
energies

Article

Estimation for Battery State of Charge Based
on Temperature Effect and Fractional Extended
Kalman Filter

Chengcheng Chang , Yanping Zheng * and Yang Yu

College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China;
ci777ci@126.com (C.C.); yyablue@163.com (Y.Y.)
* Correspondence: zhengyp@njfu.com.cn

Received: 6 September 2020; Accepted: 11 November 2020; Published: 14 November 2020 ����������
�������

Abstract: The electric vehicle has become an important development direction of the automobile
industry, and the lithium-ion power battery is the main energy source of electric vehicles. The accuracy
of state of charge (SOC) estimation directly affects the performance of the vehicle. In this paper,
the first order fractional equivalent circuit model of a lithium iron phosphate battery was established.
Battery capacity tests with different charging and discharging rates and open circuit voltage tests
were carried out under different ambient temperatures. The conversion coefficient of charging
and discharging capacity and the simplified open circuit voltage model considering the hysteresis
characteristics of the battery were proposed. The parameters of the first order fractional equivalent
circuit model were identified by using a particle swarm optimization algorithm with dynamic inertia
weight. Finally, the recursive formula of a fractional extended Kalman filter was derived, and the
battery SOC was estimated under continuous Dynamic Stress Test (DST) conditions. The results show
that the estimation method has high accuracy and strong robustness.

Keywords: LiFePO4 battery; SOC estimation; fractional order; parameter identification; extended
Kalman filter

1. Introduction

With the decrease in non-renewable energy and the turbulence of the global energy situation,
the development of green energy has become an important theme of the global automobile industry [1,2].
In the past decade, electric vehicles have shown a rapid development trend, and ownership has increased
year by year. However, electric vehicles still have shortcomings, such as short driving range and long
charging time, so research on key technologies of electric vehicles is urgent. The estimation of battery
state of charge (SOC) is one of the key technologies of electric vehicles [3]. The accuracy directly affects
the whole vehicle energy management control system and regenerative braking control system [4],
and then affects the driving range of the vehicle. At the same time, the battery SOC is also an important
parameter in the battery management system, which can provide a basis for the battery management
and maintenance system to prevent the battery from over charging or discharging, which will lead
to the decrease in battery life and potential safety hazards. However, it is inconvenient to measure
the battery SOC directly by instruments, so it can only be estimated by relevant parameters. Affected
by many factors such as temperature, charging–discharging rate, noise and so on, which makes the
estimation quite difficult. Therefore, research on the estimation of SOC has been carried out in the past
ten years [5–14].

At present, the SOC estimation methods which are not based on the battery model are relatively
simple, mainly including the ampere hour integration method, the open circuit voltage (OCV) method
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and the internal resistance method, but those methods generally have low accuracy, poor anti-noise
ability and other shortcomings [15,16]. With the development of neural networks, fuzzy algorithms,
support vector machines and other intelligent algorithms [9–11], SOC estimation methods based on a
black-box battery model have emerged [17–20]. In reference [21], the neural network and unscented
Kalman filter (UKF) were used in series to estimate SOC, and the Root Mean Square (RMS) errors of the
SOC estimation were within 2.5% and maximum errors were within 3.5% for different temperatures.
In reference [22], the voltage, current and temperature of the battery were fuzzed, and then the
fuzzy rule base was established according to the experience, so the battery SOC was obtained by
defuzzification. In reference [23], a nonlinear fuzzy support vector machine algorithm was proposed
by combining a support vector machine and fuzzy algorithm, which improved the accuracy of SOC
estimation. However, an SOC estimation method based on a black-box model usually requires an
off-line database, and the process of sample training has a large amount of calculations, which is prone
to over fitting and falling into local optimization, so it is difficult to apply in engineering.

The idea of an SOC estimation method based on a state space model is based on the equivalent
circuit model, taking the measured current and voltage as the observed input to estimate the current
SOC value of the battery [15], which is a more general and in-depth SOC estimation method at present.
Therefore, the design of an equivalent circuit model and observer is the key content of this method [12].
The equivalent circuit model of the battery is mainly divided into an integer order model and a
fractional order model [24]. The integer order model needs a higher order to simulate the battery
terminal voltage characteristics more accurately, which will greatly increase the amount of calculations,
while the fractional order model can use less order to achieve higher accuracy, which has been widely
investigated. In reference [25], based on the PNGV model, the fractional element was used to replace
the capacitance on the main circuit and the capacitance on the (Resistor-Capacitance) RC ring, and the
accuracy of the fractional order model in the low frequency region was verified. In reference [26],
the equivalent circuit model of fractional order was obtained by connecting the internal resistance and
fractional order elements in series, and the voltage characteristics of fractional elements under different
orders were studied. In reference [27], the fractional equivalent circuit model was established by using
a constant phase element (CPE) and variable order Warburg elements, and compared with the integer
model in first order. In reference [28], based on the RC integral model in first order, the equivalent
circuit model in fractional order was established by replacing the capacitor with a fractional capacitor
element, which verified the accuracy of the model. However, most of the fractional order models
usually study the parameters at a single temperature, without considering the change of the parameters
of the equivalent circuit model when the ambient temperature changes, so the model usually has low
practicability. Moreover, most of the literature has little research on the hysteresis characteristics of
open circuit voltage in a power battery, especially the lithium iron phosphate battery. When the battery
state changes frequently, if not considering the hysteresis characteristics of the open circuit voltage,
the error of the model output voltage will be extended, and the accuracy of the model will decrease.
The most widely used observer is the extended Kalman filter (EKF) which has nonlinear estimation
ability to estimate the SOC of a battery [25], but, for integer order models, the accuracy is poor. So,
an adaptive extended Kalman filter (AEKF) [29–31], volume Kalman filtering (CKF) [32], unscented
Kalman filter (UKF) [8,33], dual EKF [34] and various improved forms based on the Kalman filter [5,35]
are used to estimate SOC. For the fractional order model, using EKF and UKF can achieve ideal results
because of high accuracy of terminal voltage and the memory of data.

In this paper, the influence of temperature and hysteresis characteristics of open circuit voltage on
the fractional order model was considered, and the SOC estimation of a battery was studied by using
the extended Kalman filter. The structure of this paper is as follows. In the second section, based on the
definition of Grunwald–Letnikov (G-L) type calculus, the first order fractional equivalent circuit model
was established by modifying the first order integer model. In the third section, the characteristics
of battery capacity and open circuit voltage at different temperatures were studied, and a simplified
open circuit voltage model considering hysteresis characteristics was established. Then, in the fourth
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section, the particle swarm optimization method was used to identify the parameters of a fractional
equivalent circuit model at different temperatures. In the fifth section, SOC was estimated by using a
fractional extended Kalman filter, and the validity and reliability of the proposed method were verified.
The structure of the article is shown in Figure 1.
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2. Fractional Order Model

2.1. Fractional Order Theory

The essence of fractional order is the extension from integral order calculus to non-integral order
calculus. At present, fractional order calculus is widely used in viscoelastic mechanics, soft matter
mechanics and other disciplines, and it also has preliminary application in the estimation of battery
SOC for new energy vehicles. The literature [36] shows the rationality of the application of fractional
calculus theory used in a battery. The accuracy of the model terminal voltage can be improved by
establishing the battery equivalent circuit model based on the fractional calculus theory.

At present, the definition of fractional calculus mainly includes G-L type, Riemann–Liouville
(R-L) type, Caputo type and Weyl type. The equivalent circuit model of a battery based on G-L type
is most widely used, which is generalized by the difference recurrence formula of an integer order
derivative. When the fractional order α > 0, the definition is as follows:
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In the formula, a is the lower limit of the interval; t is the upper limit of the interval; h is the
sampling interval and n = t/h. In the following text, GL

a Dα
t x(t) is expressed as Dαx(t) for ease of writing.

2.2. Fractional Equivalent Circuit Model

At present, the commonly used integer order equivalent circuit models are the Rint model,
Thevenin model and PNGV model, while the fractional order equivalent circuit model is mostly
obtained by modifying the integral order equivalent circuit model. In this paper, considering that the
fractional order has data memory characteristics, resulting in larger amounts of calculations than the
integer order, in order to reduce the difficulty of parameter identification, the fractional equivalent
circuit model is obtained by replacing the capacitance in Thevenin model with fractional CPE, as shown
in Figure 2. CPE is a constant phase component; its order varies from 0–1. It is a fractional order
circuit element between resistance and ideal capacitance. When the order is 1, it is equivalent to
ideal capacitance, when the order is 0, it is equivalent to ideal resistance. Its mathematical formula
depends on the choice of fractional order type and, in this paper, the fractional type of CPE is the G-L
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type defined above and its value is obtained through a parameter identification test and parameter
identification method under different conditions.
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Uocv is the voltage source, which can be used to simulate the open circuit voltage of the battery.
It is one of the important parameters affecting the SOC estimation of the power battery, and also the
non-linear part for the equivalent circuit model. It will be obtained from the data measured by the
open circuit voltage test; U0 is the terminal voltage of internal resistance; U1 is the terminal voltage
of the polarization ring; Ut is the battery terminal voltage, which is the output variable of the whole
battery system; I is the total current, which is the input variable of the battery system, the current
I is 0 when the battery is in a rest condition. In this paper, it is specified that when the battery is
discharged, I is positive, and when charged, it is negative; I1 is the current on CPE; R0 is the internal
resistance, which can reflect the voltage characteristics in the charging and discharging process; R1 is
the polarization internal resistance; the capacitance of CPE is C1 and the order is α1. The combination
of R1 and C1 can reflect the polarization characteristics of the battery during charging, discharging and
static processes.

According to the fractional order theory, the current on the CPE is:

I1 = C1Dα1U1 (3)

The voltage on the polarization ring is:

U1 = (I −C1Dα1U1)R1 (4)

According to the Kirchhoff voltage principle, the battery terminal voltage is:

Ut = UOCV −U0 −U1 (5)

The calculation formula of the battery SOC is:

SOC(t) = SOC(0) −
η

QN

∫ t

0
Idt (6)

where SOC(0) is the initial SOC value; η is the conversion coefficient of charging and discharging
capacity; QN is the rated capacity of battery.

When h is a small positive number, Equation (1) can be approximately as follows:

Dα f (t) ≈ h−α
n∑

i=0

[
−α
i

]
f (t− ih) (7)

If f (k− i) is substituted for f (t− ih), Equation (7) can be rewritten as:

Dα f (k) = h−α
n∑

i=0

[
−α
i

]
f (k− i) (8)
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By discretizing Equation (4):

Dα1U1(k + 1) = −
1

C1R1
U1(k) +

1
C1

I(k) (9)

In combination with the approximate fractional order calculation Equation (8), Equation (9) can
further deduce:

h−α1 [U1(k + 1) +
n∑

i=1

[
−α1

i

]
U1(k + 1− i)] = −

1
C1R1

U1(k) +
1

C1
I(k) (10)

In summary, we can get:

U1(k + 1) = −
hα1

C1R1
U1(k) +

hα1

C1
I(k) −

n∑
i=1

[
−α1

i

]
U1(k + 1− i) (11)

If considering Gaussian white noise, the fractional discrete space state expression of the battery is
as follows: {

x(k + 1) = Ax(k) + BI(k) −M +ω(k)
y(k) = h[x(k)] + DI(k) + υ(k)

(12)

where

x(k) = [SOC(k), U1(k)]
T; y(k) = [Ut];

A = diag{1, − hα1
C1R1

}
; B =

[
−ηh

3600QN
, hα1

C1

]T
; M =

[
0,

n∑
i=1

[
−α1

i

]
U1(k + 1− i)

]T

;

D(k) = [−R0]; h[x(k)] = UOCV[SOC(k)] −U1(k) ;

ω(k) is system noise, υ(k) is measurement noise, the variance of system noise is Q and the
variance of measurement noise is R. M is the historical state including the polarization voltage up to
the previous moment. The polarization voltage of the equivalent circuit model of the battery at the
current moment is calculated by iteration, and then the battery terminal voltage is calculated by the
observation equation.

3. Battery Characteristics under Different Influential Factors

In this paper, an A123 lithium iron phosphate battery was selected as the research object,
and the battery capacity characteristics and open circuit voltage characteristics under the influence of
different factors were studied. The rated capacity of the battery is 20 Ah, the rated voltage is 3.2 V,
the charging cut-off voltage is 3.65 V and the discharging cut-off current is 0.5 A. In order to ensure the
battery life, the discharging cut-off voltage is set to 2.5 V. The charging–discharging test bench was
composed of a discharging–charging battery tester BT2016, upper computer, environmental chamber
and multimeter HP34401A.

3.1. Characteristics of Battery Capacity

Battery capacity is the key factor affecting the accuracy of SOC estimation, but it is greatly affected
by battery temperature and charging–discharging rate in actual use. Therefore, in order to improve the
accuracy of SOC estimation, it is necessary to test the battery charging and discharging capacity under
different temperatures and rates to obtain the conversion coefficient of charging–discharge capacity η
and correct the battery SOC. In this paper, based on the Battery Test Manual for Electric Vehicles, η was
calculated on the basis of capacity at 30 ◦C and a 3/C rate, as shown in Equation (13). The test scheme
is shown in Figure 3. As an additional explanation, the capacity of the battery will decrease with an
increase in the number of cycles. However, because the cycle life of the battery selected in this paper is
more than 2000 times, the number of cycles consumed in the experiments of this paper is less than 150.
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The influence is small, so here is only a brief description, without considering the influence of cycle
times on battery performance.

η =

 ηd =
QNd

QT,Cd
, I > 0

ηc =
QNc

QT,Cc
, I < 0

(13)

where ηd is the conversion coefficient of discharging capacity; ηc is the conversion coefficient of
charging capacity; QT,Cd is the discharging capacity under different temperatures and discharging
current; QT,Cc is the charging capacity under different temperatures and charging currents; QN is the
rated capacity, which is 20.2 Ah according to the test; t is the environment temperature, T = 0, 5, 15,
25, 30, 35 ◦C; Cd is the discharging rate, Cd = C/3, C/2, 3C/4, C, 5C/4, 3C/2, 7C/4, 2C, 9C/4; Cc is the
charging rate, Cc = C/3, C/2, 3C/4, C.
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The curves of battery charging and discharging capacity at different temperatures and rates
is shown are Figures 4 and 5. The overall trend of charging and discharging capacity is the same.
The capacity increases with an increase in the ambient temperature, and decreases with an increase
in the current rate. The battery capacity in the cool environment is more sensitive to the ambient
temperature and the change of capacity in the same temperature difference is greater than that in the
high-temperature environment. The curve of battery discharging capacity tends to be flat or even
slightly increased with an increase in the discharging rate, because the test object is a single battery
without cooling equipment, which is in the state of natural convection in the environmental chamber,
and the heat transfer coefficient is small. When the discharging rate is small, the temperature rise of
the battery is small, and its own temperature is slightly higher than the ambient temperature, but with
an increase in discharging rate, the temperature of the battery increases gradually. So, the difference of
discharging capacity will decrease gradually, or the electric quantity will even rise. However, in the
charging test, the maximum charging current is only C, and the temperature rise of the battery is not
obvious at all ambient temperatures, so there is no such phenomenon. In the process of using the
conversion coefficient of capacity in the later simulation calculation, because there are two independent
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variables of ambient temperature and rate, the conversion coefficient out of the test condition is
obtained by a two-dimensional quadratic spline interpolation method which uses the capacity from
the capacity tests as the key point.
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3.2. Characteristics of Open Circuit Voltage

The open circuit voltage has a great influence on the output voltage of the battery model, and for
the lithium iron phosphate battery, the change of the open circuit voltage with SOC has strong nonlinear
and hysteresis characteristics. The open circuit voltage test scheme, considering the influence of
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different temperatures and charging–discharging state of the battery, is shown in Figure 6, and the
test results are shown in Figure 7. The open circuit voltage in the charging and discharging states
are almost the same at different temperatures, except there is a large difference between an SOC of
less than 0.1 and an SOC greater than 0.95. When SOC = 1, the open circuit voltage increases with
the ambient temperature, while, when SOC = 0, the open circuit voltage increases with a decrease in
the ambient temperature. However, in order to ensure the safety and cycle life of the battery in the
actual use process, the battery may not be fully charged and discharged. Most of the time, the battery
works in the state of 0.1 < SOC < 0.9, so the open circuit voltage of the battery could not consider the
influence of temperature. However, the open circuit voltage also has a strong hysteresis characteristic,
which shows that the SOC–OCV relationship curve in the charging state does not coincide with that in
the discharging state, and when the battery is changing state frequently, the OCV needs SOC increases
or decreases by a value (which is about 0.1) to change to the corresponding state [37]. Therefore, in the
process of open circuit voltage fitting, we need to consider the influence of battery hysteresis on the
equivalent circuit terminal voltage. When a battery works in a purely electric vehicle, it is in the
discharging state most of the time. Therefore, in order to simplify the algorithm and consider the open
circuit voltage hysteresis characteristic, the open circuit voltage test data were processed as follows:

UOCV = (UOCV_c − UOCV_d) ∗ 0.25 + UOCV_d (14)
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In the formula, UOCV_c is the open circuit voltage under the charging state at 30 ◦C; UOCV_d is the
open circuit voltage under the discharging state at 30 ◦C.

In this paper, a polynomial was used to fit the open circuit voltage, and when using sixth order
polynomials, the root mean squared error (RMSE) was 0.0093. The RMSE was 0.0054 when using
the seventh order polynomial, and the RMSE was 0.0049 when using the eighth order polynomials.
It can be seen that the fitting error decreases with an increase in the polynomial order. However, if the
polynomial order is too high, the nonlinearity will increase and the calculation is complex. Therefore,
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this paper uses the eighth order polynomial to fit the battery open circuit voltage. The fitting results
are shown in Table 1.

UOCV = a1 · SOC8 + a2 · SOC7 + a3 · SOC6 + a4 · SOC5 + a5 · SOC4+

a6 · SOC3 + a7 · SOC2 + a8 · SOC + a9
(15)
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Table 1. Results obtained from fitting of the polynomial in Equation (15).

a1 a2 a3 a4 a5 a6 a7 a8 a9

−218.825 1017.918 −1958.44 2013.781 −1194.95 413.3511 −80.8272 8.4897 2.8423

4. Parameter Identification of Fractional Equivalent Circuit Model Based on Particle Swarm
Optimization (PSO)

4.1. Identification with PSO Algorithm

Compared with the integral model, the fractional model is related to the historical state. The data
has a memory effect, which leads to the slow calculation process. As an evolutionary algorithm,
particle swarm optimization (PSO) has been widely investigated and applied in recent years due to
its advantages of high calculation speed, fewer call parameters and simple programming. In order
to further improve the searching ability and convergence speed of the particle swarm optimization
algorithm, and to improve its weakness of easily falling into local optimum, the particle swarm
optimization algorithm with dynamic inertia weight was used to identify a fractional equivalent circuit
model, which can have more weight in the early stage of calculation to expand the searching range and
improve the global searching ability and have less weight in the later stage of calculation to carry out
local accurate calculation and improve the convergence speed and accuracy of the results. The specific
methods are as follows:

1. Initialization
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The particle velocity vmax, vmin and the position limit θmax, θmin were defined to avoid ignoring
the optimal value and result overflow. The velocity vl,j and the position θl,j of random particles were
defined, l is the sequence of particles, where l = 1.2.3 . . . N1, N1 is the number of particles. In this paper,
N1 = 200. j is the number of iterations. At the beginning, j = 0, the particle position θl,j represents the
identification parameter set [R0, R1, C1, α1].

2. Calculation of fitness function
The fitness function is the most important part of the particle swarm optimization algorithm.

The fitness function of each particle under the current iteration is

Fit(l, j) =
n∑

k=1

∣∣∣∣Ur(k) −Um
(
k,θl, j

)∣∣∣∣ (16)

where n is the amount of test data, Ur(k) is the measured terminal voltage of the battery at k time
and Um

(
k,θl, j

)
is the terminal voltage of the fractional order model at particle position of θl,j and its

calculation method is as follows:
The transfer function of the differential equation of the fractional capacitor is as follows:

U1(s)
I1(s)

=
1

C1sα1
(17)

Then the terminal voltage at the polarizing ring is:

U1(s)= (I −C1sα1U1)R1 (18)

U1(s) =
IR1

1 + C1R1sα1
(19)

If the voltage at both ends of the polarizing ring and internal resistance is U, then

U(s)
I(s)

=
Uocv(s) −Ut(s)

I(s)
=

IR0 +
IR1

1+C1R1sα1

I
=

R0 + R0R1C1sα1 + R1

1 + C1R1sα1
(20)

Formula (20) is transformed into a fractional order differential equation and combined with the
definition of the G–L type, so we can get:

U(k) =
hα1

hα1 + C1R1

(R0 + R1)I(k) +
R0R1C1

hα1

Nc∑
i=0

[
−α1

i

]
I(k− i) −

C1R1

hα1

Nc∑
i=1

[
−α1

i

]
U(k− i)

 (21)

Then
Um

(
k,θl, j) =UOCV(SOC(k)) −U(k) (22)

where h is the sampling interval, which is 0.2 s in this paper; Nc is the quantity of historical data
participating in the calculation, which should be the number of all data points before k time in theory,
but the quantity of calculations will increase sharply with the iteration time [30]. Therefore, this paper
comprehensively considered the calculation quantity of particle swarm optimization and the precision
of output voltage of the fractional order model, and set the calculation truncation quantity Ne = 800,
when k > Ne, Nc = Ne, k ≤ Ne, Nc = k.

3. Update of individual optimal fitness
The fitness value Fit(l,j) corresponding to the position θl,j under the current iteration time of each

particle is compared with the fitness value Fbest(l) corresponding to the historical best position of the
particle θbest

l . If Fit(l,j) < Fbest(l), the historical best position of the particle is updated with the current
particle position θbest

l .
4. Update of the best group fitness
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The fitness value Fit(l,j) corresponding to the position θl,j under the current iteration time of each
particle is compared with the fitness value Fbest corresponding to the global optimal position θbest.
If Fit(l,j) < Fbest, the global optimal position is updated with the current particle position θbest.

5. Update particle position and speed
Update the speed of each particle:

vl, j+1 = (ω2 −
(ω2 −ω1) j

M
)vl, j + c1r1(θ

best
l − θl, j) + c2r2(θ

best
− θl, j) (23)

where ω1, ω2 are weights to adjust the search range. In this paper, ω1 = 0.4, ω2 = 0.9; M is the maximum
number of iterations, M = 200; c1, c2 are acceleration constants, c1 = c2 = 2; r1, r2 are random parameters,
taking the range [0,1] to increase the randomness of the particle.

Update particle position:
θl, j+1 = θl, j + vl, j+1 (24)

6. Judge whether the program is over
If the number of large iterations or the fitness value is less than the default value, then the

algorithm ends, and the global optimal position θbest is the optimal solution, otherwise, to the number
of iterations add 1 and return to step 2.

4.2. Identification Test and Results

The change of battery state is complex when the battery is in the working process, and its
equivalent circuit model parameters will change with its own factors and external state. In order to
obtain accurate parameters of the fractional equivalent circuit model, a double pulse test was carried
out under different charging and discharging states, SOC and ambient temperatures to excite the
battery characteristics. The pulse current is ±20 A, the duration is 10 s and the rest time is 40 s. The test
scheme is shown in Figure 8.
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Taking the ambient temperature of 30 ◦C as an example, the terminal voltage of the fractional
equivalent circuit model is compared with the integer equivalent circuit model under identification
conditions, and the results are shown in Figures 9 and 10.
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Figure 10. Terminal voltage fitting results from charging identification test at 30 °C in different SOC.

As can be seen from the figure above, the terminal voltage of the fractional model is in good
agreement with the measured voltage when current is loading or unloading, and it can better fit
the resistance and capacitance characteristics of the battery at the charging–discharging state and
static state. Although the integer model can roughly fit the measured voltage, it has a big error with
the measured voltage at the moment of current loading and unloading due to the model order and
characteristics of the integer model. The fitting error of the fractional order model is smaller than that of
the integral order model in the same model order, and it can better simulate the battery characteristics
of resistance and capacitance.
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The identification results of fractional equivalent circuit model parameters in charging–discharging
states, different ambient temperatures and SOC are shown in Figures 11–14.
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The internal resistance R0 at different ambient temperatures fluctuates in a certain range, but the
change of SOC in a low-temperature environment is more drastic than that in a high-temperature
environment. The difference of internal resistance in charging and discharging states is small, and the
resistance value increases with a decrease in temperature in most cases. The polarization internal
resistance R1 fluctuates more drastically at low temperatures than R0, but it has less impact at high
temperatures in most cases. The value of R1 decreases with an increase in the ambient temperature.
The fluctuation degree of the polarization capacitance C1 in the fractional model has little correlation
with the ambient temperature, and its value increases with the ambient temperature in charging
and discharging states, and the capacitance value varies greatly in different ambient temperatures;
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the trend of the fractional order α1 is consistent with polarization capacitance C1, and increases with
the temperature in most cases. According to the four parameter identification results, the internal
resistance, polarization resistance, capacitance and order of CPE elements in the first order fractional
equivalent circuit model are the temperature-sensitive elements, as they all change with the ambient
temperature, but the sensitivity is different.

In the following calculation process, the parameters identified in this paper were used as key points
to fit the parameters under other conditions using the two-dimensional quadratic spline interpolation
method, so as to meet all environmental temperatures and SOC conditions.

4.3. Verification of Identification Results

The dynamic stress test (DST) is simplified from the Federal Urban Driving Schedule (FUDS),
which consists of 10 discharging stages, five charging stages and five static stages. The duration of each
cycle is 360 s. The DST can simulate the actual operation condition of the battery well, so it is a common
simulated condition to verify the accuracy of battery equivalent circuit models and the validity of SOC
estimation methods. In this paper, 26 continuous DST cycles were used to test the battery. The ambient
temperature is 28 ◦C. The conditions of one DST are shown in Table 2. The comparisons of terminal
voltage with the fractional order model, terminal voltage with the integer order model and measured
voltage are shown in Figure 15. The error between measured voltage and model terminal voltage is
shown in Figure 16.

Table 2. Current and duration of dynamic stress test (DST).

Order Current I/A Duration/s Order Current I/A Duration/s

1 0 16 11 10 12
2 5 28 12 −5 8
3 10 12 13 0 16
4 −5 8 14 5 36
5 0 16 15 40 8
6 5 24 16 25 24
7 10 12 17 −10 8
8 −5 8 18 10 32
9 0 16 19 −17 8
10 5 24 20 0 44
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Figure 16. Comparison of terminal voltage errors between fractional model and integral model under
26 continuous DST conditions at 28 ◦C.

The terminal voltage of the fractional order model can track the measured voltage well. The average
error of voltage in the fractional order model is 0.0034 V and the relative error is 0.107%. The error is
large only when the current is large. The maximum error is 0.0196 V and the maximum relative error
is 0.613%. The terminal voltage of the integral order model is larger than the measured voltage and
terminal voltage of the fractional model. The average error of voltage in the integral order model is
0.0086 V, and the relative error is 0.269%. Therefore, the parameter of the fractional order model based
on PSO and the SOC-OCV simplified model considering the hysteresis characteristics can simulate the
characteristics of battery voltage well, which can provide higher precision of model terminal voltage to
estimate battery SOC using a fractional Kalman filter.

5. Estimation for SOC Based on Fractional Extended Kalman Filter (FEKF)

A Kalman filter is an optimal estimation method based on minimum variance estimation [38],
but it is only applicable to linear systems. However, the vehicle power battery has strong nonlinear
characteristics in the actual operation process. As an improved form of the Kalman filter, the extended
Kalman filter can solve this problem well, and has a wide application in SOC estimation.

5.1. Iterative Formula of FEKF

The linearization method of the extended Kalman filterbased on the fractional order model is the
same as the integer order extended Kalman filter, and the nonlinear part is replaced by a Jacobian matrix:

Combined with Formulas (11) and (12), the one-step prediction of state is:

x̂(k + 1|k ) = Ax̂(k|k ) + BI(k) −O (25)

x̂(k + 1|k ) = [SOC(k + 1|k ), U1(k + 1|k )]T (26)

O =


0

Nc∑
i=1

[
−α1

i

]
U1(k + 1− i)

 (27)

The one-step prediction of covariance is:

P(k + 1|k ) = E[(x(k+1) − x̂(k + 1|k ))(x(k+1) − x̂(k + 1|k ))T]

= (A− diag{0,
[
−α1

i

]
})P(k)(A− diag{0,

[
−α1

i

]
})

T

+
Nc∑
i=2

diag{0,
[
−α1

i

]
}P(k + 1− i)diag{0,

[
−α1

i

]
}
T + Q

(28)
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The gain matrix of the Kalman filter is:

K(k + 1) = P(k + 1|k )HT(HP(k + 1|k )HT + R)
−1

(29)

H is a Jacobian matrix to replace the nonlinear function h in Equation (12):

H =
[
∂UOCV(SOC)
SOC(k+1|k ) −1 −1

]
(30)

The error of observation is:

ε(k + 1) = Y(k + 1) − ŷ(k + 1) (31)

ŷ(k + 1) = UOCV(SOC(k + 1|k )) −U1(k + 1|k ) −R0 ∗ I(k + 1) (32)

Y(k + 1) is the measured voltage at k + 1.
Covariance matrix update:

P(k + 1) = (I2x2 −K(k + 1)H)P(k + 1|k ) (33)

I2x2 is a two-dimensional identity matrix.
State update:

x̂(k + 1|k + 1) = x̂(k+1|k ) + K(k + 1)ε(k + 1) (34)

5.2. Verification of Estimation Results

The environmental temperature is set at 28 ◦C and the working condition is 26 continuous DST
conditions. The FEKF was verified and compared with the integer order EKF. The initial SOC of the
FEKF and EKF was the same as the initial value of the operating condition. The comparison results
of SOC estimation in two filters are shown in Figure 17, and the errors between test value and SOC
estimation are shown in Figure 18. The comparison between the measured voltage and the output
voltage of the two filters is shown in Figure 19, and the error of terminal voltage is shown in Figure 20.
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Figure 20. Comparison of terminal voltage errors between FEKF and EKF under 26 continuous DST
conditions at 28 ◦C.

The error of the FEKF and EKF is relatively large in the early stage of estimation, but after a
period of time, the FEKF can quickly keep up with the true SOC value and make the error fluctuate
around 0. The average error and relative error of SOC estimated by the FEKF and EKF is shown in
Table 3. Because the accuracy of the fractional order model is higher than that of the integer order
model, the output voltage of the FEKF can follow the measured voltage better than the EKF. Moreover,
due to the effect of covariance, compared with the output voltage error of the equivalent circuit model
without a filter effect in Section 4.3, the terminal voltage error can fluctuate around 0, thus achieving a
good balance between model reliability and measurement reliability.

Table 3. Error comparison between FEKF and EKF.

Method Average Error Relative Error

FEKF 0.0036 0.52%
EKF 0.0224 3.2%

In this paper, when the noise covariance and initial covariance are the same as above, the initial SOC is
set as 0.85, 0.8, 0.7 and 0.6 to verify the robustness of the FEKF. The estimation results and errors of SOC are
shown in Figures 21 and 22, and the output voltage and error are shown in Figures 23 and 24.

In the case of different initial errors, the SOC and the output voltage estimated by the FEKF can
achieve a good convergence effect after a period of time. When the initial error is large, the FEKF
can make the error decrease rapidly in the early stage and ensure a good convergence speed. At the
beginning of the simulation, the error of output voltage increases with the initial SOC error, and this is
due to the existence of an initial SOC error, which leads to a decrease in model open circuit voltage
and terminal voltage. However, with the feedback of the measured voltage, the estimated state will
gradually converge to the test value.

In conclusion, the proposed FEKF can estimate the battery SOC more accurately than the EKF and
has strong robustness.
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6. Conclusions

In this paper, the equivalent circuit model based on fractional order theory was established.
The characteristics of battery capacity and open circuit voltage at different temperatures were studied.
A simplified modeling method considering hysteresis characteristics of open circuit voltage was
proposed. Based on the PSO method, the parameters of the fractional order model were identified at
different temperatures. Finally, the fractional extended Kalman filter was established. The advantages
of the proposed estimation method are as follows:
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1. In the same order, compared with the integer order equivalent circuit model, the fractional
order model can accurately simulate the characteristics of resistance and capacitance when the battery
is charging, discharging or static;

2. It can ensure the accuracy of the output voltage of the fractional order model when the battery
is in a wide range of temperatures and the battery state changes frequently. Compared with measured
voltage in continuous DST conditions, the average error of voltage in the integral order model is
0.0086 V, and the relative error is 0.269%, but the average error of voltage in the fractional order model
is 0.0034 V and the relative error is 0.107%, which can provide a more accurate model of output voltage
for fractional estimators;

3. In the same conditions of initial SOC and temperature, compared with the integer extended
Kalman filter, the fractional extended Kalman filter can estimate battery SOC more accurately in
continuous DSTs, and the average error of SOC estimated by the FEKF is 0.0036 and the relative error
is 0.52% when average error and relative error by the EKF are 0.0224 and 3.2%. The FEKF also has
strong robustness when the initial error is large, and it can make the error of SOC decrease rapidly in
the early stage and ensure a good convergence speed.
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