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Abstract: In this paper, a series arc was simulated under resistive load and motor load, which are mainly
used in small ships, and the arc signal was analyzed using discrete wavelet transform. After calculating
the correlation coefficient between the single arc pulse and the wavelet, Biorthogonal (bior) 3.1
was selected as the optimal mother wavelet, and the signal was analyzed using multiresolution
analysis. From the results, arc signals were distributed in the detail components D2, D3, D4 and D5,
corresponding to a frequency range of 19.5–312.5 kHz, with the optimal arc signal extracted based on
these values. In addition, in order to distinguish between arc and normal conditions, signal energy
was analyzed. By applying the magnitude and signal energy analysis method, the DC series arc
generated in the power distribution system of a shipboard was identified.

Keywords: series arc; shipboard; electrical fires prevention; discrete waveform transform;
arc detection; signal energy

1. Introduction

As reported by the Korea National Fire Data System, more than 500 cases of ship fires have
occurred over the past five years. In 2019, about 33% of ship fires were caused by electrical faults,
causing enormous financial losses and human injuries. Figure 1 shows occurrence rates of electrical
fires between 2017 and 2019, and it can be seen that about 50% of electrical fires were caused by
poor connections, partial disconnection and degraded or compressed insulation, all of which can be
attributed to the series arc. In addition, more than 80% of these electrical fires occurred in the power
distribution system of old shipboards docking at the port, as a result of the absence of crew members.
Therefore, it was difficult to put out the fires immediately, and it was easy for fires to spread to other
ships nearby, causing serious economic losses. For this reason, measures should be taken to prevent
electrical fires on old small ships [1,2].

There is a lot of interest in the detection and analysis of DC series arcs for fire prevention.
In particular, research is being actively conducted focusing on aircraft, houses and solar power
facilities, but there is not enough research regarding the application to shipboards. In order to prevent
electrical fire accidents caused by series arcs, much research is being actively conducted based on
the Underwriters Laboratories (UL) 1699 and the International Electrotechnical Commission (IEC)
62606 [3–7]. To detect an AC series arc, the change of peak current was measured in the 1990s [8,9]
and, afterward, various electrical parameters, such as the crest factor and the average value, were used
to improve the accuracy of arc detection [10–12]. The most important feature for AC arc detection
is a shoulder in the current waveform [13]. Compared with AC systems, however, DC arcs have no
zero crossing points and shoulder. Therefore, it is not an easy task to distinguish a DC arc fault from
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normal conditions using existing AC arc fault detection techniques [14,15]. To detect a DC series
arc, several studies, such as current entropy [16,17], electromagnetic radiation [18,19] and frequency
spectrum [20], were conducted. The intrinsic behavior of the arc signal was analyzed by current
entropy to distinguish between an arc fault and a normal condition [16]. This method has a lower
sampling frequency and a short time to detect arc faults, but it is easy to influence an arc signal
by a noise signal depending on the surrounding environment [17]. When an arc fault occurs, it is
accompanied by electromagnetic radiation, light and noise. Recently, one of these, the magnitude of
the electromagnetic radiation signal, was actively analyzed to identify the DC series arc. This method
has an advantage for noncontact arc detection, but it is limited because it can only detect an arc
fault at specific locations where a sensor is installed [18,19]. Besides, the arc current signals have
various time-frequency characteristics depending on the different loads. The sum of optimal frequency
spectrum was calculated based on fast Fourier transform (FFT) to differentiate an arc fault from a
normal condition [20]. When the sum of spectrum values in the specific frequency range was over
a specific value, arc faults were identified. This method identifies arc faults simply, but it may be
unreliable depending on the load types because the specific frequency range and spectrum value may
depend on the loads. For this reason, various methods for detection of DC series arcs are being studied
to distinguish arc faults from normal conditions, and most of them involve complex and expensive
devices [21,22]. In Korea, however, it is not practical to apply complex and expensive devices to old
shipboards to prevent electrical fires caused by series arcs on shipboards.Energies 2020, 13, x FOR PEER REVIEW 2 of 17 
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Therefore, in this paper, a study was conducted to prevent fires caused by DC series arcs in the
power distribution system of shipboards. The optimal method for detection and identification of DC
series arcs was proposed for power distribution systems on shipboards. A resistive load and motor
load were used to simulate the power distribution system of old shipboards. The arc signal was
analyzed by discrete wavelet transform (DWT) and multiresolution analysis (MRA) to confirm the
optimal frequency band for arc detection. In addition, a method to compare arc signal energy with
noise signal energy was proposed to distinguish between arc signals and noise signal.

2. Arc Fault Characteristics and Fire Cases

2.1. Series Arc and Its Characteristics

Arc is defined as a luminous discharge of electricity across an insulating medium,
usually accompanied by the partial volatilization of the electrodes [6,7,23]. Due to the current
flow in the circuit and the high temperature, arc is one of the main causes of electrical fires. There are
two types of arc, depending on the fault current path, as shown in Figure 2, namely series arc and
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parallel arc [24–27]. Parallel arcs occur in a short circuit and generate an arc current with high energy.
On the other hand, series arcs occur at the connection in series with the load. The arc current is limited
by the load and the arc impedance, which has a relatively lower energy. Therefore, conventional circuit
breakers and fuses cannot operate to protect the distribution line. For this reason, it is more difficult to
detect series arcs than parallel arcs.
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Figure 2. Types of arc faults. (a) series arc; (b) parallel arc.

Series arcs under AC voltage is well studied, whereas little research has been carried out to study
that under DC voltage. Figure 3 represents the typical current signal of the series arc under AC and DC
24 V. Under AC voltage, the arc extinguishes near the zero-crossing point due to insufficient voltage for
sustaining the discharge. After the voltage recovers, the arc ignites again. Therefore, there is a shoulder
in every half-cycle of the current signal. Rising edges are also present just after the shoulders, which is
one of the main characteristics of the AC series arc. However, as shown in Figure 3b, only irregular,
high-frequency components can be seen on the current waveform of the DC series arc.

Energies 2020, 13, x FOR PEER REVIEW 3 of 17 

 

2. Arc Fault Characteristics and Fire Cases 

2.1. Series Arc and Its Characteristics 

Arc is defined as a luminous discharge of electricity across an insulating medium, usually 
accompanied by the partial volatilization of the electrodes [6,7,23]. Due to the current flow in the 
circuit and the high temperature, arc is one of the main causes of electrical fires. There are two types 
of arc, depending on the fault current path, as shown in Figure 2, namely series arc and parallel arc 
[24–27]. Parallel arcs occur in a short circuit and generate an arc current with high energy. On the 
other hand, series arcs occur at the connection in series with the load. The arc current is limited by 
the load and the arc impedance, which has a relatively lower energy. Therefore, conventional circuit 
breakers and fuses cannot operate to protect the distribution line. For this reason, it is more difficult 
to detect series arcs than parallel arcs. 

 

(a) 

 

(b) 

Figure 2. Types of arc faults. (a) series arc; (b) parallel arc. 

Series arcs under AC voltage is well studied, whereas little research has been carried out to study 
that under DC voltage. Figure 3 represents the typical current signal of the series arc under AC and 
DC 24 V. Under AC voltage, the arc extinguishes near the zero-crossing point due to insufficient 
voltage for sustaining the discharge. After the voltage recovers, the arc ignites again. Therefore, there 
is a shoulder in every half-cycle of the current signal. Rising edges are also present just after the 
shoulders, which is one of the main characteristics of the AC series arc. However, as shown in Figure 
3b, only irregular, high-frequency components can be seen on the current waveform of the DC series 
arc. 

 
(a) 

Energies 2020, 13, x FOR PEER REVIEW 4 of 17 

 

 
(b) 

Figure 3. Typical current signal of series arc. (a) under AC voltage; (b) under DC voltage. 

2.2. Fire Cases on Shipboards 

In Korea, the old shipboards are more vulnerable to fire accidents because the regular inspection 
of shipboards is performed once every five years. The fire accidents occur in power distribution 
systems that have arc faults while the old shipboards are in operation. Fire accidents can also occur 
at a location connected to a battery because the engine shuts off, but the battery still supplies a DC 
power source while the shipboards are at anchor. The crew can take action to extinguish the fire at 
an early stage when the shipboards are in operation, but a serious fire accident can occur due to the 
absence of the crew when the shipboards are at anchor. Figure 4 shows the photograph and diagram 
of the power distribution system on shipboards. In general, a battery is used as the power supply to 
operate the engine. The engine runs to charge the battery and to power the navigation system, 
lighting system, power regulator and other equipment. In addition, the bilge and water alarm system 
installed in series with the battery generates an alarm at all the times and operates automatically with 
a drain pump to prevent the ship from sinking. When the shipboards are in operation, all of the 
components in the power distribution system are vulnerable to electrical fires caused by series arcs. 
However, since the crew is on duty and there are fire alarms, the fires can be put out immediately. 
On the other hand, when the shipboards are at anchor with the engine stopped, the alarm system and 
drainage pump that connect in series with the battery are exposed to arc risk, which, in consequence, 
causes electrical fires. 

 
(a) 

Figure 3. Typical current signal of series arc. (a) under AC voltage; (b) under DC voltage.



Energies 2020, 13, 5973 4 of 16

2.2. Fire Cases on Shipboards

In Korea, the old shipboards are more vulnerable to fire accidents because the regular inspection of
shipboards is performed once every five years. The fire accidents occur in power distribution systems
that have arc faults while the old shipboards are in operation. Fire accidents can also occur at a location
connected to a battery because the engine shuts off, but the battery still supplies a DC power source
while the shipboards are at anchor. The crew can take action to extinguish the fire at an early stage
when the shipboards are in operation, but a serious fire accident can occur due to the absence of the
crew when the shipboards are at anchor. Figure 4 shows the photograph and diagram of the power
distribution system on shipboards. In general, a battery is used as the power supply to operate the
engine. The engine runs to charge the battery and to power the navigation system, lighting system,
power regulator and other equipment. In addition, the bilge and water alarm system installed in series
with the battery generates an alarm at all the times and operates automatically with a drain pump to
prevent the ship from sinking. When the shipboards are in operation, all of the components in the
power distribution system are vulnerable to electrical fires caused by series arcs. However, since the
crew is on duty and there are fire alarms, the fires can be put out immediately. On the other hand,
when the shipboards are at anchor with the engine stopped, the alarm system and drainage pump that
connect in series with the battery are exposed to arc risk, which, in consequence, causes electrical fires.
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Figure 5 shows two cases of DC series arcs occurring in the power distribution system on old
shipboards, which were investigated by the National Forensic Service. It was confirmed that these fire
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accidents occurred because of the combustibles adjacent to the arc hot spot. It was also shown that
the series arc faults in the power distribution system occurred as a result of the partial disconnection
between the cords and the loose connection between the cord and the terminal.

Energies 2020, 13, x FOR PEER REVIEW 5 of 17 

 

 
(b) 

Figure 4. Power distribution system on shipboards. (a) photograph; (b) diagram. 

Figure 5 shows two cases of DC series arcs occurring in the power distribution system on old 
shipboards, which were investigated by the National Forensic Service. It was confirmed that these 
fire accidents occurred because of the combustibles adjacent to the arc hot spot. It was also shown 
that the series arc faults in the power distribution system occurred as a result of the partial 
disconnection between the cords and the loose connection between the cord and the terminal. 

  
(a) 

  
(b) 

Figure 5. Fire accidents caused by DC series arcs on shipboards. (a) case 1; (b) case 2. 

3. Wavelet Transform and Multiresolution Analysis 

In previous studies, DC series arcs were only analyzed in the frequency domain by fast Fourier 
transform. In this paper, wavelet transform (WT) was used to analyze the current signal of DC series 
arcs in the time and frequency domains simultaneously. The Fourier transform analyzes a signal by 

Figure 5. Fire accidents caused by DC series arcs on shipboards. (a) case 1; (b) case 2.

3. Wavelet Transform and Multiresolution Analysis

In previous studies, DC series arcs were only analyzed in the frequency domain by fast Fourier
transform. In this paper, wavelet transform (WT) was used to analyze the current signal of DC series
arcs in the time and frequency domains simultaneously. The Fourier transform analyzes a signal by
decomposing the signal into a family of complex sinusoids. In WT, a given signal is decomposed using
the mother wavelet, by which the signal can be represented by the dilated and translated versions of a
selected mother wavelet. Typical mother wavelets include Coiflet (coif), Daubechies (db), Symlet (sym)
and Biorthogonal (bior) wavelets. The family of dilated and translated wavelets are given by

Ψa,b =
1
√

a
·Ψ

(
t− b

a

)
(1)

where Ψ(t) is the mother wavelet, a and b are the scale factor and shift factor, respectively. a is used
to modify the amplitude and duration of the prototype mother wavelet, by which the energies of
the dilated wavelets are the same. b is used to translate the modified mother wavelet in the time
domain [28,29]. A mother wavelet with different values of a and b is shown in Figure 6a, and Figure 6b
is the corresponding modified wavelet presented in the frequency domain. It can be seen from Figure 6
that when a wavelet has a smaller value of a, its amplitude is higher, time duration is shorter, frequency
bandwidth is wider and central frequency is higher. On the other hand, when a wavelet has a larger
value of a, its amplitude is lower, time duration is longer, frequency bandwidth is narrower and central
frequency is lower. As a result, a given signal in the time domain can be analyzed by decomposing it
using a mother wavelet in both the time and frequency domains simultaneously.
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Discrete wavelet transform based on multiresolution analysis was used to analyze the arc current
signal [30–34]. In MRA, the given signal is decomposed by the mother wavelet into a specific level N
with the corresponding low-pass filter (LPF) and high-pass filter (HPF). The signals passing the LPF
generate a detail (D) component and those passing the HPF generate an approximation (A) component.
By application of MRA, the input signal can be represented by the detail coefficients at each level
(D1, D2, · · · , Dn) and the approximation coefficients at the highest level (An) [35–37]. Figure 7 shows an
example of multiresolution analysis resolving the signals into three layers. The downsampling of signals
was performed by an HPF and an LPF, appearing as a detail coefficient and an approximation coefficient.
The approximation component (A1) was resolved into the detail coefficient (D2) and approximation
coefficient (A2) using downsampling through the filter to the next layer. The downsampling of the
approximation coefficient (A2) was then performed at the next layer, with the process continuing up to
the maximum decomposition level [35–41].
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4. Experiment and Results

4.1. Experimental Setup

Figure 8 demonstrates the experimental setup. An arc generator and a load were connected in
series with the 24 V DC mains. The arc generator was designed according to UL 1699 and IEC 62606 [6,7].
The electrodes consisted of carbon-copper wire that is specified in UL 1699 and cord-cord wire that
causes fire accidents on shipboards. The starter motor used in shipboard power distribution systems
and a resistive load were used. The current signal of the series arc was detected using a high-frequency
current transformer (HFCT) (Pearson Electronics Inc., Palo Alto, CA, USA). The frequency range of the
HFCT is 1–20 MHz. A digital storage oscilloscope (DSO) (YOKOGAWA, DL9140, Tokyo, Japan) and a
data acquisition (DAQ) unit (National Instrument, USB-5133, Austin, TX, USA) were used for signal
acquisition. The sampling rate and bandwidth of the DSO were 5 GS/s and 1 GHz. The sampling rate
and bandwidth of the DAQ were 100 MS/s and 50 MHz, respectively.
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[6,7]. The electrodes consisted of carbon-copper wire that is specified in UL 1699 and cord-cord wire 
that causes fire accidents on shipboards. The starter motor used in shipboard power distribution 
systems and a resistive load were used. The current signal of the series arc was detected using a high-
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4.2. DC Series Arc Analysis and Identification

4.2.1. Selection of the Optimal Mother Wavelet

For a mother wavelet, the phase and frequency should keep a linear relationship so that the time
delay due to frequency is constant, to ensure that the arc signal is not distorted during decomposition
or overlapping after signal reconstruction [42,43]. For evaluating the similarity between the arc signal
pulse and the mother, the correlation coefficient γ is used, which is defined as

γ =

∑N−1
i=1

[
X(i) −X

][
Y(i) −Y

]
√∑N−1

i=1

[
X(i) −X

]2
·
∑N−1

i=1

[
Y(i) −Y

]2
(2)

where X(i) is the single arc pulse and X is its mean value and Y(i) is the wavelet function and Y is the
average value. The value of γ is between 0 and 1. A larger γ value means a greater similarity between
the arc pulse and mother wavelet. Thus, the optimal wavelet should have the maximum correlation
coefficient with the DC arc signal. It can be seen from the definition above, the single arc pulse and the
wavelet should have the same length for calculating the correlation coefficient. However, since arc
signals are commonly captured with a high sampling rate and the wavelet has a relatively short
length, it is hard to ensure the same length for the two signals. Therefore, the following normalization
procedures before calculating the correlation coefficient are necessary [44].

1. Set the maximum magnitudes of the arc signal X(i) and the mother wavelet function Y(i) to 1 by
dividing the peak value;

2. Count the lengths of the arc signal and the mother wavelet, assuming the values to be j and
k, respectively;

3. Resample the mother wavelet with a time interval of j/k, by which the two signals have the
same length;

4. Detect the times of X(i) and Y(i) at their maximum points and shift Y(i) according to the time
difference so that the maximum points are at the same time.

The result of the correlation coefficient calculation between the arc current pulse in the resistive
load with a cord-cord fault and the mother wavelet is shown in Figure 9. The bior 3.1 wavelet exhibited
the highest similarity with the arc current pulse. Further analysis of the arc current pulses in other
loads with different faults is shown in Table 1. The optimal mother wavelet for analyzing the arc
current pulse at different loads with different faults was consistently bior 3.1. Therefore, the bior 3.1
wavelet was selected as the optimal mother wavelet for analyzing the DC series arc in this work.
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Table 1. Results of optimal mother wavelet selection.

Load Series Arc Fault Optimal Mother Wavelet Correlation Valve

Resistive load
Cord-cord bior 3.1 0.491

Carbon-copper bior 3.1 0.313

Motor
Cord-cord bior 3.1 0.436

Carbon-copper bior 3.1 0.402

4.2.2. Arc Signal Decomposition

After the selection of the optimal mother wavelet, a frequency band of the arc current signal
was analyzed by applying discrete wavelet transform using MRA. The sampling rate of the data
acquisition unit was set at 1.25 MS/s, and the highest frequency of the detected current signal was
625 kHz. The corresponding frequency bands of each component are listed in Table 2, which verifies
that the MRA interprets the decomposed components into a series of independent frequency bands by
applying the downsampling method. In Table 2, components D1–D8 and A8 are shown as the final
results of the MRA analysis, whereas A1–A7 are the intermediate processes.
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Table 2. Frequency bands of components at each level.

Level
Frequency (kHz)

Approximation (A) Detail (D)

1 0–312.5 312.5–625
2 0–156.25 156.25–312.5
3 0–78.125 78.125–156.25
4 0–39.0625 39.0625–78.125
5 0–19.53125 19.53125–39.0625
6 0–9.765625 9.765625–19.53125
7 0–4.8828125 4.8828125–9.765625
8 0–2.44140625 2.44140625–4.8828125

Figure 10 shows the decomposition of the signal using multiresolution analysis and mother
wavelet bior 3.1. The current signals were measured under both normal and arc conditions, such as
cord-cord and carbon-copper. As seen in Figure 10, the top signal is the original arc current measured
using a wideband current transformer, the bottom signals present the detail components D1 to D8
and the approximation component A8. Figure 10a shows the decomposition of current signals under
normal conditions. The high-frequency noise signal was confirmed to appear in the detail components
D6 to D8 and the approximation component A8. As seen in Figure 10b,c, the detail components D2 to
D5 were related to the arc occurrence and could be used to identify the arc phenomenon. Based on
these results, the detail components D2 to D5 were selected as the optimal frequency band to analyze
the arc signal and were therefore used for signal reconstruction. Figure 11 shows the comparison of the
normal and arc conditions after reconstruction using the detail components D2 to D5, thereby allowing
identification of the arc fault.
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4.2.3. Identification of DC Series Arc

The flowchart of the DC series arc identification is shown in Figure 12. The HFCT was used to
detect the current of the power distribution system on shipboards. The signal was then decomposed
by MRA and detail components D2–D5 were used for signal reconstruction. Two criteria were used to
distinguish the arc condition and the normal condition, namely the signal magnitude and the signal
energy. The signal energy of a given signal s(t) is defined as

Signal energy =
K∑

i=1

s(t)2
i (3)

where K and i are the signal record length and a variable of length, respectively. Specifically, if the
magnitude of the extracted signal (Ii) is three times greater than the normal signal (Io), and the signal
energy of the extracted signal (Ei) is five times greater than the normal signal (Eo), arc is considered
to occur.

Figure 13 shows the power spectrum of the extracted signal. The signal energies of the normal and
arc conditions in the cord-cord are 1.42 and 120.11, respectively, and 1.42 and 8.80 in the carbon-copper,
respectively. Therefore, the signal energy can be used to distinguish the normal and arc conditions.
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5. Conclusions

DC series arc is one of the main causes of electrical fires in the power distribution system of a
shipboard, however, there is no effective method for detecting and identifying the arc on shipboards.
In this paper, an experiment setup was configured to simulate a DC series arc on shipboards,
which mainly consisted of an arc generator, resistive load and motor load. The arc current signal was
detected by a HFCT and was analyzed by DWT. The correlation coefficient between single arc pulses
and wavelets was calculated and compared, by which the optimal mother wavelet bior 3.1 was selected.
By decomposing the arc signal using MRA, it was verified that the detail components D2–D5 were
related to arc occurrence, and they were therefore used for signal reconstruction. In addition, a DC arc
identification method was proposed based on the signal magnitude and the signal energy, by which
arc occurrence could be predicted. The results from this paper are expected to be applied in the power
distribution system of a shipboard to avoid potential electrical fires. Compared with other existing
methods, the arc identification proposed in this paper has optimal frequency components to detect arc
faults and specific values for the signal magnitude and the signal energy to identify arc conditions and
normal conditions on a shipboard. However, the proposed method was verified under a restricted
condition and it is therefore necessary to verify its performance for arc detection by applying it to
various types of shipboards. Future work will pay attention to the development of a DC series arc
detector for shipboards, which is composed of an HFCT and a microcontrol unit embedded in the
proposed method.
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Abbreviations and Notations

Abbreviations Meanings Notations Meanings
A Approximation db Daubechies
AC Alternating Current bior Biorthogonal
D Detail coif Coiflet
DAQ Data Acquisition sym Symlet
DC Direct Current Ψ(t) mother wavelet
DWT Discrete Wavelet Transform a scale factor
DSO Digital Storage Oscilloscope b shift factor
FFT Fast Fourier Transform γ correlation coefficient
HFCT High Frequency Current Transformer X(i) arc signal
HPF High-Pass Filter Y(i) mother wavelet function
LPF Low-Pass Filter j length of arc signal
MRA Multiresolution Analysis k length of mother wavelet
UL Underwriters Laboratories
WT Wavelet Transform
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