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Abstract: In today’s world, distributed generation (DG) is an outstanding solution to tackle the
challenges in power grids such as the power loss of the system that is intensified by the exponential
increase in demand for electricity. Numerous optimization algorithms have been used by several
researchers to establish the optimal placement and sizing of DGs to alleviate this power loss of
the system. However, in terms of the reduction of active power loss, the performance of these
algorithms is weaker. Furthermore, the premature convergence, the precision of the output, and the
complexity are a few major drawbacks of these optimization techniques. Thus, this paper proposes the
multileader particle swarm optimization (MLPSO) for the determination of the optimal locations and
sizes of DGs with the objective of active power loss minimization while surmounting the drawbacks
in previous algorithms. A comprehensive performance analysis is carried out utilizing the suggested
approach on the standard IEEE 33 bus system and a real radial bus system in the Malaysian context.
The findings reveal a 67.40% and an 80.32% reduction of losses in the two systems by integrating three
DGs with a unity power factor, respectively. The comparison of the results with other optimization
techniques demonstrated the effectiveness of the proposed MLPSO algorithm in optimal placement
and sizing of DGs.

Keywords: distributed generation; optimal placement and sizing; loss minimization; multileader;
particle swarm optimization

1. Introduction

The exponential growth of energy demand has been witnessed during the last few decades
owing to the complicated life cycle of human beings, and consequently the power losses and the
voltage drops of the distribution systems have increased. The majority of these systems are either
radial or weakly meshed systems. As a result, the line loss and the voltage drop associated with the
feeder ends of these distribution systems are more significant owing to the inherited high R/X ratio
of distribution systems [1]. Besides, these networks are centralized with unidirectional power flow
and energized by fossil fuels. Therefore, they significantly contribute to environmental pollution and
global warming by the emission of harmful gases [2]. Thus, distributed generation (DG) technology
has been introduced to the distribution systems as an immediate solution in overwhelming these
technical and environmental issues related to the distribution systems while accommodating the
extensive load growth. In [3], DGs are defined as power generation units with a maximum capacity of
50–100 MW which are typically connected to the distribution network and that are neither centrally
planned or dispatched. There are different types of technical environmental and economic benefits of
the DGs that can maintain the quality of the system [4–6]. However, the non-optimized sitting and
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sizing of DGs can cause numerous challenges to the distribution systems such as higher line losses,
voltage limit infringements, increment in short circuit levels, and eventually the degradation of system
performance [7–9]. To reap these benefits of DGs to the greatest possible extent, these power generation
units should be systematically sized and placed in a distribution system [10–12].

In the existing literature, various optimization approaches have been used to determine optimal
placement and sizing of DGs and mainly they could be categorized into classic and artificial intelligent
algorithms [13]. Classic algorithms employ fundamental mathematics to seek the best solution while
artificial intelligence algorithms are concentrated on sophisticated computations based on evolutionary
and nature-inspired techniques. There are different kinds of classic algorithms and the analytical
approach is one of them. In [14], analytical expressions have been developed to determine the
optimal sizes and the locations of DGs considering the minimization of power loss, and four different
power loss formulas have been employed to calculate the power loss of the system. Concerning the
minimization of power loss as the objective, an analytical technique centered on a loss sensitivity
factor is utilized in finding the optimal sitting and sizing in [15] and the produced results have been
compared with another two analytical methods. A simplified analytical technique has been proposed
in [16] to optimally integrate DGs to alleviate the power loss in distribution networks and the power
loss reduction results have been analyzed with another four methods for one, two, and three DGs.
In [17], the exact loss equation-based analytical technique has been used to find the optimal size
and the location of a single DG in three different distribution networks. The mixed-integer linear
programming (MILP) approach has been used in [18] to determine the optimal placement and sizing
of DGs in radial distribution systems. The authors in [19] have used the mixed-integer nonlinear
programming (MINLP) technique to identify optimal placement and sizing of DGs with the intention
of minimization of network power loss. Furthermore, the authors in [19] have simplified the problem
by dividing the method into two sections, namely the siting model and capacity model to reduce the
computational time. The authors in [20] have analyzed the impact of DGs on the power loss and the
voltage profile of the system by integrating DGs at selected candidate locations. The authors of [21]
have used a decision-making algorithm that has been developed on a radial distribution system to
determine the optimal size and placement of two different types of DGs in distribution networks,
based on the improvement of voltage profile and the reduction of the network’s total power losses.
The results have been compared with several previous approaches and it has shown the efficiency of
the decision-making algorithm.

Many research works that use artificial algorithms could also be found in the field of optimal
placement and sizing of DGs. Genetic algorithms (GA) come under artificial intelligence algorithms
and many researchers have employed this on optimal placement and sizing of distributed generation.
In [22], GA has been used in determining optimal placement and size of DGs with the aim of energy
loss minimization while satisfying voltage and line loading constraints. This methodology has been
tested on three different distribution systems and the results were used to show the effectiveness of the
proposed method. The authors in [23] have applied GA to find the optimal locations and the sizes of
DGs for the minimization of technical and economic factors of the distribution system. The GA has
been applied in [24] for the scaling of DGs to enhance the voltage stability of the distribution system
and the optimal placements of DGs have been identified by a stability index. Furthermore, the authors
in [25] have suggested GA for optimizing the DG planning to maximize the savings in the cost of
energy loss, and system upgrade. Tabu-Search (TS) has been applied in [26] to optimally place and size
the DGs concerning the power loss minimization of the system. The authors in [27] have used the
intelligent water drop (IWD) approach for optimal sizing of DGs to minimize the line loss of the system
and the placement of the DGs of this study has been determined using a loss sensitivity index. The bat
algorithm (BA) has been employed in [28] to optimally place and size solar-based DGs to reduce the
network power loss. Moreover, in [29], a bat-inspired algorithm has been used to optimally locate and
scale DGs in radial distribution networks. The shuffled frog leap algorithm (SFLA) has been employed
in [30] to solve the DG placement problem for minimization of power loss and the improvement of
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voltage stability index. This approach was tested under different scenarios. The bacterial foraging
algorithm has been proposed in both [31,32] for optimal planning of DGs to improve the bus voltage
and to reduce the total loss in the system. The bio-geography-based optimization algorithm (BBO)
has been used in [33] for optimal sitting and sizing of DG units with an effective power factor to
minimize the network loss. Results have shown the improvement in loss reduction of the DGs with
lagging power factors. To reduce the line losses and the voltage drop of the system, the authors in [34]
have used the cuckoo search algorithm (CSA) to optimally allocate the DGs. In [35], the authors have
focused on active power loss reduction and voltage profile improvement by optimal placement and
sizing of DGs using particle swarm optimization (PSO), and the method was tested with a single DG
on two systems. Furthermore, a hybrid PSO and a loss sensitivity analysis have been used in [36]
to determine the candidate buses and the sizes of DGs to alleviate the system loss in the network.
The optimization was focused on both technical and economic benefits and was subjected to several
constraints. In [37], a comprehensive learning PSO (CLPSO) has been employed to find the optimal
placement and sizing with the intention of power loss minimization and the results have been compared
with the PSO algorithm.

In the perspective of optimization algorithms, the convergence is not taken into consideration as a
consequence of the noniterative nature of the analytical optimization techniques that comes under classic
optimization approaches. Nevertheless, in the context of complicated problems, these computational
methods may not be appropriate due to the lack of accuracy. Moreover, the MILP would offer
similar less reliable solutions owing to the linearization that is included in the algorithm. However,
MINLP has addressed the linearization error of MILP with better precision in the solutions. GAs are
computationally incapable of dealing with complicated optimization problems and easily reach the
state of premature convergence by curtailing its exploration. TS is appropriate for substantially large
optimization problems. Nevertheless, the multiple iterative parameters in the optimization process
are constantly engaged in an algorithm and that enhances the computational cost and degrades the
computational performance. Even though the BA is comparatively simple and flexible, the accuracy
of the algorithm is limited and converges quickly at the early stages. IWD may not give the optimal
solution since it depends on the probability of selecting the next node in the algorithm which is
calculated by a fitness proportionate method. In comparison, SFLA has the drawbacks of slower
convergence and the ability to trap into the local optimal solution. Both the BBO and CSA algorithms
have the disadvantage of effortless falling into the local optimal solution and in addition to that,
CSA has a slow rate of convergence. Moreover, these artificial algorithms have a high computational
burden due to the iterative aspect of the optimization approaches. A lower number of iterations are
used in the PSO algorithms than in GA and TS algorithms. Thus, the numerical pressure of the PSO
algorithms is comparatively less and easy to implement relative to the other artificial intelligence
optimization approaches. Additionally, preconditions such as continuity or differentiability of objective
functions do not associate with the PSO algorithms and a fast convergence could be accomplished
by fewer control parameters. Nevertheless, all the swarm particles in the PSO extremely attract
and travel towards one swarm leader and the algorithm could be converged the system without
ample exploration over the search space. Besides, if the particles are stuck into a region including
a local optimum, they would simply cease their exploration as they are not able to escape from
that region. Many researchers have contributed to overcome these drawbacks of the PSO by modifying
topology structures [38,39], hybridizing PSO with other approaches [40,41], and utilizing cooperative
approaches [42].

Considering the above factors, a multileader particle swarm optimization (MLPSO), which allows
to dynamically choose the leaders of each particle, is employed to address the simultaneous optimal
placement and sizing of DGs in a distribution network to minimize the active power loss. The MLPSO
algorithm is premised on the simulation of the social behavior of the birds within a flock, and it is a
variant of PSO introduced by Kennedy and Eberhart in 1995 [43]. This algorithm has the capability of
surmounting the weak exploration capability of PSO that leads to premature convergence. Furthermore,
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the complexity, computational cost, and precision errors attributed to other optimization techniques
that are used for the optimal placement and sizing problems have overwhelmed. The voltage stability
index (VSI) based methodology has been employed to determine the optimal placement of DGs.

The rest of the paper is organized as follows. Section 2 describes the problem formulation
including objective function and the subjected constraints. Section 3 presents the optimization
framework. Section 4 presents the simulation results and the discussion is given in Section 5. Finally,
Section 6 presents our conclusions.

2. Problem Formulation

For an efficient power system operation, an important necessity in the system is to reduce the real
power loss to the greatest extent possible. Therefore, the minimization of the system’s active power loss
(PLoss) was considered as the objective function of this optimization architecture and it was calculated
utilizing the branch current and the branch resistance. The objective function was defined as follows.

Minimize f =
M∑

m=1

Ploss,m =
M∑

m=1

Im
2
×Rm; for m = [1, 2, 3, . . . , M] (1)

where Ploss,m, Im, Rm, M are the active power loss of the mth branch, the mth branch current, the mth
branch resistance, and the number of branches in the network, respectively.

Even though there are different methods of calculating power loss in the network, the branch
current formula given in Equation (1) was selected in this study to alleviate the complexity and the
computational burden of the optimization process. The objective function given in Equation (1) should
be minimized and subjected to the following inequality and equality constraints.

1. Voltage constraint

The absolute value of the voltage magnitude at each node must be stationed within their admissible
ranges to maintain the system’s power quality. It is defined as below.∣∣∣V∣∣∣ ≤ Vn ≤

∣∣∣V∣∣∣; n ∈ [1, 2, . . . , N] (2)

where V, V, Vn, and N are the lower voltage limit, the upper voltage limit, the voltage of nth node,
and the total nodes in the network respectively.

2. Thermal constraint

All the branch currents of the network must be well within the maximum thermal capacity of the
conductor and can be defined as follows.

Im ≤ Irated; m ∈ [1, 2, . . . , M] (3)

where Im is the mth branch current and Irated is the maximum allowable branch current.

3. DG capacity constraint

The total generation of the active power of every integrated DG unit must be less than the total
active power demand of the network, as the infringement of the constraint results in a reverse power
flow in the system. This constraint is expressed as follows.

0 ≤
N∑

i=1

PDG,i ≤

N∑
i=1

PL,i; fori = [1, 2, 3, . . . , N] (4)

where PDG,i and PL,i are the active power injection and load connected to the ith node respectively.



Energies 2020, 13, 6185 5 of 25

4. Nodal power balance constraint

The active and reactive nodal power balances of the network are defined as follows.∑
j∈φ(i)

(
P ji − I2

br, jiR ji

)
+ PDG,i − PL,i =

∑
k∈ψ(i)

Pik; i, j, k ∈ [1, 2, 3, . . . , N] (5)

∑
j∈φ(i)

(
Q ji − I2

br, jiX ji

)
−QL,i =

∑
k∈ψ(i)

Qik; i, j, k ∈ [1, 2, 3, . . . , N] (6)

where j ∈ φ(i) denotes the set of all parents of node i and k ∈ ψ(i) denotes the set of all children of
node i. Subscripts ji and ik represent the current flowing directions of j to i and i to k, respectively.
P ji is the active power flowing from jth node to ith node. R ji and Ibr, ji are resistance and the branch
current of the line which connects ith and jth nodes. PDG,i and PL,i are active power injection at ith
node and the active load connected to ith node, respectively. Similarly, Q ji, X ji, and QL,i are reactive
power flow of jth node to ith node, the reactance of i j branch, and the reactive load connected to ith
node, respectively.

For the purpose of minimizing the objective function whilst complying with the constraints
Equations (2)–(6), the penalty functions were incorporated. The fundamental principle of these penalty
functions is that an optimal DG size (i.e., the optimal solution) seeks the constraints to be engaged,
thus optimal solution exists within the permissible regions for voltage magnitudes, thermal limits,
DG sizes, and nodal power balance. To enforce this, a cumulative penalty was imposed on the
solutions in situations where constraints are not fulfilled. Therefore, the objective function defined by
Equation (1) was revised and modified as Equation (7),

fp =
M∑

m=1

PLoss,m + PL,b

 N∑
n=1

Vp,n +
M∑

m=1

Tp,m + DGp + PBp

 (7)

where the penalty function for the p.u. nodal voltage is given by Vp,n,

Vp,n =


∣∣∣Vn −V

∣∣∣ ; Vn < V
0 ; V < Vn < V
(Vn −V) ; Vn > V

for n = [1, 2, 3, . . . , N] (8)

the penalty function for the thermal limit is given by Tp,m,

Tp,m =


( Im−Irated

Irated

)
; Im > Irated

0 ; Im < Irated
for m = [1, 2, 3, . . . , M] (9)

the penalty function for the DG capacity is given by DGp,

DGp =


1 ;

N∑
i=1

PDG,i >
N∑

i=1
PL,i

0 ;
N∑

i=1
PDG,i <

N∑
i=1

PL,i

; for i = [1, 2, 3, . . . , N] (10)

the penalty function for the nodal power balance of the network is given by PBp,

PBp =

1 ; LHS(6) , RHS(6)∪ LHS(7) , RHS(7)

0 ; LHS(6)= RHS(6)∩ LHS(7)= RHS(7)
(11)
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The corresponding penalty functions for the constraints defined in Equations (2)–(6) are presented
in Equations (8)–(11). PL,b is the penalty constant imposed on the penalty functions. The graphical
representation of the penalty functions for voltage magnitude, thermal limit, and the DG size constraints
are shown in Figure 1.
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3. Optimization Framework

3.1. Optimal Placement of Generators

The problems concerning the optimal placement and sizing of distributed generation could be
divided into two groups [44]. In the first group, the optimal locations are randomly identified from the
nodes of the network, while the second group uses an index to find the most appropriate node for the
DG integration. The voltage stability index (VSI) is one of the popular indexes that is used to determine
the weakest bus in the system. However, the requirement in several locations for simultaneous multiple
DG integration could not be addressed, as the second method only gives a single node of integration.
Therefore, in this paper, a VSI based methodology is used to recognize the most suitable nominee
locations in the network which enables simultaneous DG integrations. In addition, this method
improves the voltage stability of the network rather than a random selection of nodes to integrate DGs.

The VSI term was developed using the parameters given in Figure 2 and given in Equation (12).
The derivation of this term is given in Appendix A.

VSI = 2|Vl|
2
|Vk|

2
− |Vl|

4
− 2|Vl|

2
{PlRkl + QlXkl} − |zkl|

2
{
Pl

2 + Ql
2
}

(12)
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Figure 2. Single line diagram representation of balanced radial distribution system

VSI computes the proximity of the nodes to a voltage collapse in the test system. Low VSI values
are more prone to collapse. Thus, in this method, the nodes which have a VSI less than a predefined
value (VSIlim) are considered as the nominee locations. The algorithm of identification of nominee
locations for DG integration is given in Algorithm 1 and the graphical representation of the steps
involved in the algorithm is given in Figure 3.
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Algorithm 1. Identification of nominee locations for DG integration.

Input: Network data of the considered network system.
Step 1: Read the data of the network system and perform the load flow analysis.
Step 2: Extract the voltages of all the nodes and calculate VSI using Equation (12).
Step 3: Group the nodes which satisfy the VSI limit (VSIlim).
Step 4: Make sets of nodes including U number of nodes (i.e., 1 × U vectors) for DG

integration from the grouped nodes (U is the number of DGs connecting to the system).
Output: DG integration location sets.
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Consider a network having N (∈ \Ns; where Ns is the node at the substation) number of nodes.
The nominee nodes (NN—green color nodes) which are selected after applying VSI (in step 3), are used
to generate the sets of DG integrating locations (in step 4). Each generated set of location claims to
have dissimilar nominee nodes for the sitting of DGs. In the final step, the generated location sets are
passed to the optimization process. This procedure of multiple selections of nominee nodes gives the
ability of the placement of multiple DGs rather than selecting one location compared to other methods
and also will help to reduce the search space of sitting locations of a single DG by

(
1− NR

N

)
% value,

where NR is the rejected node-set (red color nodes in Figure 3 where VSI > VSIlim).

3.2. Optimal Sizing of Generators

As discussed before, in this study, the MLPSO algorithm is introduced to optimally size the DGs.

3.2.1. Concept and Flight Equations of MLPSO

A group of birds (i.e., particles in a swarm) will arbitrarily search for food (i.e., optimal solution) in
a confined area during the searching phase. There is only one piece of food in the area being searched.
All the birds do not know the location of food. However, a few birds are closer to the food (i.e., leaders)
and others follow these leader birds to find the food quickly and effectively. This stochastic algorithm
works in parallel with particles to examine appropriate regions in a multidimensional environment,
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where the optimal solution is sought. The particles are with zero mass and volume. The dimension
(superscript d) of the particle represents the number of decision variables. The population is referred
to as the swarm and each particle in the swarm travels towards the optimal solution with an adaptive
velocity adjustment throughout the process. The velocity (Vd

i ) and the position
(
Xd

i

)
are updated in the

flight equations given in Equations (13) and (14).

Vd
i(updated) ← ωkVd

i + c1randd
i

(
Xd

i,pbest −Xd
i

)
+ c2randd

i

(
Xd

L, j,gbest −Xd
i

)
(13)

Xd
i(updated) ← Xd

i + Vd
i(updated) (14)

ω =
(ωmax −ωmin)

ITEmax
× ite (15)

where Vd
i , Xd

i , Xd
i,pbest, Xd

L, j,gbest, are the ith particle’s velocity in dth dimension, the ith particle’s position
in dth dimension, mean value of ith particle’s personal best in dth dimension, mean value of assigned
jth leader’s global best in dth dimension, respectively. c1 and c2 are the weightings of stochastic
acceleration coefficients and randd

i is a random number generated in the range of [0,1]. ω is the inertia
weight and it balances the global and local searching capability. It varies according to Equation (15)
in between minimum (ωmin) and maximum (ωmax) values. All the particles attempt to improve the
MLPSO’s performance by updating their velocities and positions according to the mean personal
best and the assigned leaders mean personal best, plus varying the other parameters in different
acceptable regions.

3.2.2. Leader Assignment Process

During the optimization, the number of leader particles (k) is kept unchanged while a reward-based
method is employed to assign leaders to the particles. Each leader is rewarded by all the particles
depending on the discrepancy between the leader and the particle where the reward is directly
proportional to the discrepancy. The particles choose their respective leader according to the highest
reward and the reward scheme is computed as in Equations (16) and (17).

Dissimi =



∑
d

∣∣∣∣∣Xgbest
L, j,d −Xpbest

i,d

∣∣∣∣∣
maxk

{∑
d

∣∣∣∣∣Xgbest
L,d −Xpbest

i,d

∣∣∣∣∣} ; maxk

{∑
d

∣∣∣∣∣Xgbest
L,d −Xpbest

i,d

∣∣∣∣∣} , 0

0 ; maxk

{∑
d

∣∣∣∣∣Xgbest
L,d −Xpbest

i,d

∣∣∣∣∣} = 0

(16)

Rewk,i =
Dissimi∑
k Dissimi

+ gaussian
(
µ, σ2

)
× e(−τ×

Ite
Itemax ) (17)

where Xgbest
L, j,d , Xpbest

i,d , Xgbest
L,d −Xpbest

i,d , Dissimi, ite, ITEmax, τ, Rewk,i are the jth leader’s global best in dth
dimension, ith particle’s mean personal best in dth dimension, the difference between any leader’s
global best in dth dimension and the ith particle’s mean personal best in dth dimension, ith particle’s
discrepancy value, index of iteration number, the maximum number of iterations, noise attenuation,
and the kth leader’s reward value given by the ith particle, respectively. Gaussian noise is imposed on
the computed reward value to increase the randomness.

3.2.3. Self-Learning Process

In order to enhance the quality of the selected set of leader particles during the optimization process,
the set of leader particles are subject to three mutation processes namely; Gaussian mutation,
opposition-based mutation, and differential evolution (DE) based mutation. After each mutation process,
the mutated values are evaluated and if the objective function for the mutated value is better than the
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current objective function value, the respective leader particles’ positions are replaced by the obtained
mutated values. The mutation processes are expressed in Equations (18)–(20).

• Gaussian mutation;

XL,best(G)(d) =
(
XL,max(d) + XL,min(d) −XL,best(d)

)
× (1 + Gaussian(µ, σGD)) (18)

• Opposition based mutation;

XL,i(OB)
′ (d) = XL,max(d) + XL,min(d) −XL,i(d) (19)

• DE based mutation;

XL,i(DE)(d) =
{

XL,i(d) + F(Xs(d) −Xr(d)); Objs > Objr
XL,i(d) − F(Xs(d) −Xr(d)); Objs < Objr

(20)

where XL,best(G)(d), XL,i(OB)
′(d), XL,i(DE)(d), XL,max(d), XL,min(d), XL,best(d), XL,i(d), F are the best

leader’s position value in dth dimension after the Gaussian mutation, the leader’s position value
in dth dimension after the opposition based mutation, the leader’s position value in dth dimension
after the DE based mutation, the maximum position value of all the leaders in dth dimension,
the minimum position value of all the leaders in dth dimension, best leader’s position in dth
dimension, ith leader’s position in dth dimension, and scale factor, respectively. s and r are two
randomly generated numbers. (s , r < k). The algorithm of the self-learning process is given in
Algorithm 2.

Algorithm 2. Leaders’ self-learning procedure

Input: Number of leaders, initial standard deviation of Gaussian distribution, the updated
swarm of particles.

Step 1: Calculate the standard deviation for the iteth iteration.
Step 2: Sort all the particles in the swarm in ascending order considering the objective function

value of the particles ( fp).
Step 3: Choose the L number of leaders from the sorted list of particles.
Step 4: Select the best leader and apply Gaussian mutation for all the dimensions of the

position vector and evaluate the objective function value ( fp,G).
Step 5: If the objective function value obtained from the mutated values is better than the

current objective function value, replace the values of all dimensions of the position
vector with the mutated values.

Step 6: Else keep the current values of the position vector.
Step 7: Apply DE-based mutation upon whole leader set and evaluate the objective function

values ( fp,DE).
Step 8: If the objective function value obtained from the mutated values is better than the

current objective function value, replace the values of all dimensions of the position
vector with the mutated values.

Step 9: Else keep the current values of the position vector.
Step 10: Apply opposition-based mutation upon whole leader set and evaluate the objective

function values ( fp,OB).
Step 11: If the objective function value obtained from the mutated values is better than the

current objective function value, replace the values of all dimensions of the position
vector with the mutated values.

Step 12: Else keep the current values of the position vector.
Output: Improved leaders.
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3.2.4. Mapping of the Terms of the Optimization Process

The mapping of the terms in the optimal sizing of the DGs problem and the MLPSO problem are
shown in Table 1.

Table 1. Mapping the definitions of the problem.

Variable Definition in Optimal Sizing Definition in MLPSO Algorithm

s Possible solutions of DG sizes Number of particles in the swarm

U Number of DGs Number of dimensions of the particle

BL Minimum DG capacity The lower bound of the search space

BU Maximum DG capacity The upper bound of the search space

R Number of DG optimization simulations Maximum number of optimization runs

ITEmax
Maximum number of iterations of an

optimization simulation
Maximum number of iterations per

optimization run

r Incremental counter (index) for the number
of runs Index of the optimization run

ite Incremental counter (index) for the number
of iterations Index of the iteration of an optimization run

f The total power loss of the system with the
integration of DGs

The objective function value of the
optimization problem

fp
The penalized total power loss of the system with

the integration of DGs
The objective function value of the optimization

problem with penalties

3.2.5. Implementation of MLPSO Algorithm

(a) The complete structure of the MLPSO algorithm
Figure 4 depicts the complete structure of the proposed MLPSO algorithm. In this flowchart,

Algorithms 1 and 2 are shown as sub-blocks.
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(b) The parameters of the MLPSO algorithm
In this study, the initial positions of particles were generated by considering the total DG size that

is allowed to be connected to the system (i.e.,
∑N

i=1 PDG,i <
∑N

i=1 PL,i, for i = [1, 2, 3, . . . , N]). The main
reason behind this is to reduce the computational time of the algorithm rather than a random selection.
Therefore, the MLPSO algorithm initializes the particle positions according to Equation (21).

D∑
d=1

xd
i ≤

N∑
n=1

PL,nfor ∀ i ∈ s (21)

where D is the dimensions of the ith particle.
The parameter values used in the MLPSO algorithm are given in Table 2.

Table 2. Parameters of the MLPSO algorithm for the optimal placement and sizing.

Parameter Value Parameter Value

Number of particles in the swarm (s) 40 Number of leaders (L) 6
Maximum number of runs (R) 10 Cognitive coefficient (C1) 2

Maximum number of iterations (ITEmax) 103 Social coefficient (C2) 2
Upper bound of the inertia weight (ωmax) 0.9 Maximum allowable voltage (V) 1.05 p.u.
Lower bound of the inertia weight (ωmin) 0.4 Maximum allowable voltage (V) 0.95 p.u.

4. Results

The backward forward sweep method was used for power flow simulations with the proposed
MLPSO algorithm to determine the optimal locations and the scale of the DGs on the standard IEEE
33 bus system and a Malaysian MV bus system. The complete system was implemented on MATLAB
R2018b version installed on a 64-bit, Core-i5 processor, with an 8GB RAM.

4.1. Standard IEEE 33 Bus System

The Standard IEEE 33 bus system is a radial distribution network and it is rated at 12.66 kV. The total
connected active power load and the reactive power load demands are 3.715 MW and 2.300 Mvar,
respectively. It was assumed that this radial distribution network is three-phase and balanced. As per
the statutory limits for the voltages in MV networks, the maximum and minimum voltage levels were
defined as 1.05 and 0.95 p.u. and the thermal limit of all the branches was set to 300 A. Figure 5 shows
the single line diagram of the standard IEEE 33 bus system.
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In this study, three DGs were integrated into the standard IEEE 33 bus system using the proposed
optimization method under three scenarios namely; (a) a single DG integration, (b) two DGs integration,
and (c) three DGs integration. In addition, another two optimization approaches (PSO and CLPSO)
were used and obtained the simulation results to compare the outcomes. For all the simulations,
several assumptions were made. They are (1) the power factor of the integrated DGs is unity,
(2) the swarm size and other parameters (i.e., runs, iterations, acceleration coefficients, voltage,
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and thermal limits) for all the algorithms are the same, and (3) the network conditions and the load flow
method of the algorithms are the same. In Table 3, L and S represent the location and the size of the
respective DG. The best-fitted solutions were obtained with a fixed population size of 40, by selecting
the best out of 10 runs. The results of the standard IEEE 33 bus system for optimal siting and sizing
in each scenario under three different optimization approaches (PSO, CLPSO, and MLPSO) were
described in Table 3.

Table 3. Simulations results of optimal placement and sizing of DGs for PSO, CLPSO, and MLPSO
algorithms—IEEE 33 bus system.

Algorithm L1 S1
(MW) L2 S2

(MW) L3 S2
(MW)

Active Power Loss
(kW)

Loss Reduction
(%)

Base - - - - - - 210.070 -

PSO
6 2.42 - - - - 102.330 51.27
11 0.96 31 0.95 - - 82.995 60.49
29 1.08 25 0.85 9 1.04 73.630 64.94

CLPSO
6 2.43 - - - - 102.125 51.40
30 1.10 13 0.89 - - 81.720 61.10
11 0.93 32 0.85 24 1.05 70.300 66.54

MLPSO
6 2.42 - - - - 102.120 51.40
30 1.15 13 0.82 - - 81.620 61.15
14 0.76 30 1.03 24 1.07 68.460 67.40

Figure 6 shows the variation of active power loss reduction of all optimization algorithms.
The voltage profiles obtained after the simultaneous sizing and siting of DGs in the standard IEEE
33 bus system for each scenario were plotted in radar plots as shown in Figure 7a,c,e. In radar plots,
the lower voltage statutory limit (0.95 p.u.) was shown in a dashed red line for a clear demonstration
of the voltage profile improvement. The node numbers (i.e., equiangular spokes of the radar plot)
were placed radially around the origin and the p.u. voltage values were represented by the points
of interception of concentric circles with the radius from 0.9 to 1.0 p.u. and the spokes. Figure 7b,d,f
shows the convergence characteristics of the three scenarios considered in this study.
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Table 4 shows the minimum, maximum, and mean voltages obtain in three optimization approaches
for the three DGs scenario and Figure 8a depicts the variation of mean voltage improvement with the
number of DGs for all optimization algorithms in the standard IEEE 33 bus system.
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Table 4. Variation of voltages in PSO, CLPSO, and MLPSO algorithms for three DG scenario—IEEE
33 bus system.

Algorithm Minimum Voltage (p.u.) and Node Maximum Voltage (p.u.) and Node Mean Voltage (p.u.)

PSO 0.9613 at node 18 1 at node 1 0.9815
CLPSO 0.9637 at node 18 1 at node 1 0.9816
MLPSO 0.9699 at node 33 1 at node 1 0.9824
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parameters of PSO variants for the standard IEEE 33 bus system.

All the optimization algorithms were performed for 10 runs and the objective function values of
each run were extracted to investigate the statistical properties of the optimization algorithm. Figure 8b
shows the minimum, maximum, mean, and the calculated standard deviation values of all the runs.

4.2. Malaysian Bus System

The Malaysian bus system is a radial distribution network with 54 buses as shown in Figure 9.
It is rated at 11 kV and a total active load of 4.595 MW and a reactive load of 2.298 Mvar are connected
to the system. As per the statutory limits for the voltages of MV networks in the Malaysian context,
the maximum and minimum voltage levels were defined as 1.05 and 0.95 p.u.
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The proposed MLPSO algorithm described in the methodology was utilized to determine the
optimal sizing of DGs in the Malaysian MV network. The same (a) a single DG integration, (b) two
DGs integration, and (c) three DGs integration scenarios as in the above system were conducted and the
obtained optimal solutions are tabulated in Table 5. Moreover, the same assumptions were employed
as in IEEE 33 bus system. Figure 10 depicts the percentage of loss reductions in all the scenarios.
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Table 5. Simulations results of optimal placement and sizing of DGs for PSO, and MLPSO
algorithms—Malaysian 54 bus system.

Algorithm L1 S1
(MW) L2 S2

(MW) L3 S2
(MW) Active Power Loss (kW) Loss Reduction

(%)

Base - - - - - - 338.46 -

PSO
14 4.075 - - - - 93.886 72.25
17 2.138 43 1.885 - - 75.000 77.84
15 2.330 25 1.010 43 1.329 68.922 79.63

MLPSO
14 4.074 - - - - 93.792 72.28
16 2.324 43 1.487 - - 73.191 78.37
16 2.182 31 0.562 44 1.342 66.599 80.32
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Figure 10. Variation of loss reduction with number of DGs for the Malaysian test system.

The voltage variations of the Malaysian 54 bus system for two algorithms under (a), (b), and (c)
scenarios are shown in Figure 11a,c,e. Figure 11b,d,f shows the convergence characteristics of the
objective function for PSO and MLPSO using blue and red colors, respectively. Table 6 presents
the minimum, maximum voltages, and respective nodes and the mean voltage of the system after three
DGs integration. As in the standard IEEE 33 bus system, the statistical parameters were obtained for
the Malaysian test system and shown in Figure 12.
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(c) voltage with two DGs, (d) convergence characteristics with two DGs, (e) voltage with three DGs,
(f) convergence characteristics with three DGs for the Malaysian test system.
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Table 6. Variation of voltages in PSO, and MLPSO algorithms for three DG scenarios—Malaysian
54 bus system.

Algorithm Minimum Voltage (p.u.) and Node Maximum Voltage (p.u.) and Node Mean Voltage (p.u.)

PSO 0.9677 at node 22 1 at node 1 0.9814
MLPSO 0.9707 at node 22 1 at node 1 0.9828
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5. Discussion

5.1. Standard IEEE 33 Bus System

According to the load flow results of the original passive network, the active power loss of
the standard IEEE 33 bus system is 210.0 kW and the maximum and minimum voltages are 1.0 p.u.
at the 1st node and 0.9042 p.u. at the 18th node, respectively. As shown in Table 3, it could be
seen alleviation of active power loss of the system in each optimization algorithm, when integrating
more DGs. The highest alleviation is shown in the MLPSO algorithm while CLPSO and PSO show the
next highest active power losses in the network, respectively. The MLPSO algorithm has minimized
the active power loss of the system using the integration of three DGs to 68.460 kW which shows an
active power loss reduction of 67.40%. From the results, it could be clearly observed that the proposed
MLPSO has significantly reduced the active power loss of the system by determining the optimal
locations and the sizes of the DGs.

When considering the locations of the DGs, the first DG in all three optimization approaches is
located at the 6th node as it is the common node for the two feeders ending with the 18th and 33rd
buses where the substantial voltage drop occurs. In the second scenario, the two DGs were placed
more closely to the feeder ends of the first two longest feeders (i.e., feeder with 1–18 nodes and feeder
with 26–33 nodes), and in the third scenario, two out of three DGs were placed similar to the second
scenario and the third DG was placed at a feeder (consists of 23–25 nodes) which is heavily loaded.

As shown in Figure 7a,c,e, the variation of voltage profile in the original passive system has two
spans of lower statutory limit violations. From the graphs related to the variation of nodal voltages
with DGs, the improvement of voltage in all three scenarios could be seen. In the single DG scenario,
the voltage profiles of all three optimization algorithms are similar. However, all the violations have
not been eliminated. In the two and three DG scenarios, MLSPO shows the enhanced voltage variations
without any violations.

In Figure 7b,d,f, the convergence of the objective function for the PSO, CLPSO, and MLPSO
are shown. In all three graphs, the PSO and CLPSO algorithms show the premature convergence states
while MLPSO converges at low objective values. In addition, it could see from the graphs that the
convergence time increases with the number of DGs (i.e., the decision variables) optimized. All the
optimization algorithms are subjected to voltage constraint which was described in the methodology
and the MLPSO presents the highest improvement in mean voltage compared to the other optimization
algorithms as shown in Figure 8a. According to Table 4, the minimum voltage was increased to
0.9699 p.u. using three DGs by the MLPSO algorithm and it is a significant improvement compared to
the passive system.

In accordance with Figure 8b, the PSO algorithm gives the highest statistical parameters while
MLPSO offers the lowest parameters. The standard deviation of the PSO and CLPSO algorithms
are higher than MLPSO, and this significant reduction in the standard deviation of MLPSO depicts
the uniformity and the quality of the output given by the MLPSO algorithm compared to the PSO
and CLPSO. Considering all the results presented for the three optimization algorithms under the
standard IEEE 33 bus system, the premature convergence, and the less uniformity of results due
to having a single leader could be identified as the limitations of the PSO and CLPSO algorithms.
However, the performance of the MLPSO algorithm depends on the selected parameters.

5.2. Malaysian 54 Bus System

The active power loss of the original Malaysian 54 bus system is 338.46 kW and the maximum
and minimum voltages are 1.0 p.u. at the 1st node and 0.9082 p.u. at the 22nd node, respectively.
As shown in Table 5, the active power loss in the network is reduced to 68.922 and 66.599 kW by PSO
and MLPSO using three DG integrations, respectively. The nodes 10–16 and 34–48 could be identified
as heavily loaded nodes. Thus, the DGs tend to place in those heavily loaded nodes in all the scenarios.
Comparing the optimal locations and sizes in both algorithms, the results show a significant difference
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only in three DGs integration, and in that scenario, MLPSO has chosen the sitting locations closer to
the feeder ends than in PSO.

According to Figure 10, MLPSO has the highest loss reductions under all the scenarios.
The percentage reductions of power losses with three DGs correspond to 79.63%, and 80.32% for
PSO and, MLPSO and the proposed algorithm leads PSO by 0.7%.

As shown by Figure 11a,c,e, the voltage variation of the original passive network has three spans
of voltage violations. They are the 9–22, 31–35, and 38–54 nodes. In this network system, a single DG
is sufficient to upgrade the nodal voltages above 0.95 p.u. and surmount all the voltage violations.
In each scenario, MLPSO shows an enhancement in nodal voltages compared to PSO. Table 6 shows
that the comparable improvement of the minimum voltage and the mean voltage of the system by
integrating three DGs using the MLPSO algorithm to 0.9707 to 0.9828 p.u., respectively.

In all three graphs shown in Figure 11b,d,f, the PSO algorithm shows the premature convergence
states while MLPSO converges at low objective values. Figure 12 depicts the statistical parameter
values of the algorithms and it could be seen that PSO gives the highest values in all the parameters
while MLPSO offers the minimum values. This could be used to demonstrate better performance and
the quality of the MLPSO algorithm compared to the PSO algorithm.

5.3. Comparison of the Results for the Standard IEEE 33 Bus System with Other Optimization Algorithms

The standard IEEE 33 bus system is a widely used test system especially for the studies related
to optimal placement and sizing. Table 7 comprises the outcomes that were obtained from various
literature for the same network with the objective of power loss minimization. In any literature,
a normalization process was not undertaken to obtain the results. However, in some references, only the
loss value was presented, and the percentage loss reduction values were computed. It apparently
shows the effectiveness and the performance of the MLPSO algorithm by achieving the highest loss
reduction percentage.

Table 7. Comparison of results of the standard IEEE 33 bus system.

Algorithm Ref Year DG Sizes (kW) DG Locations Reduction of
Power Loss (%)

Minimum
Voltage (p.u.)

The proposed algorithm 760, 1030, 1070 14, 30, 24 67.40 0.9699
CSCA [45] 2020 871, 1091.47, 954.08 13, 24, 30 64.50 0.9690

CLPSO [37] 2020 930, 850, 1050 11, 32, 24 66.54 0.9816
GSA-GAMS [46] 2019 801.22, 1091.31, 1053.59 13, 24, 30 65.64 0.9686

ASFLA [30] 2019 545.7, 993.6, 1209.4 24, 29, 12 67.00 0.9781
SFLA [30] 2019 563.9, 318.2, 514.4 28, 30, 14 58.86 0.9770
FWA [30] 2019 589.7, 189.5, 1014.6 14, 18, 32 56.24 0.9680

QOCSOS [47] 2019 801.7, 1091.3, 1053.6 13, 24, 30 65.50 NA
SSA [48] 2019 753.6, 1100.4, 1070.6 13, 23, 29 65.97 0.9686

WCA [49] 2018 854.6, 1101.7, 1181 14, 24, 29 66.17 0.9730
EMA [50] 2018 976.6, 1169.09, 943.54 30, 24, 12 64.32 0.9684
TM [51] 2017 719.9, 719.9, 1439.7 15, 26, 33 49.52 0.9960

MOTA [51] 2017 980, 960, 1340 7, 14, 30 52.40 0.9986
HPSO [36] 2017 560, 560, 790 8, 13, 31 60.26 0.9660

HGWO [52] 2017 802, 1090, 1054 13, 24, 30 65.34 NA
KHA [53] 2017 814.9, 750.1, 1142.40 24, 14, 30 65.26 0.9701

SKHA [53] 2017 801.81, 1091.3, 1053.6 13, 24, 30 65.50 0.9687
PSO-Analytical [54] 2016 790, 1070, 1010 13, 24, 30 65.45 NA

BA [28] 2016 816.3, 952.35, 952.35 15, 25, 30 64.42 0.9800
IWO [27] 2016 624.7, 104.9, 1056 14, 18, 32 57.47 0.9716

BSOA [55] 2015 632, 487, 550 13, 28, 31 57.59 0.9554
ACO-ABC [56] 2015 754.7, 1099.9, 1071.4 14, 24, 30 66.00 NA

BFOA [32] 2014 652.1, 198.4, 1067.2 14, 18, 32 57.38 0.9705
SA [57] 2013 1112.4, 487.4, 867.9 6, 18, 30 61.12 0.9676

HSA [58] 2013 572.4, 1070, 1046.2 17, 18, 33 52.26 0.9670
LSF [59] 2013 720, 810, 900 18, 33, 25 59.72 NA
IA [59] 2013 900, 900, 720 6, 12, 31 61.62 NA

ELF [59] 2013 900, 900, 900 13, 30, 24 64.83 NA
GA-PSO [60] 2012 925, 863, 1200 11, 16, 32 49.20 0.9670
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5.4. Effect of the Selected Optimization Parameters

In practice, the cognitive (C1) and social (C2) coefficients usually vary from 1.5 to 2.5 for
PSO variants. However, it has been proved that C1 = C2 = 2 generates better solutions [61]. Therefore,
in this study C1 = C2 = 2 conditions are used. Usually, the swarm size is limited to 20-50 in most
of the PSO variants and it leads to the best results. The smaller swarm size takes more time to
reach the optimal solution while the larger swarm size provides the robustness to the optimization.
However, a large swarm size indirectly affects the computational burden. Figure 13a shows the average
computational time for the different number of particles for the three DG integration in the IEEE 33
bus system. As 40 particles provided the minimum computational time, it was chosen as the swarm
size in the study. Furthermore, the number of leaders was chosen by calculating the normalized mean
absolute error of the solutions obtained for the three DG scenario of the IEEE 33 bus system. Figure 13b
depicts the normalized mean absolute error for the different number of leaders and as can be seen,
six leaders provided the minimum error.
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Figure 13. The (a) comparison of the average computational time for different number of particles
(s) and (b) mean absolute error for different number of leaders (L ) for the three DG scenario of IEEE
33 bus system.

5.5. Effect of the Initialization of Particles in the Swarm

As described in Section 3.2.5 (b), the initial positions of swarms are generated according to
Equation (21). To investigate the effect of initialization of particles of MLPSO, it is conducted
under two cases namely; (1) the swarm is initialized based on the proposed active power injection
limit (i.e., the maximum DG size that can be connected to the system), and (2) the swarm is
initialized randomly.

Figure 14 includes the convergence characteristics of three DG integration on the standard IEEE
33 bus system under the above (1) and (2) cases. It shows that the MLPSO has reduced the initial
objective function value by 28% lower than the random initialization suggesting that the output
of the optimization algorithm is closer to the optimal value. Moreover, this reduction of initial
objective function value provides fewer iterations to converge compared to the random initialization
of the particles. Therefore, the computational burden of the optimization algorithm can be reduced.
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Figure 14. The convergence of MLPSO algorithm for proposed and random particle initialization.

6. Conclusions

In this paper, a methodology was introduced to solve the simultaneous placement and sizing
of DGs in distribution networks. The DG integration locations were identified using a VSI based
approach and the sizing of DGs was determined by the MLPSO algorithm. The optimization provides
the optimal DG integration locations and the DG sizes such that the active power loss of the network
system is minimized. The analysis was performed on the standard IEEE 33 bus system and a radial
Malaysian MV bus system under three scenarios; (a) one, (b) two, and (c) three DG integrations to
determine the placements and sizes of DGs. In all the scenarios, the findings show that the proposed
methodology has significantly reduced the power loss of the system compared to the studied other
PSO variants in both test systems.

In the case study, the three DG integration under the scenario (c) conducted using the proposed
optimization algorithm has offered the maximum loss reductions for both test systems. It is 67.40%
for the standard IEEE bus system and 80.32% for the Malaysian MV bus system. In addition,
the voltage profiles of the test systems have enhanced compared to the other optimization approaches.
The elimination of the state of premature convergence is clearly depicted by converging the optimization
at a low objective function value. Furthermore, the low standard deviation value of the MLPSO
algorithm shows the uniformity and the quality of the output.

The proposed method was compared with another two PSO variants and also with the best
results obtained by other optimization algorithms in the literature. According to the comparison
of loss reduction results for the standard IEEE 33 bus system, the proposed methodology showed
the improvement of loss reduction by optimally placing and sizing the DGs. Moreover, the selected
parameters of the optimization process demonstrated their suitability in reducing the computational
time and the increasing quality of the optimization algorithm. Furthermore, the proposed particle
initialization of the MLPSO algorithm depicted the less computation burden compared to the
random initializations.
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Appendix A

According to Figure 2,

Pl − jQl = Vk
∗
× Ikl where Ikl =

Vk −Vl
Rkl + jXkl

(A1)

By substituting for Ikl,∣∣∣∣Vl

∣∣∣∣4 − {∣∣∣Vk
∣∣∣2 − 2PlRkl − 2QlXkl

}
|Vk|

2 +
{
Pl

2 + Ql
2
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2
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After rearranging this,∣∣∣∣Vl
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2
{PlRkl + QlXkl} − |Vl|

2
|Vk|

2 +
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2
}{

Rkl
2 + Xkl

2
}
= 0 (A3)

From this equation, two quadratic equations were formed for active power and reactive power at the
receiving end. The quadratic functions for active and reactive power were derived as,

aPl
2 + bpPl + cp = 0 (A4)

aQl
2 + bqQl + cq = 0 (A5)

where =
{
Rkl

2 + Xkl
2
}
, bp = 2|Vl|

2Rkl, bq = 2|Vl|
2Xkl, cp = |Vl|
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2
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2
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2
}

and

cq = |Vl|
4 + 2|Vl|

2PlRkl − |Vl|
2
|Vk|

2 + Pl
2
{
Rkl

2 + Xkl
2
}
.

The condition of existence of a quadratic equation, the discriminant, bp/q
2
− 4acp/q ≥ 0, For active power,
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For reactive power,{
2|Vl|

2Xkl
}2
− 4

{
Rkl

2 + Xkl
2
}{
|Vl|

4 + 2|Vl|
2PlRkl − |Vl|

2
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2 + Pl
2
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Rkl

2 + Xkl
2
}}
≥ 0 (A7)

By obtaining the sum of the above two equations,

ϑ = 2|Vl|
2
|Vk|

2
− |Vl|

4
− 2|Vl|

2
{PlRkl + QlXkl} − |zkl|

2
{
Pl

2 + Ql
2
}
≥ 0 (A8)

where |zkl|
2 =

{
Rkl

2 + Xkl
2
}
. This Equation implies that the value of ϑwill decrease with the increase of transferred

power. Therefore, the VSI was defined as in (A9).

VSI = 2|Vl|
2
|Vk|

2
− |Vl|

4
− 2|Vl|

2
{PlRkl + QlXkl} − |zkl|

2
{
Pl

2 + Ql
2
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(A9)
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