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Abstract: Thermal processes represent a considerable part of the total energy consumption in
manufacturing industry, in sectors such as steel, aluminium, cement, ceramic and glass, among others.
It can even be the predominant type of energy consumption in some sectors. High thermal energy
processes are mostly associated to high thermal losses, (commonly denominated as waste heat),
reinforcing the need for waste heat recovery (WHR) strategies. WHR has therefore been identified
as a relevant solution to increase energy efficiency in industrial thermal applications, namely in
energy intensive consumers. The ceramic sector is a clear example within the manufacturing industry
mainly due to the fuel consumption required for the following processes: firing, drying and spray
drying. This paper reviews studies on energy efficiency improvement measures including WHR
practices applied to the ceramic sector. This focuses on technologies and strategies which have
significant potential to promote energy savings and carbon emissions reduction. The measures have
been grouped into three main categories: (i) equipment level; (ii) plant level; and (iii) outer plant
level. Some examples include: (i) high efficiency burners; (ii) hot air recycling from kilns to other
processes and installation of heat exchangers; and (iii) installation of gas turbine for combined heat
and power (CHP). It is observed that energy efficiency solutions allow savings up to 50–60% in the
case of high efficiency burners; 15% energy savings for hot air recycling solutions and 30% in the
when gas turbines are considered for CHP. Limitations to the implementation of some measures
have been identified such as the high investment costs associated, for instance, with certain heat
exchangers as well as the corrosive nature of certain available exhaust heat.

Keywords: waste heat recovery; energy efficiency; ceramic industry; thermal processes

1. Introduction

Industrial processes are overall associated to high energy consumption and industry holds about
25% of the final energy consumption in European Union (EU) [1]. Some industrial thermal processes
require a significant energy demand and are usually associated with considerable heat losses (waste
heat) [2]. In the EU, thermal energy can reach 70% of the total energy use [3]. Waste heat has been
estimated to represent from 20 to 50% of overall industrial energy consumption [4] in the United States.
In the EU, its potential for reuse means about 300 TWh/year, representing around 17% of the industrial
energy consumption for process heat and 10% of the total industrial energy consumption [5]. In the
prospect to improve the energy efficiency of industrial thermal processes, several sets of practices
related to waste heat recovery (WHR) have been proposed and implemented [6].

The implementation of innovative measures for energy efficiency improvement reveals as a
potential field of research to attain not only for the reduction in energy consumption but also in
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achieving clean and low carbon objectives regarding sustainability at the EU and worldwide level [6].
In this prospect, the adoption of a consistent energy management, in addition to the practices related to
industrial symbiosis [7], the promotion of eco-efficiency [8] and the use of alternative fuels coming from
renewable sources, attractive in energy-intensive sectors to reduce environmental impacts without
compromising the technical requirements in the involved processes [9,10] are relevant to improve
energy efficiency and promote sustainability in industry.

The ceramic industry is an energy intensive sector, similar to the steel, cement and glass
industries [11]. A reference document for the best available techniques (BAT) is available in the
EU for the ceramic industry [12] and its revision is currently ongoing. Overall, the improvement
opportunities in this sector range from waste heat recovery, for which examples are given in [13],
equipment optimisation examples are demonstrated in [14], and those for the use of renewable energy
are expressed in [15]. The framework of energy efficiency improvement measures within the ceramic
sector have been studied. However, as most recent studies have been focusing on the progresses
achieved until the end of the 1990s [16], such frameworks are outdated. Furthermore, generalist
studies have been performed for the framework of WHR technologies in the industry [17]. An updated
review on energy efficiency technologies and strategies is therefore required for framing the most
recent technological developments for energy efficiency improvement within the operation of ceramic
industry plants, namely improvements at the equipment level, plant level and outer plant level for
energy valorisation and cleaner thermal processes.

This paper aimed to review the most prominent energy efficiency technologies and strategies in the
ceramic sector, focusing on waste heat recovery (WHR) and performing an analysis of improvements
at the equipment level, plant level and outer plant level. This was set to establish a benchmark for the
analysis of thermal processes in the ceramic industry, the assessment of energy efficiency improvement
potential and the selection of the most favourable strategies for the distribution of waste heat within
the plant processes attending to each process energy requirements.

2. Description of the Ceramic Sector

According to data from the European ceramic industry association, Ceramie-Unie (C-U) [18], the
ceramic industry is an overall export-oriented sector (the EU exports 30% of its total production), it
encompasses around 2000 companies, and it has an annual production value of EUR 30 billion. As an
energy intensive sector, its competitiveness is highly dependent on fuel prices. Therefore, cost effective
strategies that increase energy efficiency and reduce carbon emissions will highly improve both the
environment and ceramic production costs.

The ceramic sector is categorised into several subsectors. A classification considered in the BAT
reference document [12] considers the following subsectors: tiles (including roof and wall and floor);
refractories; abrasives; household: technical and sanitaryware. There are also other subsectors with
minor sales turnover and energy consumption (including vitrified clay pipes and expanded clay aggregates).
The ceramic industry may also be characterised regarding sales turnover and energy consumption.
Figure 1 presents the distribution of sales turnover for each subsector of the ceramic industry.
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Figure 1. Distribution of the sales turnover in the ceramic industry in Europe considering the 
reference year 2015 (data gathered from [12,19,20]). 
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production costs [21], which accounts for the evidence that the ceramic industry is an energy intensive 
sector. In terms of the distribution between the subsectors, the tiles production represents 80% of the 
total energy consumption in the ceramic industry [21]. Considering this and considering the data 
present in Figure 1, it is possible to verify that the tile manufacturing industry is the most representative 
subsector in terms of sales turnover and energy consumption. 

3. Characterisation of Thermal Processes in the Ceramic Industry 

The ceramic production includes several processes: material storage, mixture and preparation, 
shaping (extrusion or pressing), drying, glazing, firing, quality check, and packaging [16]. The 
intensive energy consumption in a ceramic production plant is mainly related to processes of firing, 
drying and spray drying [22]. In most ceramic subsectors, the specific fuel consumption (per tonne 
of produced ceramic material) is superior to the electric energy consumption [23], which is for 
instance due to the operation of these energy intensive thermal processes. The firing process is at the 
highest energy consumption level, due to the high annual operational times of the kilns and 
consequent high operational temperatures [22]. Figure 2 presents the distribution of thermal energy 
consumption per process for the ceramic tile manufacturing industry—the most significant ceramic 
subsector. 

 
Figure 2. Distribution of thermal energy consumption for each thermal process in the tiles 
manufacturing subsector (adapted from [24]). 

The firing process is operated in ceramic kilns, including tunnel kilns [24], rotary kilns [16], roller 
kilns [25] and intermittent kilns [26]. Tunnel kilns are continuous kilns, in which the products to be 
fired, are transported in kiln cars, being normally open at the inlet and the outlet while heating occurs 
at the centre [24]. Rotary kilns use the process of calcination to heat up products in continuous 
operation [16], while roller kilns are constituted by a refractory roller conveyor for the transportation 
of products through a hot tunnel, enabling fast firing in rapid cycles [25]. Intermittent kilns are closed 

Figure 1. Distribution of the sales turnover in the ceramic industry in Europe considering the reference
year 2015 (data gathered from [12,19,20]).

The energy use within a ceramic plant is highly significant, representing about 30% of the overall
production costs [21], which accounts for the evidence that the ceramic industry is an energy intensive
sector. In terms of the distribution between the subsectors, the tiles production represents 80% of the
total energy consumption in the ceramic industry [21]. Considering this and considering the data
present in Figure 1, it is possible to verify that the tile manufacturing industry is the most representative
subsector in terms of sales turnover and energy consumption.

3. Characterisation of Thermal Processes in the Ceramic Industry

The ceramic production includes several processes: material storage, mixture and preparation,
shaping (extrusion or pressing), drying, glazing, firing, quality check, and packaging [16]. The intensive
energy consumption in a ceramic production plant is mainly related to processes of firing, drying
and spray drying [22]. In most ceramic subsectors, the specific fuel consumption (per tonne of
produced ceramic material) is superior to the electric energy consumption [23], which is for instance
due to the operation of these energy intensive thermal processes. The firing process is at the highest
energy consumption level, due to the high annual operational times of the kilns and consequent high
operational temperatures [22]. Figure 2 presents the distribution of thermal energy consumption per
process for the ceramic tile manufacturing industry—the most significant ceramic subsector.
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Figure 2. Distribution of thermal energy consumption for each thermal process in the tiles manufacturing
subsector (adapted from [24]).

The firing process is operated in ceramic kilns, including tunnel kilns [24], rotary kilns [16], roller
kilns [25] and intermittent kilns [26]. Tunnel kilns are continuous kilns, in which the products to
be fired, are transported in kiln cars, being normally open at the inlet and the outlet while heating
occurs at the centre [24]. Rotary kilns use the process of calcination to heat up products in continuous
operation [16], while roller kilns are constituted by a refractory roller conveyor for the transportation
of products through a hot tunnel, enabling fast firing in rapid cycles [25]. Intermittent kilns are closed
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kilns, operating in discontinuous operation, and a schedule exists for the increase in temperature within
the kiln [26]. The drying process may also occur in several types of dryers, which include vertical
and horizontal dryers [27]. The tunnel dryer is an example of a horizontal dryer with a continuous
operation [28]. In vertical dryers, the product is transported vertically within the dryer and is shaped
by the press as it is placed into beds [29]. Figure 3 presents the most energy consuming operations in a
ceramic plant, namely tunnel kiln, roller kiln, tunnel dryer and spray dryer.
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In the prospect of the improvement opportunities in ceramic thermal processes, several authors
investigated the operation of tunnel kilns, intermittent kilns, rotary kilns and roller kilns, dryers and
spray dryers. Such studies were based on the performance of mass and enthalpy balances [24,29], which
were complemented by exergy analysis—applied to identify irreversibility to assess improvement
opportunities [25,29,33] and thermal analysis—applied to identify potential improvements in heat
transfer [26]. The performance of global balances to a process may be used to quantify the overall
waste heat in a thermal process, and thus WHR opportunities. Considering the values presented by
Mezquita et al. [24], it is possible to observe the heat losses associated to each stream of a ceramic kiln,
as presented in Figure 4.
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While a quantification of typical heat losses for the remaining thermal processes, such as drying
and spray drying, remain to be performed, practical studies to quantify the energy inputs and outputs
of specific dryers and spray dryers can be found in the literature [32,33].

4. Framework of Waste Heat Recovery for Industrial Applications

Industrial thermal energy is primarily generated by fuel combustion in different processes. Electric
energy may also generate waste heat from compressing and grinding operations [35]. In both systems,
high amounts of heat are lost to the environment, mainly heat losses in equipment and heat losses
in exhaust gas stacks [4]. The implementation of WHR technologies and strategies make use of such
waste heat to obtain several associated benefits [24], such as: reduction in energy consumption and
associated CO2 emissions; reduction in manufacturing costs; increase in company competitiveness;
reduction in resource consumption and the associated environmental impacts, contributing to a low
carbon economy. Several authors have been exploring the application of WHR technologies and
strategies in the industry in general and in specific industrial sectors, exploring all its aspects and
its framework within the area of energy efficiency. Table 1 presents the foremost progresses within
the study of industrial WHR, studied by several authors, covering its contextualisation, optimisation
through modelling and techno-economic assessment.
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Table 1. Progresses in industrial waste heat recovery (WHR) research.

Categories Progresses Reference

Contextualisation of industrial
WHR

Framework of WHR in industry contextualising
opportunities, energy management, WHR

technologies and industrial sectors.
[17,36–41]

WHR technologies Description of WHR technologies applied in
industry. [42–72]

Optimisation and modelling of
industrial WHR

Framework of smart energy systems and decision
support tool development within the context of

industrial WHR and the application of
model-based approaches.

[73–76]

Practical achievements of WHR
implementation

Design and application of several technologies
and the assessment of achievements of WHR

implementation, namely energy savings,
economic savings and return on investment.

[77–80]

WHR-based industrial symbiosis

Framework of WHR within the practical
implementation of industrial symbiosis, namely
through the use of waste heat to fill demand at

another industrial site or be integrated into
district heating network.

[81–90]

According to Papapetrou et al. [5], Jouhara et al. [17] and Bruckner et al. [90], WHR technologies
may be classified following their temperature range: high temperature (HT), medium temperature
(MT) and low temperature (LT) as detailed in Table 2. Each category is also differentiated according to
the origin of the waste heat, following Jouhara et al. [17]. While HT technologies are applied directly in
combustion processes, MT technologies are applied to reuse the waste heat from exhaust gases and LT
technologies are applied to use the waste heat from the products and equipment. The share over the
total waste heat presented in Table 2 corresponds to the representativity of low-grade, medium-grade
and high-grade waste heat over the total waste heat potential in the EU (300 TWh/year) [5].

Table 2. Classification of WHR technologies.

WHR Type Temperature
Range [5]

Temperature
Range [17] Origin of Waste Heat [17] Share Over Total

Waste Heat [5,90]

High temperature (HT) Above 500 ◦C Above 400 ◦C Direct combustion
processes 42%

Medium temperature
(MT) 200–500 ◦C 100–400 ◦C Exhaust of combustion

units 25%

Low temperature (LT) Below 200 ◦C Below 100 ◦C Products and the
equipment of process units 33%

5. Energy Efficiency Technologies and Strategies in the Ceramic Sector

The energy efficiency improvement opportunities in the ceramic sector include the optimisation
of equipment performance, the use of material streams with considerable waste heat potential and
the use of alternative fuels and renewable energy resources. Although opportunities are centred on
processes of firing, drying and spray drying, improvement measures, in particular WHR technologies
and strategies, may also be recovered from these processes to other thermal processes (such as boilers)
and to produce electric energy. A summary on the progress of energy efficiency improvement in
the ceramic sector focusing on WHR is presented in Table 3. The progress is categorised into energy
efficiency improvement, the analysis of flow phenomena in thermal processes, modelling and the
optimisation of thermal process and plants, the implementation of WHR strategies, WHR-based
electricity generation, the use of alternative fuels and renewable energy resources and the application
of water and energy integration.
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Table 3. Progresses on research on energy efficiency improvement in the ceramic sector.

Categories Progresses Ref.

Best practices and limitations

Description of several types of best practices for energy
efficiency improvement, with a focus on the different

ceramic industry subsectors, ceramic plant operations and
barriers for the implementation of measures.

[16,41,91–104]

Application of state-of-the-art
technologies

Study on the application of energy efficiency technologies
in the case of the ceramic plants. [105–111]

Analysis of flow phenomena in
thermal processes

Numerical analysis of the thermal and hydraulic
phenomena occurring in kilns, dryers and spray dryers,
focusing on assessments based on the optimisation of air

flow rates and heat transfer.

[112–118]

Modelling and optimisation of
thermal process and plants

Development of models which describe the specific
thermal processes of a ceramic plant (more incidentally

tunnel kilns) and the application of optimisation methods
to improve the operation of plants.

[119–121]

Implementation of WHR strategies
Research on the implementation of several types of WHR
strategies in ceramic industry plants and assessment of the

performance of the new WHR systems.
[122–133]

WHR-based electricity generation Implementation of WHR technologies and strategies for
the production of electric energy. [134–136]

Use of alternative fuels and
renewable energy resources

Change in the operation of combustion processes to use
alternative fuels (biogas, synthetic or bio-methane, syngas

and hydrogen) and use of renewable energy resources
(such as concentrated solar thermal energy) to generate

thermal energy.

[137–158]

Application of water and energy
integration

Application of WHR strategies related to process
integration, involving pinch analysis application for

several plant streams and the assessment of potential
water and energy savings.

[159,160]

Framework of industrial symbiosis

Analysis of the potential for industrial symbiosis in
industrial sites including ceramic plants, encompassing

potential inputs from other plants to be used as waste heat
sources in a ceramic plant.

[161–163]

In the following section, several energy efficiency technologies and strategies for the ceramic
industry are presented, in three sub-sections: Equipment-Level Technologies and Strategies
(Sub-Section 5.1), Plant-level Technologies and Strategies (Sub-Section 5.2) and Outer-Plant Systems
(Sub-Section 5.3).

5.1. Equipment-Level Technologies and Strategies

The improvement of energy efficiency in a ceramic plant may be performed by the optimisation
of the equipment operation. Authors have pointed in a generalist manner a set of best practices
to be performed in a ceramic thermal processes [27,31,102,118] including: the automatic control
of operational conditions (temperature and humidity); installation of fans in the zones of dryers
with higher independent thermal contributions; improvement of thermal insulation of kilns by the
application of refractory layers; control of the excess air at the inlet and outlet of kilns; automatic control
of the kiln combustion regime; use of the kiln preheating zone to complete the drying and maximisation
of the batch and continuous process synchronisation in the production flow. In this section, several
technologies and strategies for the improvement of the operation of a ceramic plant’s processes (kilns,
dryers and spray dryers) are presented. These technologies and strategies are described in Table 4 into
two main findings: technical; and energy and economic aspects.
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Table 4. Description of equipment-level technologies and strategies.

Measure
Main Findings

Reference
Technical Aspects Energy and Economic Aspects

High-efficiency burners

New high efficient burners designed to allow preheating the
combustion air with the exhaust gases (examples include

self-recuperative and regenerative burners); these burners can replace
old burners in ceramic tunnel kilns [105] and roller kilns [118]

improving the fuel consumption.

Firing efficiency improvement by
approximately 10% [45]; fuel savings of
25–30% in self-recuperative burners [47]
and 50–60% in regenerative burners [46].

[42–50,105,118]

Microwave assisted firing and drying

The microwave processing has been studied for the drying and firing
(sintering) of some ceramics; microwave applied for sintering of

ceramics was identified to be a very interesting alternative achieving
finer microstructure, improved mechanical properties, with lower

processing times and energy consumption [106].

Eight times reduction in firing time
leading to fuel savings [51]; 7–30 times
reduction in drying time leading to fuel

savings [95].

[51,95,106]

Kiln cars and furniture with low thermal
mass

Use of low thermal mass (LTM) kiln cars to decrease the thermal
energy requirement for the heating of supporting refractories; they

offer similar strength and stability comparative to traditional
construction materials with the advantage of having lower running
costs, repairs, downtime and maintenance [52,53]; LTM materials

include Si3N4 and SiC [111].

A 70% reduction in thermal mass leading
to fuel savings [52]. [51–53,111]

Airless drying

While in a conventional dryer the vapour is lost to the environment
with the outlet air stream, in here, it is made use of the steam as the
heat transfer medium; the steam presents a higher specific heat and

thermal conductivity relative to air, thus improving heat transfer [107];
this allows improving overheat control, the minimisation of the risk of

explosion, avoidance of secondary contamination and an overall
improved control system.

From 20 to 50% thermal energy savings
and reduction in the drying time [107]. [54,55,107]

Controlled drying air recirculation

Use of more advanced ventilation systems, in which the control of the
drying parameters is improved; the inlet and outlet air temperatures

are maintained, while the drying agent recirculation coefficient
increases (lowering the share of new air) by optimising the air flow
and convention, and high energy savings are achieved [126]; due to

variations in the evaporation rate, investment costs are highly variable.

Energy savings of 25% [96]. [96,126]
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Table 4. Cont.

Measure
Main Findings

Reference
Technical Aspects Energy and Economic Aspects

Controlled dehumidification
The water that condenses within the chamber releases its latent heat to

be supplied to the drying process; this system is completely closed,
and thus, highly energy-efficient [128].

Typical energy savings of 80%. [128]

Hot air recycling as combustion air in the
kiln

The hot air from the cooling zone of a kiln may be used as preheated
combustion air in the kiln’s combustion chamber; thermal shock

caused by high temperature airflow may be reduced by the mixture of
hot air and air at ambient temperature [30].

From 15 to 30% fuel savings [126];
payback time is negligible [117]. [24,30,117,122,123,126]

Exhaust air recirculation in spray dryers

The exhaust air of a spray dryer may be recycled to the process as
drying air [124]. An air preheater may be installed in the recirculation
process to further use the waste heat from the exhaust air stream [125];
within the recirculation process, the exhaust air stream is divided into
a recirculated air stream and a vent air stream (which is purged), with
the recirculated air stream being then mixed with ambient air in order

to achieve the required drying air moisture content.

From 50 to 61% in energy savings [125]. [124,125]

Use of alternative fuels

Fossil fuels (such as natural gas) may be substituted by alternative
fuels which supply the same amount of heat; alternate fuels include

biogas [136–141] and hydrogen (pure, mixed or syngas) [142–149]; for
hydrogen, its injection is feasible in existing gas networks [150–153]

and it is the best choice for at-scale decarbonisation, being produced at
high grade heat [154].

A 30% supply of energy input in a
process (biogas) [142];and 80–100%
supply of energy input in a process

(hydrogen) [154].

[136–154]

Improvements at ceramic slip and design

New ceramic materials and product design have been developed in
recent years to reduce ceramic weight, energy consumption and

production cost; such materials are developed considering: product
design that require less raw material and firing times, new material

compositions incorporating pore-forming agents (such as carbon
nanotubes) and incorporating residues to produce thermal energy
[164,165]; additives such as incineration ashes, waste glass and low
sintering clays contribute to lower sintering temperatures or lighter

ceramics with identical mechanical properties [165].

A 15% increase in material porosity
leading to increased water absorption
and decreasing compressive strength,

and thus considerable energy savings in
the drying phase [164].

[164,165]
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In Figure 5, the description of the operation of the technologies and strategies identified in
Table 4 are presented, namely high efficiency burners, airless drying and exhaust air recirculation in
spray dryers.
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5.2. Plant-Level Technologies and Strategies

The improvement of energy efficiency in a ceramic plant may be also performed by the application
of several technologies and strategies. In these sections, several plant-level technologies and strategies
are presented (Table 5).
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Table 5. Description of plant-level technologies and strategies.

Measure
Main Findings

Ref.
Technical Aspects Energy and Economic Aspects

Hot air recycling between kilns

Similar to the hot air recycling in a kiln, the hot air from the cooling zone of a kiln
may be used and mixed as preheated combustion air in other kilns of the

plant [117]; the more adequate use for a recovered heat air stream is the one that
allows to recover the higher thermal energy from that stream (having the lowest

thermal loss: that is the closest matching heating need).

From 15 to 30% in fuel savings [126];
payback time is negligible [117]. [117,126,129]

Hot air recycling as drying air

The hot air from the cooling zone of kilns may be used as an additional heat
source in dryers; commonly implemented when part of the hot air is already

recovered to the combustion chamber of kilns and a remaining part is recycled to
the dryers [117]; in the case the hot air stream has a sufficient waste heat potential,

the operation may be converted to disable the need to consume fuel [117].

Drying air preheating

Installation of air–gas heat exchangers to heat up an air stream to be used as an
additional heat source in a dryer may be alternatively performed instead of direct
hot air recycling; this may be performed by either using the exhaust gas streams

or hot air streams from the cooling zone of kilns [108]; the heat pipe heat
exchanger is a typical air preheater type used for this application, due to its

associated high heat transfer capability and economic viability [108].

About 110 dam3/year fuel savings [108];
payback time of 2 years [108].

[78,79,108]

Phase change material Thermal energy
storage (PCM–TES)

Implementation of a thermal energy storage-based phase change material unit for
the preheating of combustion air at the inlet of a furnace; the air stream is heated

in an air–gas heat exchanger followed by the PCM unit.
Fuel savings of 570 MWh/year [132]. [132,133]

Water heating and preheating
Exhaust gases from stacks of a kiln (either exhaust gas or hot air from the cooling
zone) may be used to heat up a water stream in an water–gas heat exchanger, such

as the water stream at the inlet of a boiler.

Fuel savings of 3.1 MWh/year; payback
time less than a year [74]. [74,80,117]

Inertising

Drying stage is eliminated, with energy savings being achieved through the use of
dry grinding instead of wet grinding [98]; the inertising operation has a common
duration of 10–15 min, using a maximum operation temperature of 900 ◦C and

allows the use of raw materials of worse quality [98].

Overall energy savings of 40% [97]. [97,98]

Use of dry route for raw material
preparation Substitution of the wet route by a dry route for the preparation of raw materials. 74% water savings; 78% fuel savings;

36% electricity savings [104]. [104]

Use of concentrated solar thermal energy

Concentrated solar power (CSP) technologies include solar dish, parabolic trough,
and solar power towers; the solar radiation may be used to produce a valuable
heat stream with temperatures up to 70–320 ◦C [155]; the CSP systems may be

integrated or adapted to the existing heating systems [156–158], with the drying
processes being pointed for potential application.

Compensate 10% of industrial energy
demand [155]. [155–158]
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In Figure 6, the flowsheets of some of the WHR strategies and process integration within a plant
are presented. In the flowsheet presented in Figure 6, previously published by the authors [123], it is
observable that the project of the implementation of a plant-level WHR strategy encompassing the
most energy-consuming processes of the plant, contemplating the hot air recycling from the cooling
zone of the kilns as combustion air between kilns and as drying air and the use of the waste heat
potential from exhaust gas streams in a water–gas heat exchanger.
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In the ceramic sector, for plant-level technologies and strategies, two main types of heat exchangers
can be installed, namely water–gas heat exchangers (also called economisers) and air–gas heat
exchangers (air preheaters) [17]. Water–gas heat exchangers are finned tube heat exchangers applied
for the heating of water through the heat recovered from a gas stream [80], normally exhaust gases
as exemplified in Figure 6. While air–gas heat exchangers are mostly applied for the heating of
an air stream, such as the preheating of a combustion air stream [108], these may present several
configurations [166], such as: regenerators, recuperators, rotary regenerators and run around coil.
Moreover, different designs exist [17], such as: plate heat exchangers and heat pipe heat exchangers.
The application of heat exchangers is conditional to the type of fluid, namely if corrosive. Corrosion
can be caused by the passage of acidic gases originating from combustion and due to the potential
production of foaming; for hot air recycling usually this is not applicable, in which an equivalent
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amount of waste heat may be recovered to tunnel kilns or other processes within the plant, without the
risk of corrosion or foaming formation [22].

5.3. Outer-Plant Technologies and Strategies

In addition to plant-level measures, namely WHR strategies encompassing the recycling of several
streams may be applicable if there are significant remaining waste streams to furtherly improve
energy efficiency beyond by directly reducing fuel consumption. Such an approach is based on the
application of technologies for the generation of electric energy and the combined heat and power
(CHP) generation [56]. These are methods of selection to increase the self-sufficiency of a plant [6].
In this section, the description of two measures which produce benefits to be used in outer-plant are
detailed, namely through the measures presented in Table 6. The approached technologies consider
the organic Rankine cycle—a system similar to a Clausius–Rankine cycle suitable for low-grade heat
sources and; gas turbine cogeneration—a system that produces both heat and electric energy using a
system containing a gas turbine).

Table 6. Description of outer-plant technologies and strategies.

Measure
Main Findings

Reference

Technical Aspects Energy and Economic
Aspects

Organic Rankine cycle
(ORC)

It may have installed a regenerator to even further
increase the system efficiency by transferring heat
from the outlet gas stream from the turbine to the
liquid stream at the entrance of the Heat recovery
steam generator (HRSG) unit (regenerative ORC);

due to the high availability of low-grade heat
sources (20% of overall applications of ORC) [134],
such as the exhaust gas stream of ceramic kilns, the
implementation of this system is highly opportune.

Payback time of 4–5 years [22]. [22,58–67,134]

Gas turbine cogeneration

Gas turbine cogeneration produces electric energy
and thermal energy (which may be used in the

operations of firing, drying and spray
drying) [135,136].

Electric energy savings of 25%;
30% of fuel savings [68]. [68–72,135,136]

In Figure 7, the schematic of an organic Rankine cycle (ORC)and two gas turbine CHP installations
is presented.
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5.4. Future Goals

The improvement measures in the industry and in particular the implementation of WHR
technologies and strategies presented in this paper, have been evolving in the scope of the requirements
of each single plant to reduce its investment in energy use. Nonetheless, such requirements have
been emerging under more far-reaching goals which comprise the need of promoting industrial
sustainability in a worldwide perspective, namely of manufacturing industry. Within the EU, these
sustainable goals may be linked to the 2030 climate and energy framework [167] and in a furthermost
perspective, the 2050 long-term strategy [168]. Table 7 summarises the future goals regarding energy
efficiency improvement in the European and the National industry—Portugal—correlating these goals
with the current energy policies, with a focus on WHR and in the light of the improvement measures
approached for the case of the ceramic industry.
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Table 7. Description of future goals and its association to EU and national-level policies.

Policies Framework of Future Goals

European Green Deal [169]

A roadmap developed by the European Commission for
2019–2024, aiming to promote circular economy, sustainability, and
reach the objectives for the 2050 long-term strategy [169]; in line
with this deal, two sets of strategies were conceptualised: energy
system integration and hydrogen strategy [170]; the energy system

integration is based on the promotion of the circularity of the
energy systems (for instance, with the reuse of waste heat from
industrial sites and the energy produced from the application of

waste-to-energy technologies) and the promotion of clean fuel use
(such as including renewable hydrogen, sustainable biofuels and

biogas) [170];
the hydrogen strategy is based on a gradual transition of the use of

hydrogen use between 2020 and 2030, aimed at the renewable
hydrogen technologies to reach maturity within the timeframe of

2030 and 2050 [170].

EN-H2: the National Strategy for Hydrogen in
Portugal [171]

The strategy in Portugal to promote the use of hydrogen to
increase energy transition and enforce it in the national economy,
aligned with the objectives of the European Green Deal [171]; the
overall aims for the use of H2 consist of the enforcement of the use
of renewable energy resources, the increase in the resilience of the

energy system and the increase in decarbonisation [171]; in the
context of industry, it is aimed to promote a representativity of

2–5% use of H2 on the overall energy consumption for 2030 and
20–25% for 2050 [171].

6. Conclusions

In this paper, several technologies and strategies for energy efficiency improvement on the ceramic
industry are presented:

• At the equipment level, several WHR technologies and strategies are applicable for the
improvement of firing, drying and spray drying operations, such as the application of high
efficiency burners (typical fuel savings of 50–60% for regenerative burners) and airless drying
(typical thermal energy savings of 20–50%), in addition to the application of alternative fuels and
improvement in ceramic material design;

• At plant-level implementation, there is great potential for measures such as hot air recycling
from kilns to other processes (low associated payback time for implementation) and the use of
dry routes instead of wet routes in raw material preparation (associated 78% of thermal energy
savings and 36% reduction in electric energy savings), in addition to the use of renewable energy
resources (such as CSP);

• At the outer-plant level, technologies and strategies, two main applications were presented:
electricity production systems, namely the organic Rankine cycle (with an associated payback
time of 4–5 years) and gas turbine CHP (with associated typical 25% electric energy savings and
30% fuel savings).

Throughout the paper, gaps regarding the existence of specific studies were also identified. These
are mostly associated to techno-economic limitations, for instance:

• The practice of hot air recycling is generally favoured relatively to the installation of heat
exchangers—higher investment costs and the problem of corrosion by the passing of exhaust
gases and; as most of the performed studies focus on hot air recycling, with a verifiable lack of
studies for the application of several types of heat exchangers;

• Despite the potential of industrial symbiosis encompassing this sector, namely regarding WHR,
a lack of existing studies on the assessment of energy efficiency improvement caused by the
implementation of an industrial symbiosis-based measure is observed.
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Nomenclature

Abbreviations
BAT Best available technologies
CHP Combined heat and power
CSP Concentrated solar power
HT High temperature
LT Low temperature
MT Medium temperature
ORC Organic Rankine cycle
PCM Phase change materials
TES Thermal energy storage
WHR Waste heat recovery
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