 50 404.0251 26.8 14,888.17

15 499.9823 50.364 279.7122 149.9823 199.9823 101.637 8.26 10.1 15,777.14 500 124.7999 279.4662 149.732 149.7337 77.9305 500 10.1 15,773.39

16 499.9947 199.48 280.3615 100.7151 199.9947 50.446 13.7 5.3 16,302.84 500 199.8978 279.5025 149.999 150.4317 51.1593 500 5.3 16,297.56

17 404.8324 199.9615 280.2751 50.2983 50.2983 101.3246 3.44 9.57 13,175.66 404.0315 124.5384 229.5879 99.859 129.2 99.7795 404.0315 9.57 13,158.34

18 301.0121 198.385 178.1683 50 50 118.2546 1.87 2.31 10,989.48 308.9345 57.3585 229.7199 50.0997 149.8421 99.8655 308.9345 2.31 10,855.5

19 303.5578 50 195.8985 50 199.7937 50 0.75 0 10,321.21 302.6831 121.8288 129.8605 98.6726 99.8539 96.3515 302.6831 0 10,242.29

20 303.4517 50.0205 279.1827 50 67.1753 50 0.17 0 9713.297 204.3773 50.1842 279.4667 66.0672 99.8678 99.8667 204.3773 0 9922.678

21 302.3867 50.3536 176.8755 149.5274 50.3536 50.3536 0.15 0 9399.814 302.6804 50 179.7224 97.5928 99.854 50.0005 302.6804 0 9300.974

22 405.7363 50.8019 80.8019 51.3261 109.8055 51.2187 0.31 0 9155.692 302.6833 117.311 80.0002 99.8299 99.8656 50 302.6833 0 9069.648

23 404.8733 64.0576 80 50 50 50 1.07 0 8525.123 302.6835 50.0002 146.3776 99.8665 50 50.0022 302.6835 0 8473.289

24 302.5694 50 232.2333 50 50 114.6174 0.58 0 9750.315 403.9456 115.6947 80 99.8031 50 50 403.9456 0 9689.647

Total Cost ($/day) 258,251.6 Total Cost ($/day) 257,914.1
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Table 19. Comparison of the dBA, enhanced bat algorithm (EBA), BA, PSO, and GA without renewables.

Unit dBA EBA [26] BA PSO GA

1 404.0243 404.0251 403.8001 500 402.7638

2 199.5995 199.5997 199.7978 200 186.9464

3 260.0438 279.4662 224.1185 229.4894 279.9828

4 149.7328 149.7331 148.2026 150 99.8815

5 149.7333 180.1760 198.3771 133.5109 188.7443

6 99.8664 50 88.70405 50 104.681

PGTOTAL (MW) 1263 1263 1263 1263 1263

Cost ($/h) 15,448.9331 15,453.8841 15,498.9328 15,524.9449 15,563.0527

Table 20. Comparison of the dBA, BA, PSO, and GA with renewables.

Unit dBA BA PSO GA

1 404.0152 402.1131 500 499.9096

2 124.3873 125.9102 126.6186 147.8697

3 229.5998 280.6446 229.5035 229.9327

4 149.2019 149.4743 50 101.3156

5 198.8925 197.6381 200 149.7285

6 99.6837 50 99.6575 77.02417

Wind 17.85 17.85 17.85 17.85

Solar PV 39.37 39.37 39.37 39.37

PGTOTAL (MW) 1263 1263 1263 1263

Cost ($/h) 14,592.6446 14,632.51 14,698.722 14,944.389Energies 2020, 13, x; FOR PEER REVIEW 37 of 42 
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4.4. Case 4

To further compare the effectiveness of the dBA with other metaheuristic techniques, in this case
study, a 150 kV power system located in East Java, Indonesia, consisting of 10 units, is considered.
Cost coefficients of the units with lower and upper power bounds, taken from [51], are summarized in
Table 21. The total system demand without the transmission losses is 616 MW. Population size and
iterations are kept the same for all the techniques to compare the results on one scale.

Table 21. A 10-unit thermal system cost coefficients with lower and upper power limits.

Generator a ($/MW2) b ($/MW) c ($) Pmin (MW) Pmax (MW)

1 0.2162 42.5118 4088.5375 23 92

2 0.4108 20.5021 4547.8075 23 92

3 0.0562 32.9483 4601.9649 47.25 189

4 0.1266 22.2655 4316.1074 47.25 189

5 0.6210 50.6244 3707.7500 10.25 41

6 0.1255 69.7050 3459.6950 10.25 41

7 3.6454 370.6642 9045.7750 23 95

8 0.3981 31.9013 1124.9075 23 95

9 2.3185 484.7006 8549.5500 23 95

10 0.1142 31.8112 4486.6174 41.25 165

A comparison of the results offered by the dBA and other algorithms such as the BA, GA, PSO,
and modified inertial weight-based PSO (MIW-PSO) is presented in Table 22. The dBA offers a low
cost, i.e., 95,633 $/h when compared to all other mentioned techniques, thus validating the workability
of the dBA. This low cost is also depicted in the convergence characteristics drawn for the dBA and
MIWPSO, as shown in Figure 22. For the comparison purpose, the convergence characteristics are
drawn for 15 iterations.
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Table 22. Comparison of dBA, BA, GA, PSO, and modified inertial weight-based PSO (MIW-SPO).

Generator dBA BA GA PSO [51] MIW-PSO [51]

1 35.84 23 42.469 38.63 36.34

2 44.47 52.51 54.964 38.94 46.58

3 189 185.97 69.765 178 189

4 138.40 150.56 73.755 142.20 139.16

5 10.25 10.25 32.788 13.43 11.06

6 10.25 10.25 37.772 13.42 10.25

7 23 23 23.009 29 23

8 31.62 23 93.591 26.84 29.90

9 23 23 23.032 29 23

10 110.17 114.47 164.854 106.54 107.71

PGTOTAL (MW) 616 616 616 616 616

Cost ($/h) 95,633.00 95,745.54 100,207.15 95,840.57 95,835.53
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From the inspection of the convergence characteristics of all the considered case studies,
we observed that at the initial stage, the dBA almost converges slowly compared to other algorithms due
to a rigorous exploration process to ensure effective search space exploration. However, as the algorithm
progresses, the exploitation dominates exploration to speed up the convergence toward global optimum
compared to other algorithms. The dBA boosts its exploration and exploitation capabilities due to the
introduction of directional echolocation to the structure of BA, the inclusion of a scale factor in the local
search step to make the movement random, thus avoiding a local convergence, the acceptance of new
solutions based on a random value to ameliorate the solution quality, and monotonically increasing
and decreasing pulse rate and loudness, respectively, to enhance diversity. In this way, the dBA offers
promising convergence characteristics compared to other algorithms, giving a low total fuel cost.
We also noticed that the algorithm performs better as the problems’ dimensions increase because of its
capability to promote diversity and avoid the local optima.
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5. Conclusions

In this paper, the modified directional bat algorithm (dBA), which is a useful variant of
nature-inspired (BA), was utilized to solve the ELD problem with and without the optimal integration
of RESs such as solar and wind. The dominance of this metaheuristic technique was highlighted by
comparing the performance of the dBA with BA and other prominent metaheuristics techniques like GA
and PSO. Moreover, to show the superiority of the dBA, it was also compared with the variants of PSO
and BA such as MIWPSO and EBA. Different test cases were considered to analyze and compare the
performance of the dBA. From the simulation results, it could be seen that by incorporating renewables
in the thermal unit system, the operating cost of the system decreased significantly. Moreover, with the
help of directional echolocation, the dBA outperformed all other algorithms with comparatively fast
convergence. It also reduced the probability of a premature convergence problem due to the elitism
mechanism. In addition, the valve point effect was also considered to test the algorithm with a more
practical system. In future, this improved variant of the BA could be applied to even more realistic
ELD problems taking more practical constraints such as prohibited operating zones, multiple fuel
options, and transmission losses along with other renewables.
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