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Abstract: With the emergence of the concept of green manufacturing, more manufacturers have
attached importance to energy consumption indicators. The process planning and shop scheduling
procedures involved in manufacturing processes can both independently achieve energy savings,
however independent optimization approaches limit the optimization space. In order to achieve a
better optimization effect, the optimization of energy savings for integrated process planning and
scheduling (IPPS) was studied in this paper. A mathematical model for multi-objective optimization
of IPPS was established to minimize the total energy consumption, makespan, and peak power
of the job shop. A hierarchical multi-strategy genetic algorithm based on non-dominated sorting
(NSHMSGA) was proposed to solve the problem. This algorithm was based on the non-dominated
sorting genetic algorithm II (NSGA-II) framework, in which an improved hierarchical coding method
is used, containing a variety of genetic operators with different strategies, and in which a population
degradation mechanism based on crowding distance is adopted. The results from the case study in
this paper showed that the proposed method reduced the energy consumption by approximately
15% for two different scheduling schemes with the same makespan. The computational results for
NSHMSGA and NSGA-II approaches were evaluated quantitatively in the case study. The C-metric
values for NSHMSGA and NSGA-II were 0.78 and 0, the spacing metric values were 0.4724 and
0.5775, and the maximum spread values were 1.6404 and 1.3351, respectively. The evaluation indexes
showed that the NSHMSGA approach could obtain a better non-dominated solution set than the
NSGA-II approach in order to solve the multi-objective IPPS problem proposed in this paper.

Keywords: integrated process planning and scheduling; energy consumption; multi-objective
optimization; genetic algorithm

1. Introduction

As an important pillar of human life and economic development around the world, the energy
consumption of the manufacturing industry accounts for a significant proportion of the total global
energy consumption. According to statistics from the International Energy Agency (IEA), the energy
consumption from manufacturing accounts for approximately 33% of the global energy consumption.
Taking the United States as an example, its industrial energy consumption accounts for about 31% to 33%
of the country’s total energy consumption, and about 86% of this industrial energy consumption relates
to manufacturing [1]. It can be seen that the optimization of energy consumption in the manufacturing
industry is crucial to global energy conservation and to the reduction of emissions [2]. In order to build
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a more environmentally friendly manufacturing industry, many countries have set out clear regulations
for energy consumption, pollutants, emissions, and other indicators, and have continuously promoted
the transformation of traditional technological and industrial design concepts [3].

Process planning is the link between product design and manufacturing, and is an effective
way of planning the entire manufacturing process for products, ranging from raw materials to
finished products [4]. Job shop scheduling arranges the production operation sequence based on
the corresponding processing machine according to the process planning routes and manufacturing
resource limits in order to optimize certain production indicators [5]. As two important subsystems
in the manufacturing system [6], process planning and job shop scheduling are key links that affect
a series of production indicators, such as the production efficiency, production costs, and energy
utilization efficiency. In past studies, parameters such as the completion times for production
tasks, production costs, and the robustness of the production system have received more attention.
In recent years, more scholars have begun to attach importance to green manufacturing or low-carbon
manufacturing in their studies, combining production scheduling with energy-saving, consumption
reduction, environmental protection, and other factors, providing an important theoretical basis and
practical guidance for the sustainable development of the manufacturing industry.

In traditional manufacturing systems, process planning and scheduling are usually carried out in
a serial order [7]. In most studies on the optimization of integrated process planning and scheduling
(IPPS), the scheduling type refers to job shop scheduling (JSP), which is also the case in this paper.
When the process planning and job shop scheduling are optimized as separate parameters, this may
cause some problems involving resource conflicts, insufficient flexibility, and the inability to implement
the established process plan in the manufacturing process [8] and to limit the optimization space for
most production indicators [9]. In view of this, an optimization model for integrated process planning
and scheduling (IPPS) is proposed. The integrated optimization of process planning and scheduling
can eliminate the resource constraints caused by two decisions being made separately, resulting in a
larger optimization space. In addition, to a large extent, the integrated optimization approach is more
suitable for modern advanced manufacturing systems and flexible production modes, and has good
application prospects in the actual production processes of manufacturing enterprises [10].

This paper mainly studies the multi-objective optimization of IPPS by considering energy savings.
For manufacturing enterprises, the overall requirements for the actual production are not met by
optimizing the energy consumption only. The maximum completion time for the production tasks
(makespan), which is one of the most important optimization objectives, determines the production
cycle for the product and is related to a company’s production efficiency. Nowadays, manufacturing
companies using electricity as the main energy source account for a large proportion of the industry.
There are often multiple manufacturing job shops operating at the same time in a factory, and the
total power load of these job shops is constrained by the maximum load of the factory. Optimizing
the peak input power of the manufacturing job shop itself can provide better power conditions for
other job shops, and provide more decision-making space for factory-level managers. To manage
and control the energy consumption of the factory better, the peak input power in the manufacturing
process should be optimized for the job shop. Therefore, the maximum completion time, the total
energy consumption, and the peak input power are taken as the optimization objectives in this paper.

The global energy efficiency strategies mainly involve the development and utilization of new
energy sources, energy conversion and storage, and the use efficiency of energy. The research focus
of this paper was the energy savings related to process planning and job shop scheduling in the
manufacturing process, which can improve the energy use efficiency. In the related studies, the peak
power of the job shop in the manufacturing process was not considered as an optimization objective.
It was taken as an optimization objective for the first time in this paper to provide managers with a
more favorable basis for making decisions and to allow reasonable allocation of resources at a higher
management level. Managers can set reasonable objective weights by measuring the utility functions
of these objective functions according to the actual situation, then making the final plan selection.
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Based on the above situation, a multi-objective IPPS model was established with the objectives of
minimizing the maximum completion time, total processing energy consumption, and peak power
of the job shop, and a hierarchical multi-strategy genetic algorithm based on non-dominated sorting
(NSHMSGA) was proposed to solve the IPPS model problem. The algorithm was improved as
follows. (1) A new hierarchical coding method was adopted, which added the logic layer coding
step. This meant the lengths of each feasible solution were the same and more types of available
genetic operators could be adopted. (2) A variety of strategic genetic operators for different decision
dimensions were designed to improve the search performance of the algorithm. (3) The population
degradation mechanism was added to improve the diversity of the population. The results from the
case study showed that the NSHMSGA framework was superior to the non-dominated sorting genetic
algorithm II (NSGA-II) framework based on the quantitative evaluation index of the multi-objective
algorithm. The results indicated that the improvements to the algorithm were effective in solving the
multi-objective IPPS problem in this paper.

The rest of this paper is structured as follows. Section 2 provides a brief literature review for process
planning and scheduling studies involving energy savings. A multi-objective IPPS mathematical
model involving energy savings is constructed in Section 3. In Section 4, the hierarchical multi-strategy
genetic algorithm based on non-dominated sorting is described in detail, while Section 5 contains
the case study. The results of the case study are discussed in Section 6. The last section presents the
conclusions of this paper.

2. Literature Review

With the improvement of the awareness of energy savings and the importance of reducing
consumption, research studies on process planning and job shop scheduling involving energy
consumption optimization have been frequently reported. A brief review of the representative
literature is provided below.

Sheng et al. [11–14] considered the interrelationships between product manufacturing features
and comprehensively analyzed a series of important performance indicators, such as energy
consumption, time, and quality, in a product process planning approach. A corresponding
multi-objective optimization model was constructed to obtain an energy-efficient product processing
route. Singh et al. [15] designed a model and framework for an environmentally friendly process
planning method for the production of auto parts, taking into account the energy consumed in the entire
life cycle of the product from production to disposal and its impact on the environment. Choi et al. [16]
established a multi-objective flexible process planning model to minimize energy consumption,
inventory holding costs, and backorder costs in order to evaluate the energy consumption and logistics
situations in the system. From the perspective of reducing energy consumption, Zhang et al. [17]
attempted to use the manufacturing features to generate the feasible process planning routes for
the parts automatically or semi-automatically in a specific environment, and proposed a process
planning strategy model that considers energy efficiency. Li et al. [18] analyzed the characteristics
of energy consumption in the machining process of CNC (Computer Numerical Control) machine
tools and proposed a multi-objective optimization method involving integrated process planning and
cutting parameters, considering energy savings and machine load balance. Wang et al. [19] proposed a
framework for an energy-saving process planning system consisting of a human–machine interface,
data operation module, and core module, and developed a process planning system that can optimize
energy consumption on this basis.

Lin et al. [20] established an integrated model for processing parameter optimization and flow line
scheduling and proposed three optimization strategies for carbon emissions reductions. May et al. [21]
compared the maximum completion time and total energy consumption values for job shop operations
under four scheduling strategies. The research results showed that adopting complex machine behavior
strategies could significantly reduce unnecessary energy consumption. Salido et al. [22] established
a scheduling model in which machines can consume different amounts of energy at different rates
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during production, using the genetic algorithm to achieve this. Zhang et al. [23] proposed a hybrid
algorithm that combined NSGA-II with the neighborhood search algorithm to solve the low-carbon
scheduling problem for a flexible job shop, which contained makespan, machine workload, and carbon
emission parameters. Lu et al. [24] proposed a hybrid multi-objective backtracking search algorithm
(HMOBSA) to solve the permutation flow shop scheduling problem by considering the makespan
and energy consumption, and proved that the algorithm was superior to NSGA-II and MOEA/D
(Multi-objective Evolutionary Algorithm Based on Decomposition) algorithms through computational
experiments. Paolucci et al. [25] used a detailed scheduling support system (DSSS), which was extended
by implementing a multi-objective metaheuristic scheduling approach to optimize the multi-objective
production scheduling problem using the total weighted tardiness, the total setup, and the energy
consumption costs. Lei et al. [26] proposed a two-phase metaheuristic (TPM) based on an imperialist
competitive algorithm (ICA) and variable neighborhood search (VNS) to solve the multi-objective
flexible job shop scheduling problem, with the constraint that total energy consumption does not exceed
a given threshold. Piroozfard et al. [27] proposed an improved multi-objective evolutionary algorithm
to solve the flexible job shop scheduling problem, with multiple objectives used to minimize carbon
emissions and total tardiness, and compared the algorithm performance with NSGA-II and strength
Pareto evolutionary algorithm 2 (SPEA2) frameworks through calculation examples. Wang et al. [28]
proposed a two-stage hybrid optimization algorithm based on a genetic algorithm and particle
swarm optimization algorithm to solve the multi-objective flexible job shop scheduling problem by
considering energy savings. Wu and Sun [29] presented a green scheduling heuristic to optimize the
makespan, energy consumption, and numbers of machines that were turned off and on simultaneously
in their study, and proved the effectiveness of the model and the algorithm through comprehensive
experimentation. Feng et al. [30] constructed and solved a multi-objective model for green scheduling,
using the makespan, processing cost, processing quality, and energy consumption as the optimization
objectives. Wang et al. proposed a tabu search hybrid algorithm to solve the carbon emissions
optimization problem in integrated production and distribution scheduling [31]. A large number
of studies show that the scheduling scheme has a significant influence on the energy consumption
indicator of a manufacturing system.

As two indispensable subsystems in the manufacturing system, process planning and scheduling
are closely related to each other. It is not sufficient to optimize their related indicators in isolation.
Li et al. [32] established a multi-objective IPPS model involving the energy consumption and maximum
completion time, and used a honey bee mating optimization algorithm (HBMO) to solve it.
Wang et al. [33] established a two-stage integrated optimization model including the process stage and
the system stage, using the processing energy consumption and completion time as the optimization
objectives. Dai et al. [34] adopted an improved genetic algorithm to solve the IPPS optimization
problem, involving the makespan and energy consumption parameters. Zhang et al. [35] used a model
based on thermal stress to predict the energy consumption of machine tools in the manufacturing
process and proposed an IPPS model that used energy consumption as the optimization object,
which was based on non-linear process planning. Liu et al. [36] proposed a kind of IPPS model in
order to optimize the carbon emission and makespan parameters, designed a four-segment coding
method with front and back correlation, and used NSGA-II to solve the problem. The results for
the integrated optimization approach were compared and analyzed with the results of separate
optimization approaches to process planning and job shop scheduling, proving that the integrated
model had more advantages. Meng et al. [37] established three kinds of mathematical models of the
multi-objective IPPS problem involving energy saving, adopting shutdown and restart energy saving
strategies. Li et al. [38] studied the IPPS problem with energy consumption, makespan, and balanced
machine utilization as the optimization objectives, and designed a hybrid algorithm that simulated
the honey bee mating and annealing processes to optimize it. Jin et al. [39] proposed a memetic
algorithm based on variable neighborhood search to solve the multi-objective IPPS problem involving
energy consumption.
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The studies above have provided richer energy-oriented process planning and scheduling models
and algorithms, which have important scientific research value and actual reference value for production.
For the IPPS problem involving energy saving, some researchers adopted the staged idea to simplify
the solution process, which limited the optimization space of the problem and did not allow integrated
optimization to be achieved in the true sense. Due to the high complexity of the multi-objective
IPPS optimization problems, most existing studies adopted the random search algorithm to solve
them. In some studies, the encoding methods were complex and the decoding difficulty was high,
which affected the efficiency of the used algorithm. Diversity is lacking in the optimization strategies
and evolutionary methods used in the existing algorithms, which limits the search dimensions of the
algorithms, affects the diversity of the population in the iteration process, and might lead to premature
convergence or even search stagnation. There is still much room for improvement in terms of algorithm
performance in solving the multi-objective IPPS optimization problem.

3. Multi-Objective IPPS Model Used to Consider Energy Savings

3.1. Energy Consumption Analysis in the Manufacturing Process

Li et al. [40] roughly divided the energy consumption for a machine into the energy consumption
involved in startup and shutdown, working, and idling periods by studying the operation process of
CNC machine tool equipment. However, different types of manufacturing equipment have certain
differences in energy consumption patterns. To make the energy consumption model universal, a rough
energy consumption decomposition method was proposed to cover a wider range of manufacturing
equipment in this paper. For example, take Oi (the i-th operation) as the node, for which the running
state and energy consumption of a machine are shown in Figure 1. After processing Oi, the machine
may be idle, be powered off, or in the process of the next operation according to the scheduling scheme.
The abbreviations Exx represents the corresponding energy consumption.

Figure 1. An example of a machine’s running state and energy consumption phases.

The process planning route determines the selection of operations, sequence of operations, and
the selection of processing machines for a single product, while the job shop scheduling scheme
determines the sequence for all of the operations to be processed on the corresponding processing
machine. The length of the processing time and the value of the working power are determined
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via selection of operations and processing machines, while the running state of the machine is
determined jointly by the sequence of operations, processing machine selection, and scheduling
scheme. Obviously, the process planning route and the job shop scheduling scheme determine the
duration of the manufacturing process for the products. In the manufacturing process, in addition
to the direct energy consumption from the processing machines, the assistant energy consumption
involved in maintaining the production should also be considered, such as that needed for lighting,
ventilation, drying, and product transportation. It can be seen that the decisions involving both process
planning and job shop scheduling have an important influence on the energy consumption in the
manufacturing process. The influence relationship is shown in Figure 2.

Figure 2. The influence relationship used for process planning and job shop scheduling of the energy
consumption involved in the manufacturing process.

3.2. Peak Input Power

The optimization index of energy consumption in this article not only considers the reduction
of energy consumption, but also considers the optimization of the peak input power (the maximum
total power for all processing machines) during the manufacturing process for the entire job shop.
Many manufacturers use industrial electricity for their production activities. Industrial electricity is
usually transmitted using high-voltage methods, meaning a power transformer with a certain capacity
(apparent power) is required. The apparent power is not the actual power consumed by the AC circuit,
but only the maximum power that the circuit may provide or the maximum active power that the
circuit may consume. For safe production, the total input power in the factory’s electricity network
cannot exceed the specific upper limit. However, to save costs, manufacturing companies often choose
a more economical capacity, considering that it is impossible to run all loads at the same time. Therefore,
to avoid exceeding the total circuit load during the manufacturing process and to provide better
electricity conditions for other job shops in the factory, the peak input power of the machines running
in the current job shop should be optimized. In other words, optimizing this objective can provide the
administrators with more decision-making space in terms of energy management and control at the
factory level.

For example, the scheduling scheme is shown in Figure 3, in which Oij represents the j-th operation
of the i-th product, Mk represents the k-th machine. The idle and assistant energy consumption of the
6 machines in Figure 3 are shown in Table 1, while the input power data for each machine by time
period are shown in Table 2. In the tables, the time is shown in minutes, while the power is shown in
KW. When the idle time for a machine exceeds a certain length, the shutdown or restart strategy is
implemented (for example, the period of time between O31 and O33 for M4). The power curves for
each machine during the manufacturing process are shown in Figure 4a, while the total power curve
for the workshop is shown in Figure 4b. The peak input power value is 166.75 KW.
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Table 1. Idle power and assistant power data for the machines.

Machine number M1 M2 M3 M4 M5 M6
Idle power 5 3.5 6 3 4 4

Assistant power 2.5 1.75 3 1.5 2 2

Table 2. Power data for the machines by time period.

M1
Time [0, 7] [7, 13] [13, 14] [14, 12] [22, 28]

Power 35 28 5 55 26

M2
Time [0, 9] [9, 14] [14, 28]

Power 20 39 0

M3
Time [0, 6] [6, 9] [9, 15] [15, 20] [20, 22] [22, 27] [27, 28]

Power 33 32 29 41 6 34 0

M4
Time [0, 7] [7, 13] [13, 20] [20, 27] [27, 28]

Power 70 0 21 26 0

M5
Time [0, 9] [9, 15] [15, 23] [23, 28]

Power 0 17 12 0

M6
Time [0, 28]

Power 0

Figure 3. An example Gantt chart of a scheduling scheme.
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Figure 4. Power curves: (a) power curves for each machine; (b) total power curve for the job shop.

3.3. Assumptions and Related Parameters

In order to establish the mathematical model for the multi-objective IPPS problem while considering
energy savings, the following assumptions were made.

(1) Each machine can only process one product at a time. (2) Each product can only be processed
on one machine at a time. (3) An operation that has been started is not allowed to be interrupted.
(4) There is no priority between operations of different products, and different operations of the
same product may have priority constraints. (5) The machines can be used at the initial moment.
(6) The working power for a particular operation to be processed on a particular machine is determined.
(7) The conversion time between different machines of a product is ignored. (8) The assistant energy
consumption for the job shop is positively correlated with the number of running machines and
the running time of the machines. (9) The starting energy consumption for a particular machine is
constant and the shutdown energy consumption is negligible. (10) The start and shutdown times for
the machines are ignored. (11) The machines perform the shutdown operation after finishing the last
processing task.
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The relevant parameters in this paper are shown in Table 3. In this paper, the time variable was
measured in minutes and the power variable was measured in KW.

Table 3. The relevant parameters for the multi-objective IPPS problem.

Parameter Description

H A huge positive integer;

n Total number of products;

m Total number of machines;

Li Total number of operation combinations for product i;

l, l1, l2 Serial number of operation combinations;

i, i1, i2 Serial number of products;

j, j1, j2, j′ Serial number of operations;

k, k1, k2, k′ Serial number of machines;

nil Total number of operations in the l−th operation combination for product i;

Oil j The j−th operation in the l−th operation combination for product i;

Sil jk Start time until processing of Oil j on machine k;

Ci Completion time for product i;

Cmax Max completion time for all products (makespan);

Cil jk Completion time for Oil j on machine k;

Pil jk Working power needed to process Oil j on machine k;

PIdle
k Idle power for machine k;

EStart
k Starting energy consumption for machine k;

PAssist Basic power for the assistant system for one machine;

til jk Time required to process Oil j on machine k;

Tk
Tolal Total running time for machine k;

TR
k Threshold for shutdown and restart of machine k;

Xil =

 1

0
If product i selects l−th operation combination for processing;
Otherwise;

Yil jk =

 1

0
If Oil j is select to be processed on machine k;
Otherwise;

Zi1l1 j1i2l2 j2k =

 1

0
If Oi1l1 j1 is processed on machine k before Oi2l2 j2 ;
Otherwise;

Fil j1 j2 =

 1

0
If the j1−th operation is processed before the j2−th of product i;
Otherwise;

Qil jk =

 1

0
If machine k need to be started before processing Oil j;
Otherwise;

Ri1l1 j1i2l2 j2k =

 1

0
Oi1l1 j1 is the previous operation of Oi2l2 j2 on machine k;
Otherwise;

3.4. Mathematical Model

By summarizing a large number of studies, the IPPS problem can be described as follows. The job
shop must process n different jobs on m machines. Each product has multiple process routes and
multiple optional processing operations, and the different process routes choose different operations
or different operation sequences. Each operation can be processed on multiple machines, and the
processing time for a specific operation varies by machine. The scheduling goals can be achieved by
reasonably selecting the production process route for the job, the processing machine for the operation,
and the scheduling scheme for the operations to be run on each processing machine.
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3.4.1. Energy Consumption Calculation

Based on the energy consumption model analysis of the manufacturing process, the total energy
consumption was divided into two parts—the energy consumption of the machines and the assistant
energy consumption of the job shop. The energy consumption of the machines consists of the
product processing energy consumption, the startup and shutdown energy consumption, and the idle
energy consumption.

(1) Total startup–shutdown energy consumption EStart
Total. The startup and shutdown operations are

a pair of mutually premised operations; the energy consumption required for the shutdown process is
very low compared to the startup. Therefore, in this paper, only the energy consumption of the startup
process is considered, while that of the shutdown is ignored. When a machine has a long idle time,
the shutdown and restart strategy can be implemented to save energy consumption. The total energy
consumption for the machine startup–shutdown process involved in the manufacturing process can be
calculated by the following formula:

EStart
Total =

m∑
k=1

EStart
k ·

n∑
i=1

nil∑
j=1

(
Qil jk ·Yi jlk

) ∀l ∈ [1, Li] (1)

(2) Total idle energy consumption EIdle
Total. The idle energy consumption refers to the energy

consumed during the period when the machine needs to wait for the next operation after completing
the previous operation, assuming the shutdown and restart strategy is not used during this period.
The total idle time for machine TIdle

k can be calculated by the following formula:

TIdle
k =

n∑
i1=1

n∑
i2=1

[(
Ci1l1 j1k ·Xi1l1 ·Yi1l1 j1k − Si2l2 j2k ·Xi2l2 ·Yi2l2 j2k

)
·

(
1−Qi2l2 j2k

)
·Ri1l1 j1i2l2 j2k

]
∀l1, l2 ∈ [1, Li]; ∀ j1, j2 ∈ [1, nil]; ∀k ∈ [1, m]

(2)

The total idle energy consumption for all machines is:

EIdle
Total =

m∑
k=1

PIdle
k · TIdle

k (3)

(3) Total processing energy consumption EP
Total. The processing energy consumption EP

k for one
machine refers to the energy consumed for all processing operations on that machine.

EP
k =

n∑
i=1

nil∑
j=1

(
Pil jk · til jk ·Xil ·Yil jk

)
∀l ∈ [1, Li]; ∀k ∈ [1, m]

(4)

The machine processing energy consumption is:

EP
Total =

m∑
k=1

EP
k =

m∑
k=1

n∑
i=1

nil∑
j=1

(
Pil jk · til jk ·Xil ·Yil jk

)
∀l ∈ [1, Li] (5)

(4) Total assistant energy consumption EAssist
Total . The total assistant energy consumption is directly

proportional to the number of machines running in the job shop and their running time, which can be
calculated by the following formula:

EAssist
Total =

m∑
k=1

(
PAssist

· Tk
Total

)
(6)
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The total energy consumption for the manufacturing process is equal to the sum of the above
energy consumption:

ETotal = EStart
Total + EIdle

Total + EP
Total + EAssist

Total (7)

3.4.2. Objective Functions

Objective function 1: Minimize the maximum completion time.

f1 = min
{

makespan = Cmax = max
∀i∈[1,n]

Ci

}
(8)

Objective function 2: Minimize the total energy consumption in the manufacturing process.

f2 = minETotal (9)

Objective function 3: Minimize the peak input power in the manufacturing process.

f3 = minPTotal(t) ∀t ∈ [0, Cmax] (10)

3.4.3. Constraints

(1) Only one operation combination can be selected for each product.

Li∑
l=1

Xil = 1 ∀i ∈ [1, n] (11)

(2) Each product operation can only be processed on one machine.

m∑
k=1

Yil jk = 1 ∀i ∈ [1, n]; ∀l ∈ [1, Li]; ∀ j ∈ [1, nil] (12)

(3) The completion time for an operation is equal to the start time plus the processing time.

Cil jk ·Xil ·Yil jk = Sil jk ·Xil ·Yil jk + til jk ·Xil ·Yil jk
∀i ∈ [1, n]; ∀l ∈ [1, Li]; ∀ j ∈ [1, nil]; ∀k ∈ [1, m]

(13)

(4) Different product operations cannot be processed at the same time.

Fi j1 j2 ·Xil·
(
Sil j2k2 ·Yil j2k2 − Sil j1k1 ·Yil j1k1

)
+ H

(
1− Fi j1 j2

)
+ H

(
1−Yil j2k2

)
≥ Xil·til j1k1 ·Yil j1k1(

1− Fi j1 j2

)
·Xil·

(
Sil j1k1 ·Yil j1k1 − Sil j2k2 ·Yil j2k2

)
+ H·Fi j1 j2 + H

(
1−Yil j1k1

)
≥ Xil·til j2k2 ·Yil j2k2

∀i ∈ [1, n]; ∀l ∈ [1, Li]; ∀ j1, j2 ∈ [1, nil] ∧ j1 , j2; ∀k1, k2 ∈ [1, m]

(14)

(5) Each machine can only process one operation at a time.

Zi1l1 j1i2l2 j2k·
(
Ci2l2 j2k·Xi2l2 ·Yi2l2 j2k −Ci1l1 j1k·Xi1l1 ·Yi1l1 j1k

)
+ H

(
1−Xi2l2 ·Yi2l2 j2k

)
+H

(
1−Zi1l1 j1i2l2 j2k

)
≥ ti1l1 j1k·Xi1l1 ·Yi1l1 j1k(

1−Zi1l1 j1i2l2 j2k
)
·

(
Ci1l1 j1k·Xi1l1 ·Yi1l1 j1k −Ci2l2 j2k·Xi2l2 ·Yi2l2 j2k

)
+ H

(
1−Xi1l1 ·Yi1l1 j1k

)
+H·Zi1l1 j1i2l2 j2k ≥ ·ti2l2 j2k·Xi2l2 ·Yi2l2 j2k

∀i1, i2 ∈ [1, n]; ∀l1, l2 ∈ [1, Li]; ∀ j1, j2 ∈ [1, nil]; ∀k ∈ [1, m]

(15)
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(6) The completion time for a product is not less than the total processing time for all
product operations.

Ci ≥
nil∑
j=1

(
til jk ·Xil ·Yil jk

)
∀i ∈ [1, n]; ∀l ∈ [1, Li]; ∀ j ∈ [1, nil]; ∀k ∈ [1, m]

(16)

(7) The completion time for an operation is always greater than or equal to its processing time.

Cil jk ·Xil ·Yil jk + H
(
1−Xil ·Yil jk

)
≥ til jk ·Xil ·Yil jk

∀i ∈ [1, n]; ∀l ∈ [1, Li]; ∀ j ∈ [1, nil]; ∀k ∈ [1, m]
(17)

(8) The start and completion times for all operations are non-negative.

Sil jk ·Xil ·Yil jk ≥ 0

Ci jlk ·Xil ·Yil jk ≥ 0

∀i ∈ [1, n]; ∀l ∈ [1, Li]; ∀ j ∈ [1, nil]; ∀k ∈ [1, m]

(18)

(9) The start time for Oil j on machine k is equal to the greatest completion time for the product’s
predecessor operation Oil j′ on machine k′ and the previous operation on machine k.

Sil jk = max
{
Cil j′ k′ , Ci1l1 j1k

}
∀i, i1 ∈ [1, n]; ∀l, l1 ∈ [1, Li]; ∀ j, j1, j′ ∈ [1, nil] ∧ j , j′ ; ∀k, k′ ∈ [1, m]

(19)

(10) The completion time for the pre-operation is greater than the start time for the operation.(
Cil j1k1 ·Xil ·Yil j1k1 − Sil j2k2 ·Xil ·Yil j2k2

)
· Fi j1 j2 ≥ 0

∀i ∈ [1, n]; ∀l ∈ [1, Li]; ∀ j1, j1 ∈ [1, nil]; ∀k1, k2 ∈ [1, m]
(20)

(11) The shutdown and restart constraints for the machine are as follows:

Si2l2 j2k ·Xi2l2 ·Yi2l2 j2k −Ci1l1 j1k ·Xi1l1 ·Yi1l1 j1k ≤ TR
k ·Ri1l1 j1i2l2 j2k + H ·Qi2l2 j2k

Si2l2 j2k ·Xi2l2 ·Yi2l2 j2k −Ci1l1 j1k ·Xi1l1 ·Yi1l1 j1k + H ·
(
1−Ri1l1 j1i2l2 j2k

)
≥ TR

k ·Qi2l2 j2k

∀i ∈ [1, n]; ∀l ∈ [1, Li]; ∀ j1, j1 ∈ [1, nil]; ∀k ∈ [1, m]

(21)

4. Hierarchical Multi-Strategy Genetic Algorithm Based on Non-Dominant Sorting

Among the many optimization algorithms used to solve multi-objective optimization problems,
the NSGA-II framework proposed by Deb [41] has shown excellent performance and has been widely
applied. Due to the complexity of the multi-objective optimization of IPPS problems, in order to
further improve the performance of the algorithm, several improvements have been made to NSGA-II
framework in this paper. Firstly, a multi-layer coding method was designed based on the operation.
This coding method is simple and intuitive, has less decoding complexity, and the algorithm has
improved iterative efficiency. The logic layer code in this multi-layer coding process is conducive to
crossover operations, as the lengths of all chromosomes in the population are the same. Secondly,
multiple genetic operators were proposed. The corresponding crossover and mutation operators
were proposed for each decision dimension of the IPPS problem. Different strategies were adopted
to conduct a multi-dimensional optimization search, enhancing the optimization performance of the
algorithm. Thirdly, a population degradation mechanism was added. If the condition of population
degradation is satisfied, the population degradation operator based on crowding distance sorting is
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adopted to eliminate individuals with lower crowding distances in each Pareto level of the combined
population. The probability of some individuals with large crowding distances in the lower Pareto
level ranks participating in the genetic operation is increased. This means that the diversity of the
population is improved and a more widely distributed Pareto front (the set of non-dominated solutions)
is obtained.

4.1. NSHMSGA Procedure

The main steps involved in the hierarchical multi-strategy genetic algorithm based on
non-dominated sorting proposed in this paper are shown in Figure 5. The NSHMSGA framework
steps are outlined below.

Figure 5. NSHMSGA procedure.

Step 1: Encode the solution and generate the initial population randomly with a population size
of N (using the constraint adjustment method [42] to adjust all individuals in the initial population to
the feasible solution according to the procedure sequence constraint), then execute the non-dominated
sorting for the initial population.

Step 2: Generate an offspring population with a population size of N through various operations,
including selection, crossover, and mutation.
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Step 3: Merge the offspring population and the parent population to obtain the combined
population, giving a population size of 2N.

Step 4: Execute the fast non-dominated sorting procedure for the combined population and
assemble the individuals with the same non-dominant level into a set.

Step 5: Calculate the crowding distance of each non-dominated set and arrange the individuals in
the set in descending order of the crowding distance.

Step 6: Determine whether population degradation should be carried out according to the number
of the solutions and the minimum crowding distance in the first non-dominated level. Execute the
population degradation operator while the population degradation condition is satisfied. Otherwise,
skip to the next step.

Step 7: Select the appropriate individuals to form the new parent population for the next iteration
until the population size is N.

Step 8: Determine whether the termination condition is reached. If it is, output the optimal Pareto
front; otherwise, return to step 2 to continue the algorithm and set gen = gen + 1.

4.2. Encode Solution

The encoding method is one of the key factors affecting the performance of the algorithm.
The quality of the encoding method depends not only on the decoding complexity, but also on the
expression of the encoding related to the characteristics of the problem. A multi-layer coding method
based on decision dimension mapping was designed in this paper. The first three layers of this
multi-layer code directly use the serial numbers of the products, operations, and machines. Each
column of the code represents an operation for a product, the position of the gene represents the order
in which the operation is processed, and the information expressed is accurate and clear. In the fourth
layer, a 0-1 logic number is used to represent the selection of the operation for a product, whereby an
operation with a logic layer of 0 means that it is not selected. Adding a logic layer to the coding of the
solution not only enables the algorithm to perform the evolutionary search of the decision-making
dimensions for the operation selection, but means that the lengths of each chromosome are the same,
facilitating various other genetic operations.

In the multi-objective optimization problem discussed in this paper, several objectives are
considered, including the maximum completion time (Cmax), total energy consumption (ETotal), and peak
input power (PTotal). To facilitate the implementation of the evolution operations for multi-decision
dimensions and the local search for the dimensions for multiple objectives, a layer of auxiliary code,
namely the time–power code, is added on the basis of the above four-layer code. The time–power
code layer does not map any of the decision dimensions and has no search capability, and its value is
completely determined by the previous four layers of code. However, the processing time and power
of the operations can be quickly obtained according to this layer of code during this iteration, which
allows a directional optimization search for a specific objective. An encoding sample for a solution is
shown in Figure 6, and a scheduling scheme can be obtained by simply decoding each column in order.
For example, the first four layers of code in the first column in Figure 6 indicate that O1 (operation
with a serial number of 1) of product 2 is processed on machine 2, with a processing time of 12 and a
working power of 6.2.

Figure 6. An encoding sample for a solution to the multi-objective IPPS.
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4.3. Crossover and Mutation Operators

4.3.1. Crossover Operators

The crossover operators includes the crossover of the scheduling layer, crossover of the operation
layer, crossover of the machine layer, and crossover of the logic layer, as shown in Figure 7 and
outlined as follows: (1) Crossover of the scheduling layer: Select serial numbers of products randomly,
then copy the genes of the unselected products in P1 into Q1 and fill in the vacant positions in Q1
in order with the genes of the products in P2, which are different from those in Q1. (2) Crossover
of the operation layer: Copy the genes on both sides of the gene crossover fragment in P1 (the left
part of Pos1 and the right part of Pos2) to Q1. Use the operation genes in P2, which are different
from Q1, to fill the vacant position in Q1 sequentially, whereby Q1 inherits the operation selection
logic of P1 or P2. (3) Crossover of the machine layer: Copy the operation layer in P1 into Q1, select
several operations randomly, and record them as the selected operations. Copy the machine layer code
corresponding to the unselected operations in P1 into Q1 and fill the vacancy in the machine layer of
Q1 with the machine code corresponding to the selected operations in P2 in the operation order of
Q1. (4) Crossover of the logic layer: Copy P1 into Q1. Randomly select operation combinations that
can be crossed (for the same manufacturing features). Extract the operation selection logic in P2 and
transform its sequence according to the sequence of corresponding operations in P1, then replace the
operation selection logic in Q1. It should be noted that in the scheduling layer crossover operations
and in the crossover of the operation layer, the change of gene positions is based on one column of
the chromosome. The crossover operations for the operation layer, machine layer, and logic layer are
based on the same product, and one or more products can be selected.

4.3.2. Mutation Operators

The mutation operators includes mutation of the scheduling layer, mutation of the operation layer,
mutation of the machine layer, and mutation of the logic layer, as shown in Figure 8 and outlined as
follows: (1) Mutation of the scheduling layer: Randomly select two locations with different product
serial numbers (Pos1 and Pos2), record the two numbers as J1 and J2, and manipulate the code of the
gene fragment between the two locations. At the same time, all genes of J2 in the fragment are moved
forward in turn. Move all of the code of J1 in the gene fragment backwards one position in turn and all
of the code of J2 in the gene fragment forwards one position in turn. (2) Mutation of the operation
layer: Randomly select two positions from one product’s operation layer code and exchange the genes
for the two positions. Check whether the operation constraint order after the change is satisfied; if not,
use the constraint adjustment method to adjust. (3) Mutation of the machine layer: Randomly select
one of the machines with the highest load rate, with the highest total energy consumption, or in the
period of the highest input power for mutation at the same level of probability. Mark the selected
machine as Mk; replace Mk with another machine that differs from Mk in the optional machine set for
the corresponding operation. (4) Mutation of the logic layer: Adopt a method similar to multi-point
mutation for one single product. Randomly select an operation combination that differs from the
current logic selection and generate a new logic layer code to replace the old one.
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Figure 7. Illustration of crossover operators for different coding layers.
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Figure 8. Illustration of mutation operators for different coding layers.

4.4. Population Degradation

Before selecting the parent population for the next iteration, the algorithm will determine whether
to degenerate according to both the number of individuals in the non-dominated set of the first level and
the minimum crowding distance of the Pareto front. If the population degradation condition is satisfied,
the population degradation operator based on crowding ranking is adopted to eliminate the individuals
with lower crowding values in each non-dominated level in the combined population. By limiting
the number of individuals in the non-dominated set of the first level and reducing the number of
individuals with dense distribution in the non-dominated set of the same level, the probability of
participation in genetic operation for some individuals who are not at the current Pareto front but have
a large crowding distance value is increased. In this way, the population degradation effect is achieved,
which enhances the diversity of the population, resulting in a more widely distributed Pareto front.
The steps of the population degradation operator based on crowding distance are as follows.

Step 1: Suppose the population POP is divided into k sets by the non-dominated sorting operation,
the sets are recorded as POP =F1 ∪ F2 . . . ∪Fk; let i = [1,2, . . . , k], size(POP) = N; read the number
of individuals contained in Fi and record this as Ni. Determine whether the value of N1 satisfies the
degradation condition; if so go to step 2, otherwise stop the population degradation operation.
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Step 2: Read the crowding distance sequences for all individuals in the non-dominated set for
each level of the population POP. Determine whether the value of the minimum crowding distance
of the non-dominated set F1 satisfies the degradation condition; if so go to step 3, otherwise stop the
population degradation operation.

Step 3: Set the population degradation factor for the i-th non-dominated level to be reduction(i);
for the non-dominated set of Fi, the last Ni × reduction(i) individuals as ranked by crowding distance
are eliminated, and there is a limitation that reduction(i) < 0.5. (reduction(i) can be set as an adaptive
parameter that changes with the number of population iterations.)

Step 4: Repeat step 3 until the degradation operations for the non-dominated set of each level in the
population are finished. The population size after the degradation operation will be NR, where NR > N
and NR =

∑k
i=1{Ni × [1 − reduction(i)]}.

5. Case Study

In past research studies on the multi-objective IPPS problems, the scholars focus on different
research topics and have different understandings of the assumptions and details of the problems,
meaning their optimization objectives are selected from different perspectives. The case data for IPPS
problems with different optimization objectives are often not universal. To ensure the case data in the
existing literature are suitable for this paper, we adjusted and expanded them. The algorithm in this
paper was programmed using MATLAB software on a laptop computer running Windows 10, with an
Intel i-7(Core 7700HQ 2.8 GHz) CPU and 16 GB RAM.

5.1. Case 1

5.1.1. Data Source

Case 1 involves a multi-objective IPPS problem for 5 products processed on 15 machines.
The related data for the products and machines are derived from the literature [37]. Due to the differences
between the problem hypotheses and mathematical models in this paper and the literature [37],
the original public power data are replaced by the assistant power data for the job shop, which are
generated according to the idle power of the machines. The energy consumption data for the machines
are shown in Table 4. The processing data and the AND/OR network relationship of the products are
shown in Table 5 and Figure 9, respectively. After repeated tests, the algorithm parameters in this
paper are set as shown in Table 6. The time is shown in minutes and the power is shown in KW.

Table 4. The energy consumption data for the machines.

Machine M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15

EStart
k 10 30 60 10 30 60 10 30 60 10 30 60 10 30 60

PIdle
k 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

TR
k 10 15 20 10 15 20 10 15 20 10 15 20 10 15 20

PAssist
k 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5 0.5 1 1.5

Table 5. The processing data for the products in case 1.

Products Operations Machines Processing Time Processing Power

Product 1

O1 [1, 2, 4, 5] [23, 8, 8, 20] [5.6, 8.2, 9.8, 5.8]
O2 [1, 2, 3, 4] [96, 98, 44, 62] [6.4, 5.5, 8.5, 9.8]
O3 [2, 3, 5] [3, 8, 6] [5.9, 7.2, 6.4]
O4 [2, 5] [17, 7] [5.6, 8.8]
O5 [1, 3, 5] [68, 83, 63] [7.5, 7.7, 9.2]
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Table 5. Cont.

Products Operations Machines Processing Time Processing Power

Product 2

O1 [1, 2, 4, 5] [64, 70, 82, 81] [9.6, 5.5, 9.8, 9.9]
O2 [2, 3] [65, 61] [9.1, 6.6]
O3 [3, 4, 5] [78, 64, 62] [5.7, 6.3, 6.3]
O4 [2, 3, 4,5] [90, 69, 94, 69] [5.6, 7.3, 6.7, 9.0]
O5 [1, 3, 4] [53, 70, 54] [8.9, 7.0, 9.0]

Product 3

O1 [1, 4] [13, 10] [9.5, 6.0]
O2 [5] [43] [8.0]
O3 [2] [43] [7.6]
O4 [3] [30] [9.8]
O5 [4, 5] [32, 25] [7.8, 8.2]
O6 [1, 3, 4] [40, 49, 39] [6.4, 5.4, 8.1]
O7 [2] [47] [7.7]

Product 4

O1 [9, 14] [13, 10] [9.5, 6.0]
O2 [11, 15] [24, 18] [8.7, 6.3]
O3 [15] [43] [8.0]
O4 [12] [43] [7.6]
O5 [13] [30] [9.8]
O6 [4, 12] [32, 25] [7.8, 8.2]
O7 [1, 5, 11] [40, 49, 39] [6.4, 5.4, 8.1]
O8 [8] [47] [7.7]

Product 5

O1 [5, 8, 4] [10, 16, 13] [5.4, 6.0, 6.9]
O2 [8, 9, 15] [6, 8, 7] [6.5, 7.5, 5.2]
O3 [4] [40] [5.8]
O4 [6, 9, 12] [14, 10, 13] [9.5, 6.3, 7.0]
O5 [1, 7, 11] [33, 40, 43] [9.0, 6.8, 7.5]
O6 [1, 5] [42, 38] [9.8, 9.6]
O7 [6, 11, 15] [25, 33, 30] [8.9, 5.3, 7.0]
O8 [10, 15] [41, 44] [8.9, 9.1]
O9 [2, 13] [10, 12] [6.4, 10.0]
O10 [11, 14, 15] [34, 24, 30] [5.4, 6.7, 9.8]
O11 [6, 11] [38, 42] [5.5, 7.6]
O12 [4, 8, 12] [25, 26, 30] [8.7, 9.6, 9.9]
O13 [7] [39] [10.0]
O14 [10, 12] [37, 40] [6.0, 5.5]

Table 6. The algorithm parameters in case 1.

Parametric Description Value

Maximum generation of iterations: MaxGen = 300
Population size: N = 100
Generation gap: GGap = 0.5

Scheduling layer crossover probability: P(Cr_SL) = 0.8
Operation layer crossover probability: P(Cr_OL) = 0.6
Machine layer crossover probability: P(Cr_ML) = 0.6

Logic layer crossover probability: P(Cr_LL) = 0.2
Scheduling layer mutation probability: P(Mu_SL) = 0.5
Operation layer mutation probability: P(Mu_OL) = 0.05
Machine layer mutation probability: P(Mu_ML) = 0.9

Logic layer mutation probability: P(Mu_LL) = 0.05
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Figure 9. The AND/OR network relationship of the products in case 1.

5.1.2. Results

(1) The iteration process for the objective functions
The change curves for the optimal and mean values of the three optimization objectives in the

population iterations of the algorithm are shown in Figure 10. The vertical axis represents the value of
the objective function and the horizontal axis represents the number of iterations.

(2) The optimal scheduling schemes for the three optimization objectives
The Gantt charts corresponding to the optimal scheduling of each objective function are shown in

Figure 11.
(3) Distribution of the Pareto front
For optimization problems with three objectives, more non-dominated solutions can be obtained.

According to the Pareto front distributions from multiple perspectives, as shown in Figure 12,
the non-dominated solutions are generally distributed evenly.
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Figure 10. The change curves for the three optimization objectives in the iterative process: (a) optimal
and mean values for the makespan (Cmax); (b) optimal and mean values for the total energy consumption
(ETotal); (c) optimal and mean values for the peak input power (PTotal).
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Figure 11. The Gantt charts of the optimal scheduling schemes: (a) when Cmax is optimal; (b) when
ETotal is optimal; (c) when PTotal is optimal.



Energies 2020, 13, 6181 23 of 31

Figure 12. Distributions of the Pareto front from multiple perspectives for case 1.

5.2. Case 2

5.2.1. Data Source

The 24th problem, which had the largest scale in the benchmark test set proposed by Kim [43],
was selected as the basic data for case 2. In this paper, data for the machine energy consumption and
processing power of the operations were added into the original data for this problem, so that it became
a large-scale multi-objective IPPS optimization problem. This IPPS problem contained 18 products with
different degrees of manufacturing flexibility, which were processed on 15 machines. It contained a
total of 300 optional flexible operations, each of which can be processed on multiple machines, making
multi-objective optimization difficult. According to the characteristics of the energy consumption of
common machines in manufacturing job shops, the processing power for a certain machine for each
operation was generated via the pseudo-random function, with a limited value range applied in this
paper (see Tables A1–A3 in Appendix A for detailed data). Additionally, the energy consumption data
for the 15 machines in case 1 (Table 4) were used again in case 2.

5.2.2. Algorithm Performance Comparison

In order to show that the improvement of the algorithm in this paper was effective, the NSGA-II
and NSHMSGA frameworks were both used to solve the problem in case 2 and the outputs of these
two algorithms were compared. Due to the larger size of the problem in case 2, the relevant parameters
of the algorithm were adjusted. The population size was adjusted to 200, the maximum number of
iterations was adjusted to 5000, and the other parameters were the same as in case 1. The termination
condition for the algorithm is satisfied if the maximum number of iterations is reached or the minimum
values of the three objectives are unchanged after 1000 iterations. The parameters for NSGA-II were
the same as for NSHMSGA in case 2, except for particular parameters.

When solving a multi-objective optimization problem, the problem is generally evaluated based on
the convergence of the solution set, the uniformity of the distribution, and the breadth of the distribution.
From the three plane perspectives in Figure 13, compared with the solution set distribution of NSGA-II,
the solution set distribution of NSHMSGA is closer to the lower left position, indicating that the values
of the optimization objectives obtained by NSHMSGA are better; that is, the algorithm in this paper
has better Pareto front approximation ability. Since the model in this paper is a three-objective model,
it is impossible to accurately distinguish which algorithm in the figure has a more even distribution.
Therefore, the uniformity of the solution set distribution is compared in terms of the subsequent
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data evaluation indicators. From the perspective of the breadth of the solution set distribution, it
can be discerned in the figure that both the objective functions f1 and f3 of NSHMSGA have wider
distributions, while further research is needed to explain the breadth of the distribution of f2 these
two algorithms.

Figure 13. Distribution of the Pareto front from multiple perspectives for case 2.

To further compare the comprehensive performance of the two algorithms in terms of solving
the multi-objective IPPS problem in this paper, we introduce three quantitative evaluation indexes.
These are the solution set coverage index C-metric, the solution set distribution uniformity index spacing
metric, and the solution set distribution breadth index maximum spread. The calculation formula for
these evaluation indexes is as follows.

C−metric C(A, B) =

∣∣∣{y ∈ B
∣∣∣∃x ∈ A : x � y

}∣∣∣
|B|

(22)

The numerator of the Formula (22) represents the total number of solutions in set B dominated by
at least one solution in set A, while the denominator represents the number of solutions in set B. C(A,B)
= 1 means that all the solutions in set B are dominated by some solutions in set A; C(A,B) = 0 means
that no solution in set B is dominated by any solution in set A.

Spacing−metric SP(PF) =

√√√
1

|PF| − 1

|PF|∑
i=1

(d− di)
2

(23)

In Formula (23), PF represents the Pareto front, di represents the minimum distance from the i-th
solution to another solutions in PF, and d represents the mean value of di. SP measures the standard
deviation of the minimum distance from each solution to another solution. The smaller the value of SP,
the more uniform the solution set is.

Maximum Spread D(PF) =

√√√√ M∑
m=1

(
max|PF|

i=1 f i
m −min|PF|

i=1 f i
m

)2

(24)
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In Formula (24), M represents the number of objective functions and f i
m represents the value of the

m-th objective function of the i-th solution in the solution set PF. The larger the value of D, the wider
the distribution of PF.

When calculating the second and third indexes, because the objective function belongs to different
dimensions, each objective function needs to be normalized. The values of the above three evaluation
indexes of the two algorithms are shown in Table 7.

Table 7. Quantitative evaluation index values for the two algorithms.

C-Metric Spacing Metric Maximum Spread

NSHMSGA 0.78 0.4724 1.6404
NSGA-II 0 0.5775 1.3351

5.2.3. Energy Consumption Comparison

To analyze the influence of the scheduling scheme on the energy consumption in the manufacturing
process, two scheduling schemes with the same maximum completion time were selected for comparison
in this paper, one of which only optimized the maximum completion time, while the other took energy
consumption as one of the optimization objectives. The Gantt charts of the two scheduling schemes
are shown in Figures 14 and 15.

Due to the shutdown and restart strategy, the idle energy consumption in the manufacturing
process is relatively low. In this paper, the idle energy consumption and assistant energy consumption
were combined into one parameter. The energy consumption statistics for the two different scheduling
schemes are shown in Figure 16.

Figure 14. The Gantt chart of scheduling scheme for single-objective optimization.
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Figure 15. The Gantt chart of scheduling scheme for multi-objective optimization.

Figure 16. Energy consumption statistics for the two scheduling schemes.

6. Discussion

6.1. Discussion of the Results for Case 1

It can be seen in Figure 10 that the three objective functions were continuously optimized for all
300 iterations of the algorithm in order to minimize the maximum completion time (Cmax), the total
energy consumption (ETotal), and the peak input power (PTotal).

When one of the three objective functions in case 1 was optimal, the other two objective functions
were as follows: (1) when the maximum completion time was optimal at Cmax = 310, the corresponding
total energy consumption ETotal = 10,425.9 and the peak input power PTotal = 45.2; (2) when the total
energy consumption was optimal at ETotal = 9784.5, then the corresponding values of the other two
objectives were Cmax = 483 and PTotal = 28.7; (3) when the peak input power was optimal at PTotal = 19.7,
the corresponding values of other two objectives were Cmax = 655 and ETotal = 10,491. These three
solutions, which were located at the edge of the three dimensions of the Pareto front obtained by
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the algorithm, were respectively a solution with the infinite crowding distance of each dimension of
the optimization objective. There was a certain conflict relationship among the three optimization
objectives, meaning optimal values for the three objectives could not be obtained at the same time.

Figure 12 shows that this multi-objective IPPS algorithm could balance the three optimization
objectives to avoid partial optimization of one objective only. At the same time, it showed that
the iterative population in the algorithm had good diversity. Due to the basic settings involving
processing of 5 products on 15 machines in this case, it was relatively easy to achieve results close to
the optimized boundary value for the maximum completion time after several iterations. Therefore,
for the obtained Pareto front, there were more individuals distributed near the optimal value of the
maximum completion time.

6.2. Discussion of the Results for Case 2

In this paper, the results for the two multi-objective algorithms in case 2 were compared and
evaluated with quantitative indexes. The data in Table 7 show that the value of the C-metric indicates
that 78% of the solutions in the NSGA-II solution set were dominated by at least one solution in the
NSHMSGA solution set, while none of the solutions in the NSHMSGA solution set were dominated by
any solution in the NSGA-II solution set. This shows that NSHMSGA had an absolute advantage in
terms of approximating the real Pareto front. The spacing metric value for NSHMSGA was smaller
than for NSGA-II, indicating that the distribution of the NSHMSGA solution set was more uniform
than for NSGA-II. This was because the algorithm used in this paper added a population degradation
operation based on the crowding distance, which eliminated a certain number of individuals with a
low crowding distance in each non-dominated level, so that the distribution of the solution set was
more uniform. The maximum spread value for NSHMSGA was greater than for NSGA-II, indicating that
the solution set distribution of the algorithm in this paper is more extensive. To sum up, NSHMSGA
showed a more comprehensive performance than NSGA-II in solving the multi-objective process
planning and scheduling integration problem in this paper.

From the energy consumption data in Figure 16, the maximum completion time (makespan) for
the two schedules in Figures 14 and 15 was the same, but there was a significant gap in the energy
consumption data. The difference value of the total energy consumption was 6081.1; the difference value
of the processing energy consumption was 4625.1, which accounted for about 76% of the total difference
value; the difference value of the idle and assistant energy consumption was 1226, which accounted
for about 20% of the total difference value; the shutdown and restart energy consumption difference
value was 230, which accounted for about 4% of the total difference value. The energy consumption of
the single-objective optimized scheduling scheme was 17.4% higher than that of the multi-objective
optimized scheduling scheme, of which the vast majority (96%) came from the processing energy
consumption, idle energy consumption, and assistant energy consumption. The above data show that
energy savings can be achieved in the manufacturing process through multi-objective optimization of
IPPS. The above data also prove the effectiveness of the optimization method used in this paper.

7. Conclusions

The result of the case study in this paper showed that the proposed method reduced the energy
consumption by approximately 15% in two different scheduling schemes with the same makespan.
The computational results for the NSHMSGA and NSGA-II frameworks were evaluated quantitatively
in the case study in this paper. The C-metric values for NSHMSGA and NSGA-II were 0.78 and 0;
the spacing metric values were 0.4724 and 0.5775; and the maximum spread values were 1.6404 and
1.3351, respectively. The evaluation indexes showed that the NSHMSGA framework could obtain
a better non-dominated solution set than the NSGA-II in solving the multi-objective IPPS problem
proposed in this paper.

For the three objectives optimized by the model in this paper, one is optimized at the cost of different
degrees of degradation of the other two objective functions. Therefore, when the product delivery
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time and the limit of the peak input power of the manufacturing job shop were met, a satisfactory
optimization effect was achieved for the total energy consumption objective by adjusting the integrated
process planning and scheduling scheme, so as to save energy in the manufacturing process. The case
study showed that the scheduling schemes had the same completion time but showed great differences
in terms of energy consumption. On the one hand, the operation and machine selection processes for
different process routes of the same product led to differences in energy consumption. On the other
hand, the arrangement of the operation sequence in the scheduling scheme controlled the states of the
machine (e.g., idle, shutdown, or restart states), which had a decisive influence on the total completion
time, resulting in different idle, assistant, and startup and shutdown energy consumption values.

Taking into account the energy saving and consumption reduction problems faced by the global
manufacturing industry, a mathematical model of the multi-objective IPPS optimization problem
involving energy savings was constructed in this paper, which was based on previous research on
the energy consumption involved in the manufacturing process. The three optimization objectives of
this mathematical model were the maximum completion time, total energy consumption, and peak
power of the manufacturing process, whereby the Pareto front of the solution provides the basis
for decisions related to these aspects for managers. Due to the high complexity of the proposed
multi-objective optimization problem, it was difficult for the traditional accuracy algorithm to solve the
problem. Therefore, a hierarchical multi-strategy genetic algorithm based on non-dominated sorting
(NSHMSGA) was proposed in this paper. This algorithm was based on the NSGA-II framework,
which improved the search performance of the algorithm by improving the coding method and
genetic operators and by adding a crowding distance sorting-based population degradation operator
to increase the diversity of the iterative population. The results of the case study showed that the
improvements made to the proposed algorithm were effective in solving the multi-objective IPPS
optimization problem involving energy consumption.

During production, there are often sudden dynamic events, and certain processing parameters are
not determined. In future research, we will consider the optimization of the integrated process planning
and scheduling approach in a dynamic environment and with uncertain parameters. Additionally,
considering the optimization problem with different energy consumption costs in different time periods
is also a future research direction.
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Appendix A

Table A1. Working power for the operations processed on machines in case 2.

Operation Product 1 Product 2 Product 3 Product 4 Product 5 Product 6

O1 [5.6, 6.5] [6.4, 7, 6.4] [6, 6.6, 6.3] [4.1] [5.4, 4.8, 5.4, 4.5] [5.6, 6.8, 6.7]
O2 [5.6, 6.9] [5.4, 4.3, 6.8] [5.8, 4.6, 5.8, 6.6, 4.1] [5, 5.3] [6.1, 4.9, 4, 5.7, 5.5] [6.8, 6.6, 6.1]
O3 [6. 6] [6.6] [6.6, 6, 4.6, 6.1, 4.3] [5.6] [5.1, 6.4] [5.4]
O4 [6.2] [5, 5.4, 5.9, 4.4] [6.9, 6.1, 6.9, 5.3] [4.2, 5.3] [6.6, 4.1, 4.4, 5.2, 6] [4.9, 6.4]
O5 [6.1] [5.6, 4.9, 4.3] [5, 4.5, 5.8, 5.3, 6] [5.5] [5.2, 6.6, 6.9, 5.8] [6.5, 5.2, 6.9]
O6 [5.8, 6.6] [6.5, 5.2] [5, 5.5, 5.3, 5.7, 6.6] [5.4, 6.1, 5.2] [6.4, 4.3] [5.7, 6.5, 5.6]
O7 [5.2, 6.2, 4.7] [5.5, 6.8, 7] [5.1, 6.8, 5.4, 6.6] [6.5, 6.4] [6.7, 5.6, 4.1, 4.7, 4.4] [4.8, 6.1, 5.5]
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Table A1. Cont.

Operation Product 1 Product 2 Product 3 Product 4 Product 5 Product 6

O8 [5.2] [6.4, 6.8] [6.7, 5.8] [6.9] [6,4, 5.3, 6.9] [6]
O9 [6.7, 4.4] [7, 6.3, 4.9, 6.8, 6.7] [7, 4.7] [5.5, 6.3, 5.3] [6, 6.9]

O10 [4.6, 4.7, 5.4] [5.9, 6.3, 4.9, 5.7, 4.5] [4.1, 6.4] [4.5, 5.1, 5.8, 4.5, 6.9] [4.2, 5.2, 6.1]
O11 [5.5, 4.6] [6.2, 6.3, 5.7] [4.1, 5.6] [6.2, 4, 7, 5.3, 6.3] [5, 5.8, 5.3, 6.3]
O12 [6.5, 5.7, 6.1] [5.7, 4.9, 7, 4.6, 5.2] [7, 6.2] [5.6, 7, 5.2, 4.7, 5] [5.9, 6.4]
O13 [4.1] [4.1, 4.5, 5.1] [5.3, 4.8, 5.2] [7, 5.2, 5.8, 4.8, 5.4] [4.8, 4.3, 5.2]
O14 [5.7, 6.3] [6.5, 5.4, 5.5, 6.9] [5.8, 5.9] [6.1, 4.4, 5.5, 4.5] [5.6, 5.1]
O15 [6.9, 5.1, 5.2, 4.1, 5.9] [6.5] [4.8, 5.8, 4.1] [6.3, 5.1, 4.4]
O16 [5.6, 5.4] [4.7, 5.3] [4.9, 4.4, 5.6] [5.6, 6.8, 6.7, 5.5]
O17 [6.2, 4.7, 6.4] [6.2, 5.7, 6.6, 6, 5.5] [5.9, 4.3]
O18 [4.2, 6.3, 5.8, 6.9, 6.1] [6.1, 4.7, 5.4, 5.3] [5.5, 6.9, 5.5]
O19 [6.5, 4.2, 4.4, 4.2, 7] [6.6, 4.6, 6.8]
O20 [4.8, 5.5]

Table A2. Working power for the operations processed on machines in case 2.

Operation Product 7 Product 8 Product 9 Product 10 Product 11 Product 12

O1 [4.1, 6.8] [4.3] [6.9, 5.1, 6.3, 5.7, 6.2] [5, 6.2, 5.2, 4.5] [5.1, 5] [4.2, 6.5]
O2 [5.7, 5.6, 4.3, 6.3] [6.2, 6.8] [5.7] [6.6, 4.1] [4.5, 7, 5.2, 6.9] [4.9, 4.5]
O3 [6.5, 6.4] [4.3] [6.7, 4.1, 4.1, 6.1] [5.6, 5.4] [6.7, 4.1, 6.8, 5.6, 6.3] [4.7, 6.9]
O4 [6.6] [5.5, 4.7, 6.9] [5.4, 6.9] [4.1, 4.6] [5.9, 5.4, 4.1, 6.3, 6.6] [6.7]
O5 [4.3, 6.6, 5.5] [6.5, 5.6] [5.8, 5.4, 5.4, 5.6, 4.9] [6.7, 5.2] [5.9, 5.4, 4.2] [6.7]
O6 [5.4, 6.5, 6] [4.1, 6.9] [7, 6.1, 4.1, 5.2, 6.5] [6.1, 4.9] [4.4, 4.5] [6.1, 4.4]
O7 [5.9] [4.1, 7] [5.4, 5.4, 7, 6.9, 6.9] [5.3, 4.2, 5.7] [6.1, 5, 6.7] [5.6, 6.7]
O8 [4.3, 4.4] [4.7, 5.9] [4.4, 5.8, 5.8, 5, 6.5] [5.9] [4.5, 5.5, 4.8, 5.5, 6.5] [4.1, 4.7]
O9 [6.4, 5.6, 6.3] [6.5] [4.6, 4.3, 5.6] [6.6, 5.9, 4.6, 6.2] [6.6, 5.9, 4.7] [5.8, 4.8]

O10 [6.9, 5.2, 6.8] [4.2, 4] [6.6, 6.3, 6.5, 4.8, 5.8] [6.3, 4.4] [5.5]
O11 [6.6, 4] [6.9, 6.4, 6.7] [6.5, 4, 5.6, 5.9, 4.4] [6.7] [5.7]
O12 [5.7, 6.9] [4.9, 5.4] [4.8, 6.3] [5.8, 4.6]
O13 [6.4, 4.7, 5.1] [6.2] [5.6] [6.5, 6.2]
O14 [4.6, 4.6] [5.6, 5.6] [4.2, 4.2, 6.9, 5.7] [4.8, 4.9, 6.7]
O15 [4.4, 4.1, 6.8] [6.3, 6.5] [4.8, 6.5, 5.1, 6, 6.9] [5]
O16 [5.9, 6.5] [6.3] [4.3, 5.5, 5.6] [4, 5.5]
O17 [4.6, 7, 6.1] [4.6, 4.3] [6, 4.6, 5.2, 4.1, 5.7] [6, 4]
O18 [4.8, 5.3, 5.8] [5.6, 5] [4.2, 4.5, 6, 4, 5] [4.7, 6, 5.2]
O19 [4.9, 5.4] [5.7] [5.8, 6.7]
O20 [5.9, 5.3, 6.3] [6.4, 5.7] [4.7, 6.1, 4.2, 6]
O21 [4.8, 5.6, 6.4]

Table A3. Working power for the operations processed on machines in case 2.

Operation Product 13 Product 14 Product 15 Product 16 Product 17 Product 18

O1 [6.5, 6, 6.7, 4.1, 6.8] [6.9, 5.1] [6.4, 6.1] [4.3, 6.7, 6.4] [6.5, 4.5] [6.9, 4.1]
O2 [7, 5.4, 4.9, 4.7, 5.1] [4.1, 5.6, 4.2, 4.9] [5.2, 5.1] [6] [4.8, 6.8] [4.1, 5.2, 6.5]
O3 [6.1, 5.9] [5.4, 5.2, 6.6] [5.6] [4.3, 4.4, 5.9] [6.1] [4.9]
O4 [5.3, 6, 6.8, 4.5, 6.8] [6, 5.5] [4.5] [5.4, 5.5, 6.5, 4.8, 6.9] [5.5, 5.4] [6.3, 5.8, 6]
O5 [6.8, 6.3, 6.7] [6.1] [6.9, 6.8] [4.3, 5.5, 6.9] [5.8, 5.4] [4.5]
O6 [4, 5.5, 5, 5.9] [6.5, 6, 4.1] [5.9, 5] [6.7, 6.9] [5.8] [6.6, 4.4]
O7 [4.3, 5.8, 6.8, 4.7] [4.1, 6.2] [6] [6.5, 5.2, 6.1, 6.6, 5.6] [5.4, 5.5] [6.1, 6.8, 4.5]
O8 [4.9] [5.9, 5.3] [5.7, 6.5] [4.4, 6.9, 5.7] [4.3, 6.3, 6.1] [6.7, 6.6, 5.7]
O9 [5.6, 5.3, 6.1, 6.6] [5.9, 5.4, 5.4] [6.4, 6.8] [5.1, 6.1, 6.7, 6, 4] [4.7, 4.7] [6.8, 5.1]
O10 [5.4, 5.3, 5.7, 4.4, 4.9] [4, 4.4] [4.5] [6.5, 6.3, 4.6, 4.7, 4.4] [4.2, 5.3] [5.4, 5.5, 6.6]
O11 [4.1, 4.2, 5] [4.3, 5, 4.7] [4.2, 5.6] [5.7, 6.8, 4.5, 5.6, 6.1] [6.5] [5.7, 6.7]
O12 [6.6, 4.9, 6.8] [6.6, 4.4, 5.4] [5.7, 6.4] [6.3, 4.9, 5.4] [5, 4.7] [5.8, 6.3, 6.3]
O13 [4.7, 6.8, 5.7, 6.4] [4.7, 5.5] [4.7, 5.3, 6.9] [6.3, 5.7, 5.9, 5.3, 6.7] [5] [6.3, 5.8, 6.7]
O14 [6, 4.4, 6.8, 5.9, 5.8] [5.9, 5.7, 4.6] [5.9, 5.7, 5.2, 4.6] [4.2, 4.6, 6] [6.4]
O15 [4.5, 4.1, 6.6, 5.9] [5.8, 4] [4.6, 6.6, 5.9, 5.1, 7] [6.9, 6.4] [6.2, 4.4]
O16 [5.7, 4.4, 5.9] [4.3, 6.5] [5.3, 5.8] [4.8, 4.1]
O17 [4.1, 6.8, 4.4] [4.3, 5.9, 4.1, 4.3, 6.2] [4.9] [5.7, 4.7, 5.5]
O18 [5.5, 6.5] [5.7, 4.5, 6, 5.6] [5.3, 5]
O19 [6.8, 4.7] [5.2, 4.9]
O20 [6, 6.9, 5.7, 4.2] [4.1, 4.3, 5.9]
O21 [6.6, 6.1, 6.3] [5.2, 6.1]
O22 [4.5, 6.2, 6.7]
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