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Abstract: Real-time multiparameter identification has been widely investigated in relation to
high-performance control and fault diagnosis of salient-pole permanent magnet synchronous motors
(PMSMs). However, it is rank-deficient for simultaneously estimating flux, resistance, and dq-axis
inductances based on one steady state under maximum torque per ampere (MTPA) control, which will
cause the ill-convergence problem in the results. This paper proposes a new method to solve the rank
deficiency problem in the multiparameter identification of salient-pole PMSMs in systems where
the motor working conditions do not change frequently. For this type of system, a second steady
state is constructed in order to meet the full-rank conditions for multiparameter identification and
minimize the torque ripple. Furthermore, in order to reduce the influence of inductance variations,
a better shift direction from the first steady state to the second is ensured based on the analysis of the
theoretical error. Simulation and experimental results show that the proposed method demonstrates
good identification performance.
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1. Introduction

Permanent magnet synchronous motors (PMSMs) are now widely employed in rail transit vehicles,
industrial servo drives and other domains because of their high efficiency, power factor and power
density. It is important to obtain accurate parameters for high-performance control and fault diagnosis.
In particular, maximum torque per ampere (MTPA) control, which is based on motor parameters such
as flux and dq-axis inductances, is the most common method to maximize the efficiency of the system.
Therefore, accurate flux and dq-axis inductances are essential to ensure the accuracy of system output
under MTPA control. However, these parameters are affected by temperature and operating conditions.
Flux and resistance are mainly affected by temperature [1], while inductances are mainly affected by
the current [2]. Hence, many methods have been proposed to estimate the inductance and calculate
the flux linkage of PMSMs.

Offline parameter identification methods for PMSMs are mainly used for the initial setting of
motor parameters. For example, a step input signal was injected to calculate the flux and identify
the inductances in [3,4]. In [5], the fundamental components of phase voltages and currents are
acquired by fast Fourier transform (FFT) in order to identify the inductance. This type of method can
identify relatively accurate motor parameters, but the identification process often requires complex
data acquisition and fails to reflect the variation of parameters caused by temperature differences.

Numerous studies have focused on real-time parameter identification [6–13]. In [6], resistance
and inductance were identified by fixing the flux to a nominal value. In [7], a d-axis current injection
method was used to identify the resistance and flux for the first time. The method in [8] achieved good
results in resistance and flux identification, but failed to identify the inductance. In [9], a recursive
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least squares (RLS) algorithm was proposed to identify the flux and dq-axis inductances. In [10],
an extended Kalman filter (EKF) was employed to identify the resistance and flux. This type of method
is mostly based on steady-state voltage equations. However, it is rank-deficient to identify more
than two parameters using one set of steady-state equations, and the results are greatly influenced by
inaccurate nominal or initial parameters. In [9,11], the authors proposed that injecting a signal into
a d-axis current could solve the rank deficiency problem in multiparameter identification, but this
resulted in nonnegligible perturbation in the torque. In addition to the proposals in these studies, other
methods were introduced in [12,13] which used a sinusoidal d-axis current injection based on dynamic
equations, but this resulted in torque ripple during identification.

In this paper, a novel and simple method is proposed for real-time multiparameter identification
of salient-pole PMSMs, especially in systems where the motor working conditions do not change
frequently, such as rail transit systems. During the steady state operation process of the motor, a
temporary steady state is designed for the simultaneous estimation of flux, resistance and dq-axis
inductances. The torque ripple during the state transition process is so negligible that it has little effect
on the speed control system, especially in a rail transit system with large inertia. In addition, the error
caused by the variation of inductances is analyzed, and the better shift direction of the state transition
process is calculated. The use of mean sampling instead of RLS means that there are no complicated
matrix calculations in this algorithm. Thus, the identification process is very simple and needs minimal
computation compared with other methods. Simulation and experimental results validate the good
performance of the proposed method.

2. Implementation of Multiparameter Identification of a Salient-Pole PMSM

2.1. Full-Rank Matrix of a Salient-Pole PMSM

The steady-state voltage equations of a salient-pole PMSM in a rotating frame are given by{
ud = Rsid −ωeLqiq
uq = Rsiq +ωeLdid +ωeψ f

(1)

where ud, uq, id and iq are the dq-axis voltages and currents, respectively; Rs is the stator resistance; Ld
and Lq are the machine dq-axis inductances; ψf is the rotor flux linkage; and ωe is the electrical angular
speed. If the rank of Equation (1) is less than the number of parameters (ψf, Rs, Ld, Lq) to be identified,
the equations are rank-deficient. Therefore, it is impossible to identify four parameters with one set of
steady-state equations [9,11].

In order to solve the rank deficiency problem of multiparameter identification, a temporary
steady state which is not linearly dependent on the normal steady state can be constructed. Based on
Equation (1), the new fourth-order equations shown in Equation (2) can be obtained.

ud1 = Rsid1 −ωe1Lqiq1

uq1 = Rsiq1 +ωe1Ldid1 +ωe1ψ f
ud2 = Rsid2 −ωe2Lqiq2

uq2 = Rsiq2 +ωe2Ldid2 +ωe2ψ f

(2)

where the subscript 1 denotes the normal steady state of the motor working under MTPA control
and the state that multiparameter identification should take, and the subscript 2 denotes the artificial
temporary steady state, which is intended to meet the full-rank condition and so on.
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Since the process of parameter identification is very short, the speed of these two operation points
can be considered as constant ωe. Then, Equation (2) can be rewritten into a matrix format as

ud1
uq1

ud2
uq2

 =


id1 0 −ωeiq1 0
iq1 ωeid1 0 ωe

id2 0 −ωeiq2 0
iq2 ωeid2 0 ωe




Rs

Ld
Lq

ψ f

 (3)

or
Y4×1 = X4×4θ4×1 (4)

where Y4×1, X4×4 and θ4×1 are the input voltage matrix, input coefficient matrix and output parameters
matrix, respectively.

The condition that Equation (4) must have a unique solution can be met when X4×4 is of full rank
or its determinant is not equal to zero, as shown in Equation (5).

|X4×4| = ω3
e

(
id1iq2 − iq1id2

)
(id2 − id1) , 0 (5)

The following two conditions are obtained to satisfy Equation (5):

id1iq2 , id2iq1 (6)

id2 , id1 (7)

Equation (6) requires that these two operating points are not on the same straight line through the
origin. Furthermore, Equation (7) requires that the d-axis current is appropriately changed.

In order to satisfy Equations (6) and (7), many papers propose to inject additional d-axis current
into the machine [9,11]. However, a d-axis current injection method will result in negligible torque
ripple during identification, according to Equation (8):

∆Te =
3
2

np
(
Ld − Lq

)
∆idiq (8)

where ∆Te is the torque ripple, np is the number of pole pairs in the motor and ∆id is the injected
d-axis current.

Taking the motor parameters from the later section as an example, Figure 1 shows the relationship
between the amplitude of torque ripple and the amplitude of injected d-axis current when the q-axis
current is the rated current. The torque ripple is about 40% of the rated torque when the amplitude of
∆id is the rated current.
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Figure 1. Effect of the injected d-axis current on torque. 
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2.2. Construction of the Second Steady State

The above analysis shows that we can identify four parameters simultaneously by constructing
a temporary steady state and combining it with the normal steady state. This section shows how to
construct a temporary steady state without changing the output torque of the system.

In Figure 2, point 1O is the intersection of the MTPA and constant torque curves under normal
operation conditions. The values of the voltages, currents and speed are measured as ud1, uq1, id1, iq1

and ωe at the point when the motor reaches the first steady state. After that, the normal operating
point 1O shifts to the left/right to temporary operating point 2O or 2O′ along the constant torque curve
for a short time. Similarly, when the motor reaches the second steady state, the values of the voltages,
currents and speed are ud2, uq2, id2, iq2 and ωe. Finally, the temporary operating point 2O or 2O′ returns
to the normal operating point 1O along the original path. Compared with the d-axis current injection
method, the proposed method presents a smaller perturbation in torque during identification, as shown
in Figure 3. Note that, in this case, the proposed method satisfies both Equations (6) and (7) such that
θ4×1 in Equation (4) has a unique solution.
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Figure 3. Numerical results for the currents and torque using the proposed method. 
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Figure 2. Two steady states of a salient-pole permanent magnet synchronous motor (PMSM).
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2.3. Mean Sampling Algorithm

In theory, according to Equation (3), only one data group needs to be sampled for each steady
state when simultaneously estimating four parameters. However, single sampling can lead to huge
errors in identification results because of nonideal factors. After multiple sampling, it is necessary to
select an appropriate algorithm to identify the parameters. An RLS algorithm is often employed for
parameter identification and has been explained in many papers, this paper only presents its special
application with the proposed method. The condition of the minimum error is given in [14].

θ∗4×1 =
(
XT

4m×4X4m×4
)−1

XT
4m×4Y4m×1 (9)
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where the subscript m denotes the mth sampling point in each steady state and the superscript * denotes
the result of the proposed method. Expand Equation (9) into Equation (10):

θ∗4×1 =
([

XT
4×4(1) · · · XT

4×4(m)
][

XT
4×4(1) · · · XT

4×4(m)
]T

)−1

·

[
XT

4×4(1) · · · XT
4×4(m)

][
YT

4×1(1) · · · YT
4×1(m)

]T
(10)

The coefficient matrix X4×4(1) = . . . = X4×4(m) = X4×4 when the current regulators perform well.
Therefore, Equation (10) can be simplified as Equation (11):

θ∗4×1 =
(
mXT

4×4X4×4
)−1

XT
4×4[Y4×1(1) + · · ·+ Y4×1(m)]

= X−1
4×4

[Y4×1(1)+···+Y4×1(m)]
m = X−1

4×4

¯
Y4×1

(11)

where the superscript “−” denotes the mean sampling value.
According to Equation (11), the mean sampling algorithm, which is equivalent to an RLS

algorithm since the coefficient matrix is held constant in this method, can be employed due to its
smaller computation. Therefore, substituting the averages of the measured quantities into Equation (4)
yields Equations (12)–(14): 

ψ∗f =
(iq2ud1−iq1ud2)+(id2uq1−id1uq2)

ωe∆id

R∗s =
iq1ud2−iq2ud1

∆idq

L∗d =
∆iq(iq2ud1−iq1ud2)

ωe∆idq∆id
+

(uq2−uq1)
ωe∆id

L∗q =
id1ud2−id2ud1

ωe∆idq

(12)

or
θ∗4×1 = X−1

4×4Y4×1

=


−ωeiq2∆id 0 ωeiq1∆id 0
iq2∆iq −∆idq −iq1∆iq ∆idq
−id2∆id 0 id1∆id 0
iq2∆idq id2∆idq −iq1∆idq −id1∆idq

 Y4×1
ωe∆idq∆id

(13)

where {
∆id = id2 − id1
∆idq = id2iq1 − id1iq2

(14)

The value of4id should be sufficiently high such that the effect of voltage errors on the identification
result can be minimized. Finally, according to Equations (12)–(14), it is possible to simultaneously
identify all four parameters using a simple algorithm rather than RLS or EKF, which contain complicated
matrix calculations.

3. Error Analysis

3.1. Theoretical Error

The feasibility of the proposed method is analyzed in Section 2. The performance of the method is
influenced by parameter variations, and analyzing the error caused by these variations can improve
the accuracy of identification.

Since the interval between two steady states is short, the temperature can be considered not
to change during the identification process. Therefore, the flux and resistance, which are mainly
affected by temperature, can be assumed to be constant during identification. However, in practice,
the inductance changes with the current. The inductances, which are set to be constant in the derivations
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of Equations (2)–(14), result in theoretical errors. In order to simplify the analysis, it is assumed that the
dq-axis inductances can be denoted as a linear function of the dq-axis currents [15–17], as given below.{

Ldx = Ld0 − αidx
Lqx = Lq0 − βiqx

(15)

where the subscript x denotes the xth steady state and the subscript 0 denotes the value at zero current.
α and β are both positive values that stand for the self-saturation constants.

Substituting Equation (15) into Equation (2) yields Equation (16):
ud1 = id1Rs −ωeiq1Lq0 +ωei2q1β

uq1 = iq1Rs +ωeid1Ld0 −ωei2d1α+ωeψ f
ud2 = id2Rs −ωeiq2Lq0 +ωei2q2β

uq2 = iq2Rs +ωeid2Ld0 −ωei2d2α+ωeψ f

(16)

This can be simplified according to the original derivation process as


R∗s
L∗d
L∗q
ψ∗f

 =


Rs

Ld0
Lq0

ψ f

+
1

∆idq∆id


ωeβiq1iq2∆id∆iq

α∆idq
(
i2d1 − i2d2

)
− βiq1iq2∆i2q

β∆id
(
id1i2q2 − id2i2q1

)
∆idq

(
αid1id2∆id − iq1iq2β∆iq

)
 (17)

The theoretical error of the parameters in the first steady state is shown in (18):


Rs1err
Ld1err
Lq1err
ψ f 1err

 =


R∗s
L∗d
L∗q
ψ∗f

−


Rs

Ld0 − αid1
Lq0 − βiq1

ψ f

 =


ωeβiq1iq2∆iq
∆idq

−αid2 −
βiq1iq2∆i2q
∆idq∆id

βid1iq2∆iq
∆idq

αid1id2 −
βiq1iq2∆iq

∆id


(18)

Under the traction condition, iq > 0, id < 0. 4iq, 4id and 4idq are of the same polarity. Therefore,
it is easy to deduce that Rs1err > 0 and Lq1err < 0, and that Ld1err and ψf1err are determined by the relative
size between α and β. Among these values, only Rs1err is positively related to speed.

3.2. Influence of Torque Variation on Theoretical Error

According to Equation (18), it can be known that the theoretical error is quite complex because it
is related to id1, iq1, id2 and iq2. However, iq1, id2 and iq2 can all be expressed by id1. Therefore, in order
to perform a qualitative analysis of theoretical error, Equation (18) needs to be simplified, and can be
expressed by id1.

The constant torque curve in Figure 2 is given by

iq =
T∗e

1.5np
[
ψ f +

(
Ld − Lq

)
id
] (19)

Equation (19) can be expanded into a first-order Taylor expansion at id = 0 as

iq ≈
(Lq−Ld)
ψ f

T∗e
1.5npψ f

id +
T∗e

1.5npψ f

= c·b·id + b = k·id + b
(20)
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where k and b are positive coefficients including the motor parameters and torque command. They are
both positively related to torque command. c is a positive value and is only related to the parameters.

The constant torque curve can be approximated as a straight line on which points (id1, iq1) and
(id2, iq2) are located. Equation (21) can be obtained from Equation (20).{

∆iq = iq2 − iq1 = k∆id
∆idq = id2iq1 − id1iq2 = b∆id

(21)

The MTPA curve can be approximated as a straight line passing through the origin and
perpendicular to the constant torque curve. The point (id1, iq1) is located on this line such that
Equation (22) can be obtained as

iq1 ≈ −
1
k

id1 = −
1
k

fMTPA(T∗e) (22)

Therefore, iq1, id2 and iq2 can be expressed by id1 as Equation (23):
iq1 = −id1/k
id2 = id1 + ∆id
iq2 = k(id1 + ∆id) + b

(23)

Substituting Equations (21) and (22) into Equation (19) yields Equation (24).

T∗e ≈ 1.5npψ f

√
i2d1 −

id1

c
(24)

The derivative of T*ewith respect to id1 is given in

dT∗e
did1

=
3npψ f

4
·

2id1 −
id1
c√

i2d1 −
id1
c

< 0 (25)

Thus, T*eis negatively related to id1. Substituting Equation (23) into Equation (18) yields
Equation (26). 

Rs1err
Ld1err
Lq1err
ψ f 1err

 =


−ωeβid1(cid1 + c∆id + 1)
−α(id1 + ∆id) + βcB(cid1 + c∆id + 1)

βcB(cid1 + c∆id + 1)
αid1(id1 + ∆id) + βB(cid1 + c∆id + 1)

 (26)

where

B = bid1 = id1

√
i2d1 −

id1

c
< 0 (27)

In order to deduce the relationship between theoretical error and torque, the derivative of
Equation (26) with respect to id1 is given in

d
did1


Rs1err
Ld1err
Lq1err
ψ f 1err

 =


−ωeβ(2cid1 + c∆id + 1)
−α+ βc[B′(cid1 + c∆id + 1) + cB]
βc[B′(cid1 + c∆id + 1) + cB]

2αid1 + α∆id + β[B′(cid1 + c∆id + 1) + cB]

 (28)

where

B′ =

id1

√
i2d1 −

id1

c

′ = 1√
i2d1 −

id1
c

(
2i2d1 −

3id1

2c

)
(29)
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Coefficient c is much less than 1 because the reluctance torque is much less than the synchronous
torque in PMSMs. Thus, there exist the following relationships in Equation (28). 2cid1 + c∆id + 1 > 0

B′(cid1 + c∆id + 1) + cB ≈ 1.5
√
−id1

c > 0
(30)

It is easy to deduce that dRs1err/did1 < 0 and dLq1err/did1 > 0. Ld1err and ψf1err should be derived in
more detail. Ld1err is positively related to id1 when α and β satisfy Equation (31). ψf1err is positively
related to id1 when α and β satisfy Equation (32).

α
β
<

3
2

k (31)

 α
β <

3b
4bk−2∆id

, ∆id < 2bk
α
β > 0 , ∆id > 2bk

(32)

It can be verified that α is much smaller than β for the majority of PMSMs and that the motor
described in this paper satisfies Equations (31) and (32). Therefore

d
did1


Rs1err
Ld1err
Lq1err
ψ f 1err

 =

−

+

+

+

 (33)

where − denotes a negative value and + denotes a positive value. Since did1/dTe < 0, the conclusion is
as follows:

d
dTe


Rs1err
Ld1err
Lq1err
ψ f 1err

 =
d

did1


Rs1err
Ld1err
Lq1err
ψ f 1err

·
did1

dTe
=


+

−

−

−

 (34)

In conclusion, only Rs1err is positively related to torque while the other values are negatively
related to torque.

3.3. Comparison of Errors Due to the Left and Right Shifts

The shift direction of the operating point, which can be to the left or right, is analyzed here in order
to minimize the theoretical error. Define 4id = −I < 0 when the shift direction is left and 4id = I > 0
when the shift direction is right. Substituting the different 4id into Equation (26) and then subtracting
the left shift error from the right shift error yields Equation (35)

Rs1err
Ld1err
Lq1err
ψ f 1err


right

−


Rs1err
Ld1err
Lq1err
ψ f 1err


le f t

= 2


−ωeβid1cI(
−α+ βc2B

)
I

βc2BI
(αid1 + βcB)I

 =

+

−

−

−

 (35)

In order to analyze Equation (35) more intuitively, by combining it with the conclusion discussed
above, we can plot the curves of the errors with increasing torque at 40 Hz, as shown in Figure 4.
The percentage of the relative error is defined with reference to the reference parameter, as shown below

Perr(%) =
P∗ − Pre f

Pre f
× 100% (36)
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Figure 4. Theoretical results for left and right shifts of the operating point with different torques.

As can be seen from Figure 4, it is obvious that only Rs1err increases with increasing torque, while
the other values show the opposite tendency. Furthermore, the right shift curve of Rs1err is always
above the left shift curve, while the other values again show the opposite. In short, the magnitude of
the left shift error is always smaller than the right one. For the braking condition, the same conclusion
can also be obtained. In this case, it is recommended to identify parameters using left shift mode.
Although Rs1err is quite large, its influence on torque control performance is usually so small that it can
be ignored.

4. Simulation and Experimental Results of the Proposed Method

The proposed multiparameter identification method was verified through the simulation and
experimental platforms of a 3 kW salient-pole PMSM. The experimental platform was as shown in
Figure 5. The DSP(TMS320F28335)-based vector control system was employed to implement the
proposed method.
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Figure 5. Practical test platform of the PMSM.

In order to reduce the influence of nonideal factors such as initial position angle error, control delay
and dead zones, we first had to compensate these factors in the experiment.

Considering the variability of the inductances, the second step was to obtain accurate reference
parameters for the PMSM using offline measurement methods. For instance, Ld (Lq) was measured
under the condition of different id (iq) while iq (id) = 0. The results are shown in Table 1.
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Table 1. PMSM test parameters.

Parameter Value Symbol

Rated power 3 kW
Rated current 5.12 A
Rated speed 750 rpm
Rated torque 25 N·m

Number of pole pairs 4
Flux 0.875 Wb

Resistance 2.58 Ω
d-axis inductance 26.7 − 0.2·id mH
q-axis inductance 95.58 − 2.0·iq mH

4.1. Simulation Results for Left and Right Shifts of the Operating Point with Different Torques

For the simulation, the proposed method was validated on a test motor operating at 40 Hz with
load torques of 5, 10, 15, 20 and 25 N·m, respectively. The value of the 4id was ±2 A. Nonideal factors
such as temperature change and inverter nonlinearity were not considered in the simulation.

Figure 6 shows the simulation results of all four parameters. They are exactly the same as the
theoretical results because the simulation environment was largely ideal. Therefore, the simulation
verified the accuracy of the above theoretical analysis.
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4.2. Experimental Results for Left and Right Shifts of the Operating Point with Different Torques

The experimental conditions were the same as those of the simulation except that there were
nonideal factors that were difficult to compensate in the experiment, such as temperature, switching
delay and switch voltage drop [18,19].

Figure 7 shows the experimental results for all four parameters. There are similarities between
experimental results and the simulation results. For example, the variation trend of the parameter
error was similar when the torque was more than 10 N·m. However, there were also large differences
when the torque was 5 and 10 N·m because the pressure drop on parameters such as (ωeLdid) was
not large enough compared to the voltage errors caused by nonideal factors. The smaller the torque,
the smaller the currents, and the greater the influence of voltage errors on the identification result,
according to the voltage equations.
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The resistance error, which reached between −20% and 30%, was the largest of the four parameter
errors and was quite different from the simulation result. The reason is that the identification equation
for resistance can be approximated as 4ud/4id, and therefore resistance is more sensitive to voltage
errors. If there is a 0.5 V voltage error, the resulting identification of resistance error is 10%. Apart from
this, the errors for the other parameters, which were kept within 5%, met the accuracy requirements
for vector control.

Figure 8 shows the waveforms of currents and voltages with a load torque of 10 N·m using left
shift mode. The motor worked in the first steady state up to 0.28 s. The operating point moved left
from 0.28 to 0.43 s and reached the second steady state at 0.43 s. During this period, the amplitude of ia
increased uniformly. The temporary operating point returned to the normal operating point along the
original path from 0.68 to 0.83 s and reached the original steady state at 0.83 s. The dq-axis voltages
contained a certain degree of higher harmonics.
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Figure 9. Experimental results at different speeds with different torques. 

4.4. Identification Results with Inaccurate Initial Parameters 

Figure 8. Currents and voltages of the parameter identification method.

4.3. Experimental Results for Different Speeds

Figure 9 shows the experimental results for different speeds using left shift mode. The magnitude of
Rs1err increased with increasing speed. One reason has already been mentioned above. The identification
equation of Rs can be approximated as 4ud/4id, which is not related to speed. However, the voltage
errors, which were caused by nonideal factors and related to speed, resulted in increasing Rs1err.
Other errors, which were inversely proportional to the rotor speed according to Equation (12),
decreased with increasing speed. Ld1err was about −30% with a load torque of 5 N·m at 10 Hz because
the voltage due to Ld (ωeLdid) was much smaller than that of ψf (ωeψf) in the q-axis voltage equation.
Thus, Ld was more sensitive to the voltage error than ψf. In conclusion, the higher the speed, the more
accurate the identification will be.
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4.4. Identification Results with Inaccurate Initial Parameters

For the purpose of verifying the influence of inaccurate initial parameters on this method, the initial
parameters of the motor, with reference to the reference parameters, were set according to Equation (37).
Simultaneously, the identified parameters were applied to the vector control system. The algorithm
was executed ten times with a load torque of 10 N·m at 40 Hz. The results are shown in Figure 10.

ψini
f = (0.8 ∼ 1.2)·ψ f

Lini
d = (0.6 ∼ 1.4)·Ld

Lini
q = (0.4 ∼ 1.6)·Lq

(37)
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The experimental results indicate that the inaccuracy of the initial parameters had no effect on this
identification method. The reason for this is that the existence of the Proportion-Integral (PI) regulator
kept the voltage constant at the steady state. Therefore, the identification result, which is based on the
voltage, could be approximated as a constant value.

5. Conclusions

In this paper, a novel and simple method was designed for the real-time multiparameter
identification of salient-pole PMSMs. Based on the steady-state equations of a salient-pole PMSM,
a second steady state was constructed to meet full-rank conditions and minimize the torque ripple.
The proposed error analysis method is applicable to the linear inductance model. The better shift
direction of the operating point was designed to decrease identification errors using the results of error
analysis. The simulation and experimental results indicate that this method can effectively identify
flux and inductance at different loads and speeds. Furthermore, it does not need the nominal value of
any parameter. Moreover, the computation of the proposed algorithm was much less-intensive than
other real-time algorithms. However, the identification results were influenced by nonideal factors,
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especially for the resistance. We will carry out further investigations on the compensation algorithm to
improve the identification accuracy in the future.
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