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Abstract: We report on the fabrication and study of bulk heterojunction (BHJ) solar cells based
on a novel combination of a donor–acceptor poly(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N0-diphenyl)
-N,N′di(p-butyl-oxy-pheyl)-1,4-diamino-benzene) (PFB) and [6, 6]-phenyl-C61-butyric acid methyl
ester (PCBM) blend composed of 1:1 by volume. indium tin oxide (ITO)/poly(3,4-ethylenediox
ythiophene):poly(styrene sulfonate (PEDOT:PSS)/PFB–PCBM/Ag BHJ solar cells are fabricated by
a facile cost-effective spin-coating technique. The thickness of the active film (PFB–PCBM) plays
an important role in the efficiency of light absorption, exciton creation, and dissociation into free
charges that results in higher power conversion efficiency (PCE). In order to optimize the PCE as a
function of active layer thickness, a number of solar cells are fabricated with different thicknesses
of PFB–PCBM films at 120, 140, 160, 180, and 200 nm, and their photovoltaic characteristics are
investigated. It is observed that the device with a 180 nm thick film demonstrates a maximum PCE
of 2.9% with a fill factor (FF) of 53% under standard testing conditions (STC) (25 ◦C, 1.5 AM global,
and 100 mW/cm2). The current–voltage (I-V) properties of the ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ
devices are also measured in dark conditions to measure and understand different parameters of
the heterojunction. Atomic force microscopy (AFM) and ultraviolet-visible (UV-vis) absorption
spectroscopy for the PFB–PCBM film of optimal thickness (180 nm) are carried out to understand
the effect of surface morphology on the PCE and bandgap of the blend, respectively. The AFM
micrographs show a slightly non-uniform and rough surface with an average surface roughness (Ra)
of 29.2 nm. The UV-vis measurements of the PFB–PCBM blend exhibit a reduced optical bandgap of
≈2.34 eV as compared to that of pristine PFB (2.88 eV), which results in an improved absorption of
light and excitons generation. The obtained results for the ITO/PEDOT:PSS/PFB–PCBM (180 nm)/Ag
BHJ device are compared with the ones previously reported for the P3HT–PCBM blend with the same
film thickness. It is observed that the PFB–PCBM-based BHJ device has shown two times higher open
circuit voltage (Voc) and, hence, enhanced the efficiency.
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1. Introduction

Organic solar cells deliver emission-free low-cost power by converting visible light energy from
the sun into electricity. The key benefits of organic solar cells over conventional inorganic cells are their
lower cost, easier fabrication, and well-suited with flexible substrates [1,2]. The power conversion
efficiency (PCE) of organic solar cells has progressively improved through the use of conjugated
polymers [3–5]. The complementary properties of high-performance materials are often intentionally
combined to acquire the synergy that their combination can deliver [6]. Recently, polymers and their
blends, as active layers in the solar cells, have acquired great attention because they can be deposited by
simple and inexpensive solution processable techniques [7]. In all polymer solar cells, typically, mixtures
of donor and acceptor materials blended in organic solvents are employed to fabricate solar cells,
which have the ability to produce an interpenetrating network of heterojunctions throughout the bulk
of the active film [8,9]. These solar cells have some ubiquitous benefits: (1) higher absorption of visible
light, (2) tunable energy levels, and (3) polymer–polymer blends offer controllable solution viscosity
that is a key factor for the production of large-scale organic photovoltaic (OPV) modules [10]. To date,
organic solar cells incorporating conjugated polymer/fullerene bulk heterojunction (BHJ) blends have
proven to be highly efficient systems [11–13]. Semiconducting polymers and fullerene blends ensure
efficient charge transfer at the interface [14]. Upon excitation by a photon, excitons (bound electron–hole
pairs) are created in semiconducting conjugated polymers. These excitons, when they reach the
donor–acceptor interface, are separated with high efficiency, leading to the creation of electrons and
holes as individual charge carriers [15]. Many polymers have been used as donors in conjunction with
fullerenes which include poly(3-hexylthiophene) (P3HT), poly[N-9′-heptadecanyl-2,7-carbazole-alt-
5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole) (PCDTBT), poly[[4,8-bis[(2-ethylhexyl)oxy]-benzo[1,2
-b:4,5-b’]-di-thiophene-2,6-diyl][3-fluoro-2-[(2-ethyl-hexyl)-carbonyl]-thieno-[3,4-b]-thiophenediyl]]
(PTB7), etc., [13,16,17].

Polymers with fullerene as blends have been extensively probed for the photovoltaic investigations
in which P3HT is employed as an electron donor and [6,6]-phenyl-C61 butyric acid methyl
ester (PCBM) is employed as an electron acceptor [18–20]. In recent years, other alternate
electron donor polymers such as PTB7 and (poly[2,1,3-benzothiadiazole-4,7-diyl[4,4-bis(2- ethylhexyl)-
4H-cyclopenta[2,1-b:3,4-b’]dithiophene-2,6-diyl]]) (PCPDTBT) have been exploited to demonstrate
enhancement in PCEs [21,22]. Polyfluorene-based polymers are an important class of conjugated
semiconductors [23] that have potential for high-performance photovoltaic applications [24,25].
Among polyfuorenes, poly-(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N0-diphenyl)-N,N′di- (p-butyl
-oxy-pheyl)-1,4-diamino-benzene) (PFB) possesses extraordinary optical and electrical characteristics
such as good electrical conductivity and broad absorption of the solar spectrum [26]. PFB has relatively
higher charge carrier mobility and is generally nontoxic. Moreover, PFBs and related copolymers have
been investigated for photovoltaic applications by many researchers [27,28]. Recently H. J. Sanith and
his co-workers used the PFB:PF8BT blend and achieved a maximum PCE of 2% [10,29]. On the other
hand, PCBM and its derivatives are extensively used in the field of organic solar cells due to their
promising electronic and optoelectronic properties. PCBM is commonly used as an acceptor material
that has high electron affinity and has good conductivity as compared to other molecules. At the same
time, PCBM offers its solubility in different organic solvents such as chloroform, dichloroethane, toluene,
etc. The energy levels of the highest occupied molecular orbital (HOMO) and lowest unoccupied
molecular orbital (LUMO) for PCBM are −6.1 eV and −3.8 eV, respectively, and for PFB, they are
−4.3 eV and −2.1 eV, respectively [30–32].

As much as the selection of appropriate photoactive materials—donors and acceptors—is important
for an efficient solar cell, in similar fashion, a proper thickness of the photoactive film is of the most
significance, too [33,34]. Therefore, the thickness of the photoactive film is one of the most important
parameters for the high PCE of the solar cell. For instance, if the film is very thin, then the incident
light is not fully absorbed by the active film; rather, a small fraction of it is absorbed. So, due to the
lower thickness, most of the light is transmitted through the thin film unabsorbed that results in a
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smaller number of excitons creation and, hence, a few holes and electrons attributes that lead to a
low PCE [15]. On the other hand, higher film thickness makes the active layer a better light absorber,
which in turn increases the creation of excitons. However, due to the higher thickness of the active film,
the exciton’s mean free-path and lifetime are reduced, which are responsible for the recombination
of the majority of electrons–holes (vanishing of excitons) without producing free electrons and holes.
Whereas, only a few excitons are able to reach the junction and break their bonds between electrons and
holes, which produce free electrons and holes [35]. For an optimized PCE of a solar cell, there should
be a balance between the absorption of light and the diffusion/dissociation of excitons into free charge
carriers, and this can be achieved by preparing an appropriate thickness of the photoactive film [36].

The present work is devoted to introducing a new electron donor polymer—PFB—in BHJ
solar cell and investigating the influence of PFB–PCBM active layer thickness on the PCE of
ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ solar cells. Moreover, while investigating the BHJ solar cells,
we discovered that the performance of PFB–PCBM-based solar cells is greatly controlled by the
thickness of the active layer. It is observed that the device with 180 nm PFB–PCBM thin film shows an
enhanced efficiency.

2. Materials and Methods

2.1. Material and Device Preparation

The PCBM and PFB were obtained from Sigma Aldrich and Cambridge Display Technology,
respectively. Both polymers were used as received. The PFB is used as a donor, whereas PCBM is
used as an acceptor. The molecular structure of PFB and PCBM is shown in Figure 1a,b, respectively.
For the device fabrication, indium tin oxide (ITO)/glass is used as substrate, which is cleansed in
acetone and ethanol by using an ultrasonic tub and dried with nitrogen gas for 5–10 min. A 20 nm
layer of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate (PEDOT:PSS) (Aldrich) is spin coated
on the cleaned ITO at 2000 rpm for 20 s using a Laurell WS-400BZ-6NPP/LITE. Then, the sample is
annealed using a hot plate for 1 h at 50 ◦C. The solutions of PFB and PCBM are separately prepared
in chloroform at a concentration of 12.5 mg/mL and 25 mg/mL, respectively. The PFB and PCBM
blend is prepared by mixing the donor and acceptor solutions in 1:1 by volume. The spin coating
technique is employed to deposit an active layer of the PFB–PCBM blend on a pre-cleaned ITO coated
glass substrate at the rate of 4000 rpm for 20 s. Then, the sample is dried using a hot plate for 1 h.
To complete the device structure, the top metallic silver (Ag) electrode is deposited by the thermal
evaporation process using an Edwards auto 306 system. During deposition, the chamber pressure is
maintained at 1.5 × 10−5 mbar with a deposition rate of around of 0.1 nm/s. The electrode thickness
obtained is about 80–100 nm. To optimize the PCE of the BHJ solar cell as a function of PFB–PCBM film
thickness, several such devices are prepared with different thicknesses of 120, 140, 160, 180, and 200 nm
by controlling the spin time and rate of the spin coater during the deposition of films. The structure
of the fabricated ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ solar cell and its corresponding energy level
diagram under no applied bias are shown in Figure 1c,d, respectively.

2.2. Characterization

For the characterization of PFB–PCBM, its thin films are deposited on glass substrate by spin
coating. Atomic force microscopy (AFM) investigations are carried out in a tapping mode. The AFM
scanning frequency is about 0.80 Hz. A Nanosurf 3000 controller model FlexAFM (Probe:NCLR-50) is
used to take AFM micrographs. A PerkinElmer Lambda 1050 UV/vis/NIR spectrometry is carried out
to measure UV-vis spectrum to obtain an optical bandgap of PFB–PCBM films. The X-ray diffractogram
was recorded using PANalytical X’Pert3. Current–voltage (I-V) measurements are done by a Keithley
4200 SMU, while photovoltaic measurements are made under illumination by using a Newport Oriel
solar simulator with 1.5 AM filters. The thicknesses of PFB–PCBM films are estimated by a SE850
SENTECH Instruments GmbH profilometer.
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generation rate in PFB–PCBM active layers at cathode/polymer interfaces [37]. The device with a 
film thickness of 180 nm reveals the best PCE as large as 2.9%. Other parameters of the same device 
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Figure 1. Molecular structures (a) poly(9,9-dioctylfluorenyl-2,7-diyl)-co-(N,N0-diphenyl)-N,Ndi(p-butyl
-oxy-pheyl)-1,4-diamino-benzene) (PFB) and (b) [6, 6]-Phenyl-C61-butyric acid methyl ester (PCBM);
(c) Device structure of PFB–PCBM blend based bulk heterojunction (BHJ) solar cell; (d) Energy levels
diagram of PFB–PCBM device at equilibrium unbiased.

3. Results

Figure 2 presents I-V characteristics of ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ solar cells under
illumination for various PFB–PCBM film thicknesses i.e., 120, 140, 160, 180, and 200 nm. Sievers et al.
have demonstrated that the electrical properties of a device are greatly affected by the thickness
of the active layer [37]. In agreement with [37], it can be seen from Figure 2 that the performance
of the BJH device in our case also depends upon active layer thickness. The open circuit voltage
is almost constant around of 0.90 ± 0.03 V with varying thickness. Nevertheless, the short-circuit
current (JSC) and PCE of the BHJ devices change appreciably with thickness. JSC varies from as low
as 5 mA/cm2 for the device with an active layer thickness of 120 nm to a maximum of 5.9 mA/cm2

for an active layer thickness of 180 nm. Furthermore, JSC reduces to 5.6 mA/cm2 for the thickness of
200 nm. The fluctuating behavior of JSC for various film thicknesses is analogous to the effect reported
elsewhere for poly{[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylene]vinylene} (MEH–PPV):PCBM based
photovoltaic devices. This swaying nature of the device’s performance is ascribed to the carrier
generation rate in PFB–PCBM active layers at cathode/polymer interfaces [37]. The device with a
film thickness of 180 nm reveals the best PCE as large as 2.9%. Other parameters of the same device
are measured as JSC = 5.9 mA/cm2, VOC = 0.93 V, and FF = 53. However, the thickness-dependent
PCE decreases beyond the film thickness of 180 nm, which complies with the findings reported by
Sievers et al. in [37].
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Figure 2. Current–voltage (I-V) characteristics of indium tin oxide (ITO)/ poly(3,4-ethylenedioxy
thiophene):poly(styrene sulfonate (PEDOT:PSS)/PFB–PCBM)/Ag BHJ solar cells of different thicknesses
under illumination at standard testing conditions (STC) inset: active layer thickness vs. efficiency and
fill factor (FF) graph.

The PCE and fill factor (FF) of ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ solar cell are exclusively
plotted as a function of PFB–PCBM film thickness in the inset of Figure 2. The figure shows that the
performance of the BHJ device is enhanced as the PFB–PCBM film thickness increases to a certain level.
Table 1 summarizes the photovoltaic (PV) parameters (PCE, VOC, ISC, and FF) of the devices at different
thicknesses. The results demonstrate that the thickness of the PFB–PCBM blend film has a direct
relation with the PCE and FF of the device, which are increasing gradually until 180 nm; however,
they decrease beyond 180 nm at 200 nm. Therefore, the optimum film thickness for the PFB–PCBM
BHJ cell is 180 nm.

Table 1. Comparison of different parameters of the fabricated BHJ solar cells as a function of PFB–PCBM
film thickness.

Sample# Film Thickness (nm) Voc (V) Jsc (mA/cm2) Pmax (mW/cm2) FF (%) PCE (%)

1 120 0.87 5.0 2.14 49 2.13
2 140 0.89 5.2 2.26 49 2.26
3 160 0.91 5.4 2.44 50 2.45
4 180 0.93 5.9 2.88 53 2.90
5 200 0.92 5.6 2.58 50 2.57

The optimal thin film (180 nm) for a BHJ solar cell is further probed for structural and morphological
studies as shown in Figure 3. Figure 3a shows the optical absorption spectra of a PFB–PCBM blend
thin film. The spectra exhibit a peak at 390 nm in the visible band. The energy bandgap of the blend
was calculated using Tauc’s law, which is given by the following equation:

αE = (E− Eg)
m (1)
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where α is the coefficient of absorption, E is the energy of the incident photon, Eg represents the
bandgap energy, and m is a transition constant/power factor. The relation between absorbance (A),
the thickness of the PFB–PCBM film (d), and α is given by:

A = − ln
[

I
I0

]
⇒ A = αd (2)
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Figure 3. (a) UV-Vis spectrum; inset: XRD pattern and (b) AFM images of PFB:PCBM blended film.

For the calculation of optical bandgap, the direct permitted transition model is used for PFB–PCBM
film. The energy bandgap for PFB is about 2.88 eV [17]. The energy bandgap for the blend was
calculated as 2.34 eV, which is close to the value reported elsewhere [18]. The structural analysis of
the PFB–PCBM thin film is examined by the XRD technique, which is shown in the inset of Figure 3a.
The diffractogram shows no significant peak in the curve, which confirms that the material is amorphous
in nature. Figure 3b show a three-dimensional AFM image of PFB–PCBM thin film (180 nm) with
a scan size of 10 × 10 µm2. The average/mean surface roughness (Ra) of PFB–PCBM films at 120,
140, 160, 180, and 200 nm is 20.3, 23.9, 26.4, 29.2, and 31.8 nm, respectively, which demonstrate that
the films are grown non-uniformly. The estimated average grain size is about 2.1 µm. A detailed
morphology of the PFB–PCBM film for the optimum thickness (180 nm) is discussed and shown in
Figure 3b which exhibits a coarse texture with broad hill-like peaks and islands. The greater thickness
results in an increased surface area of the islands and mosaics. The morphological study carried
out by Li and coworkers reveals a correlation between the surface roughness of thin films and the
performance of the device, which suggests that the higher surface roughness produces appreciably
efficient devices [33]. Rough and non-uniform films are favorable for harvesting more light due to
the improved photoabsorption and minimal reflection from the film surface [38]. A probable reason
behind the enhanced efficiency of the PFB–PCBM (≈180 nm) solar cell might be the coarse and rough
surface of the film that increases the area of contact between the PFB–PCBM film and the metallic
contact, leading to efficient charge injection at the interface. The increased surface roughness with
broad hill-like peaks tends to collect more light and renders an improved internal reflection, which
consequently results in an enhanced device performance. Furthermore, higher roughness also leads to
additional defects that can improve exciton disintegration and, hence, charge generation. Since the
diffusion length of the charge carriers in polymers is too small and only the carriers generated near the
interface contribute toward the photocurrent, hence, the increased contact area would also increase the
excess charge generation and gathering at the ITO–polymer interface. The morphology and device
performance indicate a successful physical interaction between PFB and PCBM [39]. The improved
device performance of the ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ device (≈180 nm) can be attributed to
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the higher surface roughness and lower optical energy bandgap of the PFB–PCBM blend active layer.
A probable reason for the decrease in efficiency at 200 nm is the reduction in the amount of the carriers
that reach the charge extraction layer.

The I-V properties of an ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ solar cell with an optimal PFB–PCBM
film thickness of 180 nm was also examined at dark conditions (≈0 lux) and room temperature, as shown
in Figure 4. These I-V characteristics provide information about different parameters of a diode, which
include reverse saturation current (Io), barrier height (φb), ideality factor (n), rectification ratio (RR),
etc. These parameters play a critical role in the performance of a BHJ device. The values of RR and
turn-on voltage are calculated from Figure 4a, which are found as 96.8 at ±2.2 V and 1.37 V, respectively.
To find values of φb, Io, and n, log-linear I-V curves of the BHJ device are studied, which are shown
in the inset of Figure 4a. The figure shows that the current increases exponentially in the forward
region. The values of the parameters are calculated from the equations given below. The Shockley
equation [40] can be expressed as:

I = I0

[
exp

(
q(V − IRs)

nkT

)
− 1

]
(3)

In the above equation, V is the junction voltage, q is the electronic charge, k is the Boltzmann
constant, and T is absolute temperature. The value of Io is calculated from the intersection point of the
straight portion of the curve and is given as [41]:

I0 = AA∗T2 exp
(
−qϕb

kT

)
(4)

In this equation, A shows the effective area of a diode, and A* is the Richardson constant, whose
value is ≈1.3 × 105 A.cm−2K−2 for ITO [42]. The expression for n is written as,

n =
q

kT
dV

d(lnI)
(5)

From Equation (4), φb is calculated as [43],

ϕb =
kT
q

ln
(

AA∗T2

I0

)
(6)

Figure 4a shows the ln (I)-V graph, and applying Equations (4) to (6), the values of n, φb, and Io

are found as 8.1, 0.83 eV, and 1.8 × 10−9 A, respectively. Here, the n carries a value greater than the
ideal value (≈1). For organic materials, n usually has a value greater than 1 [44]. A higher value of n is
due to the presence of a non-homogenous barrier [45], which suggests that there exists non-uniform
thickness and film [46].

To know about the conduction mechanism in ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ solar cells,
the log(I) vs. log(V) relation is plotted as shown in Figure 4b. Child’s law, i.e., (I ≈ Vm) is applied to
this graph to find the value of m for each linear region. Each different value of m shows a different
conduction process at the BHJ of PFB–PCBM. For instance, when m = 1, the child’s law is the same as
Ohm’s law, i.e., I ≈ V. When m = 2, the child’s law becomes equal to I ≈ V2, which corresponds to the
space charge limiting current (SCLC) region [47], where thermally generated charge carriers have less
density than injected free charge carriers. The values of m obtained from the slope of the double log
I-V curve of Figure 4b show one region with m = 1 obeying Ohm’s law and two distinct SCLC regions:
(1) m = 2 corresponds to the SCLC region with charges trapped due to shallow traps, and (2) m = 6.6
shows the SCLC region with charges trapped by deep traps. Figure 4b shows that SCLC is a dominant
conduction process in the ITO/PFB–PCBM device exhibiting an exponential allocation of traps in the
bandgap. This suggests that in the case of organic semiconductors, the SCLC conduction occurs with
thermally generated charge carriers and deep trapping centers [47]. It can be conjectured here that the
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density of excess charge carriers is much greater for ITO/PEDOT:PSS/PFB–PCBM/Ag BHJ solar cells
with 180 nm thickness due to their rough and non-uniform surface.
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Different parameters of the PFB–PCBM BHJ solar cells are compared with those of other organic
doner–PCBM blend-based solar cells reported previously and presented in Table 2. A close look at
the parameters of the previously published and presently fabricated solar cells demonstrate that the
application of PFB as a donor in fullerene-based BHJ solar cells provides enhanced VOC (almost two-fold)
that leads to improved efficiency.

Table 2. Comparison of PCE, VOC, ISC, and FF of a PFB–PCBM-based device with the same
device architecture poly(3-hexylthiophene) ((P3HT)–PCBM) at a nearly equal film thickness reported
elsewhere [32].

Device Thickness (nm) PCE (%) VOC (V) JSC (mA/cm2) FF (%) REF

PFB-PCBM 160 ± 5 2.45 0.91 5.40 50 Present Work
P3HT-PCBM 155 ± 5 1.94 0.594 6.51 50.2 [33]

Thienopyrrole/PCBM 62 2.14 0.81 7.33 0.36 [48]
Thienothiophene/PCBM 56 2.39 0.83 5.44 0.53 [48]

4. Conclusions

This paper reported the formation and thickness optimization of BHJ solar cells based on
PFB–PCBM as a donor–acceptor blend. The thickness of the PFB–PCBM film in the BHJ solar cell was
successfully optimized to be 180 nm, whereas the highest efficiency was measured as 2.9% with the
maximum Voc as 0.91 V. In comparison with the same device structure with P3HT–PCBM as an active
layer, the PFB–PCBM blend as an active layer in BHJ has exhibited better PCE, which signifies the
potential of PFB as a better electron donor material. At room temperature, other key microelectronic
parameters of the BHJ device in dark conditions (0 lux) were also studied from the I-V characteristics
which were found to be (I0 =1.8 × 10−9A), ideality factor (n = 8.1), and barrier height (φb = 0.83 eV).
The charge carriers’ conduction mechanism was probed by using a power law and double logarithmic
I-V curves, which revealed SCLC as the dominant conduction in the dark. The attained results are
covenant with the ones previously reported in the literature. The UV-vis absorption spectrum and AFM
images of optimum film thickness (180 nm) of PFB–PCBM were measured to study the morphological
and optical properties. Some roughness and non-uniform surface of the film have proven to be more
suitable for better light capturing and, hence, they enhanced the PCE. The optical bandgap (Eg) of
the PFB–PCBM blend is extracted from the UV-vis spectrum, which is found to be 2.34 eV. This work
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suggests the potential of the novel PFB–PCBM donor–acceptor blend for more new BHJ device designs
for higher photovoltaic performance and energy-harvesting applications.
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