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Abstract: In a multicrystalline silicon (mc-Si) wafer, trapping effects frequently occur in the
carrier lifetime measurement based on the quasi-steady-state photoconductance (QSSPC) technique.
This affects the accurate measurement of the carrier lifetime of an mc-Si solar cell by causing
distortions at a low injection level close to the Pmax point. Therefore, it is necessary to understand
this effect and effectively minimize the trapping-center density. In this study, the variations in the
minority carrier-trapping effect of hydrogen at different annealing temperatures in an mc-Si were
observed using QSSPC, time-of-flight secondary ion mass spectroscopy, and atom probe tomography.
A trapping effect was confirmed and occurred in the grain boundary area, and the effect was reduced
by hydrogen. Thus, in an mc-Si wafer, effective hydrogen passivation on the grain area and grain
boundary is crucial and was experimentally proven to minimize the distortion of the carrier lifetime.

Keywords: multicrystalline silicon; trapping effect; photoconductance; grain boundary;
hydrogen passivation

1. Introduction

The effective carrier lifetime of a silicon wafer is an important parameter in evaluating the material
performance of a crystalline silicon solar cell. The carrier lifetime of a silicon wafer can be determined
using various methods such as quasi-steady-state photoconductance (QSSPC) [1], infrared lifetime
mapping (ILM) [2], carrier density imaging (CDI) [3], microwave-detected photo conductance decay
(µW-PCD) [4], and photoluminescence (PL) [5]. Among these, QSSPC based on photoconductance
measurement is the most commonly used method. This technique is based on the simultaneous
measurement of the excess photoconductance using an inductively coupled coil and generation rate
using a reference cell [1]. It is widely used to determine the carrier lifetime from low to high injection
conditions. The injection level-dependent carrier lifetime measured using QSSPC is used to evaluate
the emitter current densities [6,7] and surface and bulk recombination centers [8–10]. Although the
QSSPC method is a very useful technique, it can yield inaccurate measurements due to the minority
carrier-trapping centers. The bulk presence of trap centers can cause a relatively significant excess
of the majority carrier, resulting in the distortion of photoconductance [8]. This carrier lifetime
distortion occurs in a low injection level region close to the maximum power point of a solar cell,
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making it difficult to correctly analyze the device performance. This manifestation is known as the
“carrier-trapping effect.” In the mid-1950s, Hornbeck and Haynes [11,12] first reported a carrier-trapping
effect in a single crystalline silicon wafer during a photoconductance decay lifetime measurement.
They described two defects in the crystalline silicon under its illuminated state: a recombination defect
at the high injection level and trapping defect at the low injection level. Since then, several groups
have conducted studies reporting on trapping effects in other materials, including single crystalline
silicon, thin-film polycrystalline silicon, and cadmium telluride (CdTe) [13–17]. Currently, the quality
of single crystalline silicon has considerably improved—thus, the trapping effect is hardly observed
in photoconductance-based measurements. However, it is still evident in multicrystalline silicon
(mc-Si). Macdonald et al. [18] reported the effect of the defect on the excess conductance and carrier
lifetime by an analytical equation using a single defect model. Yashin [19] noted the influence of
defect concentration on the equilibrium concentration. The analytical equation of this trapping effect
is typically described by the Hornbeck and Haynes model assumption and Shockley–Read–Hall
(SRH) recombination mechanism. Gogolin et al. [20] and Mcintosh et al. [21] observed the changes in
trapping effect in an mc-Si wafer in terms of the temperature dependence and hydrogen contribution
by comparing the theoretical formulas and experimental results based on the SRH recombination
mechanism. However, there is insufficient information to provide clear evidence to support these
changes. Moreover, there is a minimal difference in the theoretical and experimental results of the
variations due to the energy level and concentration of the defects in an mc-Si wafer. A complex
procedure is also required to derive the theoretical results. Macdonald and Cuevas [22] proposed
a trapping effect correction method using bias-light terms in the measured QSSPC data that can be
rapidly and easily applied to the measured data, thereby extracting the trap density with the bias-light
term. In solar cells and other electrical devices using an mc-Si wafer, it is necessary to understand the
defect center as this affects the evaluation of the device performance and can suppress the trapping
effect. In this study, we observed the variations in the carrier-trapping effect according to the annealing
temperature, and the behavior of hydrogen in the grain and grain boundaries in an mc-Si wafer to
provide evidence to support changes in the trapping effect.

2. Experimental Method

Figure 1a shows the symmetric Al2O3/SiNx:H/mc-Si structure prepared for QSSPC measurement.
A 157 × 157 ± 0.5 mm (6 in) p-type mc-Si wafer with a thickness of 190 ± 10 µm and resistivity
of 1–3 Ω·cm was used as the substrate. It has an average grain size of 800 µm, indicating a high
grain boundary density, as shown in Figure 1b. The substrate cleaning procedure is as follows.
(1) Standard cleaning 1 was performed to remove organic impurities using a mixed solution of HCl,
H2O2, and deionized (DI) water. (2) Standard cleaning 2 was performed to remove metal impurities
using a mixed solution of HCl, H2O2, and DI water. (3) Last-dilute hydrofluoric cleaning treatment
was performed. For the grain and grain boundary passivation of the mc-Si wafer, ~80-nm silicon
nitride with hydrogen (SiNx:H) was deposited on the front and rear surfaces using plasma-enhanced
chemical vapor deposition (TES Co., Ltd., Gyeonggi-do, Korea). The SiNx:H deposition conditions
were as follows: 30-sccm SiH, 30-sccm NH3, 2500-sccm N2, and 150-sccm H2 gases at a process
temperature of 420 ◦C and a plasma power of 40 W. To prevent the hydrogen release of SiNx:H during
the annealing treatment, ~10-nm Al2O3 was used as the capping layer. Al2O3 was deposited using
thermal atomic layer deposition (NCD Co., Ltd., Korea) on SiNx:H/mc-Si at a deposition temperature
of 250 ◦C, with reaction sources of trimethylaluminum (Al(CH3)3) and H2O and purge gas of Ar.
The annealing treatment was carried out for 20 min at 450, 550, 650, 750, and 850 ◦C, using a muffled
furnace under N2 atmosphere. The wafer grain size was measured by electron-backscatter diffraction
(EBSD, Bruker). The carrier lifetime was measured using Sinton’s WCT-120 lifetime tester, and the
variations in the minority carrier-trapping effect according to the annealing temperature condition were
analyzed. A time-of-flight secondary ion mass spectroscopy (ToF-SIMS) measurement was performed
to examine the hydrogen passivation in the SiNx:H thin film and mc-Si grains. The sputtering ion beam
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was a 3.0-keV Cs+ beam, with a 150 × 150-µm2 area and an incident angle of 45◦ during sputtering.
The sputtering beam’s current was 30.0 nA. The Bi+ analysis beam was 30.0-keV, with an area of
50 × 50µm2 at the center of Cs+ sputter craters during data acquisition. The Bi+ beam current was
about 1.0 pA. Hydrogen in the grain boundary was observed using an atom probe tomography
(APT) measurement.
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Figure 1. (a) Schematic diagram of the Al2O3/SiNx:H/mc–Si structure prepared for the quasi-steady-state
photoconductance (QSSPC) measurement of the minority carrier lifetime. (b) Grain size of the mc-Si
wafer obtained by electron-backscatter diffraction (EBSD).

3. Results and Discussion

Figure 1 shows a sample schematic diagram of the Al2O3/SiNx:H/mc-Si wafer/SiNx:H/Al2O3

structure prepared for the measurement of the minority carrier lifetime and the results of the grain-size
measurement. As shown in Figure 1b, the mc-Si wafer used in this study has an average grain
size of ~800 µm based on the EBSD measurement. Figure 2 shows the results of the carrier lifetime
measurement of the Al2O3/SiNx:H/mc-Si wafer/SiNx:H/Al2O3 samples by QSSPC measurement at
different annealing temperatures. There are changes noted in the carrier lifetime based on the annealing
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temperature. The lifetime curves differ from the general minority carrier lifetime curve of p-type
monocrystalline silicon (mono-Si) [9]. The carrier lifetime of the initial sample (0 ◦C) rapidly increases
at a low injection level (<1015 cm−3). This characteristic frequently occurs in mc-Si wafers due to the
trapping effect of the minority carriers. As the annealing temperature increases, the carrier lifetime
decreases at the low injection level and then rapidly increases again. This confirms that the minority
carrier lifetime decreases at the low injection level at annealing temperatures of 0–550 ◦C and increases
again at 650–850 ◦C. This can be considered as a change in the trapping-center concentration of the
minority carrier in the mc-Si wafer. The trapping-center analysis of the mc-Si wafer was conducted
based on the SRH recombination model. Mcintosh et al. [21] analyzed multiple defects using an
analytical equation with numerical iteration. Meanwhile, Gogolin et al. [20] reported the results of the
comparative analysis between QSSPC and PL measurements through an analytical equation. However,
these methods require complex mathematical processes, and a slight difference was observed between
the experimental and theoretical results. Macdonald et al. [22] reported an analysis method of trapping
centers using bias-correction in a photoconductance-based lifetime measurement method.
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Figure 2. Carrier lifetime of the Al2O3/SiNx:H/mc-Si wafer samples determined by QSSPC measurement
at different annealing temperatures.

This method of Macdonald et al. [22] can simply analyze the actual carrier lifetime without a
trapping effect (trap-corrected carrier lifetime, τcorrected) and extract the trap-center density. τcorrected can
be extracted by applying the carrier density at the bias-light intensity (∆nbias-light) to the measurement
data as follows:

τcorrected =
∆n− ∆nbias−light

∆GL
, (1)

where ∆n is the excess carrier concentration and ∆GL is the generation rate.
Figure 3 shows the results of the extraction of the corrected carrier lifetime from the measurement

results (trap-affected lifetime). Samples are defined as (a) 0 ◦C (initial), (b) 450 ◦C, (c) 550 ◦C, (d) 650 ◦C,
(e) 750 ◦C and (f) 850 ◦C. As the annealing temperature increases from 0 to 450 ◦C, the gap between
the trap-affected and trap-corrected lifetimes decreases and then increases again at 650 ◦C. Figure 3c
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exhibits a minimized trapping effect, confirming a carrier lifetime of ~54 µs at 1.0 suns. In contrast,
sample F with a maximized trapping effect exhibited a carrier lifetime of ~10 µs at 1.0 suns. The density
of the trap center (Ntrap) was extracted using the trap-corrected excess carrier density by bias-light
intensity (∆nbias−light) using

Ntrap = ∆nbias−light −
Bias light· fabs·τmeasred

qW
, (2)

where fabs is the fraction of incident photons absorbed, presented as a function of the particular optical
properties of the sample, τmeasured is the measured carrier lifetime, q is fundamental charge, and W is
the wafer thickness. The detailed theoretical formulas and methods of the analysis have been described
by Macdonald et al. [22].Energies 2020, 13, x FOR PEER REVIEW 5 of 10 
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Figure 3. Comparison analysis results of the trap-affected carrier lifetime (measured data) and trap-corrected
carrier lifetime at (a) 0 ◦C (initial), (b) 450 ◦C, (c) 550 ◦C, (d) 650 ◦C, (e) 750 ◦C, and (f) 850 ◦C.
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Figure 4 shows the results of the analysis of the Ntrap density as a function of annealing temperature.
The Ntrap density has a relatively large value of 5.2 × 1014 cm−3 for sample A and 2.2 × 1012 cm−3

for sample C (550 ◦C), indicating a significant decrease in the number of Ntrap. Meanwhile, sample F
(850 ◦C) has a fairly large Ntrap density of 1.2 × 1015 cm−3. The results indicated that the increase or
decrease in the trapping effect is attributed to the change in the trap-center density in mc-Si.Energies 2020, 13, x FOR PEER REVIEW 6 of 10 
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To determine whether this change was caused by the behavior of the hydrogen in the SiNx:H thin
film, the variation in the amount of hydrogen and its distribution were investigated using ToF-SIMS.
Figure 5 shows the results of the measured amount of hydrogen in the samples according to the
changes in the annealing temperature.

At the annealing temperatures of 450 and 550 ◦C, a similar amount of hydrogen is noted, as shown
in Figure 5a. This decreases at 650 and 850 ◦C, as shown in Figure 5b. Hydrogen mapping analysis
was also performed in the grain area of the mc-Si wafer to clearly observe the hydrogen distribution.
As shown in Figure 6, hydrogen has a uniform distribution at 0, 450, 550, and 650 ◦C. However, at 750
and 850 ◦C, hydrogen is almost entirely released, accumulating in some local areas. The reduction
in the carrier lifetime at a high injection level (>1015 cm−3) shown in Figure 2 can be attributed to
the deterioration of the passivation properties of the grain area in the mc-Si wafer. The hydrogen
distribution of the grain boundary area in the mc-Si wafer is also noted to be related to the trapping effect.

Figure 7 shows the hydrogen distribution in the grain boundary area obtained using an APT
measurement. The initial sample (Figure 7a) showed that the hydrogen distribution did not entirely fill the
grain boundary area. In contrast, at an annealing temperature of 550 ◦C (Figure 7b), hydrogen sufficiently
filled the grain boundary area, whereas at 850 ◦C (Figure 7c), the highest hydrogen emission is noted
with lesser hydrogen in the grain boundary area than in the initial sample. This is considered as clear
evidence of the change in the trapping effect, thereby decreasing and then increasing the carrier lifetime
at a low injection level.
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To confirm the in-diffusion and out-diffusion energies of hydrogen in the grain boundary area,
the activation energy was extracted using an Arrhenius plot based on the change in Ntrap at different
annealing temperatures, as show in Figure 4. The equation for the Arrhenius plot used to extract the
activation energy is

ln Ntrap = ln Ntrap,0 −
EA
kT

, (3)

where Ntrap,0 is the density in the initial state, EA is the activation energy, k is the Boltzmann constant,
and T is the absolute temperature. As a shown in Figure 8, hydrogen has an in-diffusion activation
energy of approximately 0.181 eV and out-diffusion activation energy of 1.181 eV. From these results,
grain boundary passivation by hydrogen requires a relatively low in-diffusion activation energy,
while emission energy from the grain boundary of the passivated hydrogen is 10 times more than the
in-diffusion activation energy.

Energies 2020, 13, x FOR PEER REVIEW 8 of 10 

 

 
Figure 7. Hydrogen distribution obtained by an atom probe tomography (APT) measurement in the 
grain boundary area at 0 °C (initial), 550 °C, and 850 °C. The dotted line indicates the grain boundary 
area. 

To confirm the in-diffusion and out-diffusion energies of hydrogen in the grain boundary area, 
the activation energy was extracted using an Arrhenius plot based on the change in Ntrap at different 
annealing temperatures, as show in Figure 4. The equation for the Arrhenius plot used to extract the 
activation energy is ln 𝑁 ln 𝑁 , , (3) 

where Ntrap,0 is the density in the initial state, EA is the activation energy, k is the Boltzmann constant, 
and T is the absolute temperature. As a shown in Figure 8, hydrogen has an in-diffusion activation 
energy of approximately 0.181 eV and out-diffusion activation energy of 1.181 eV. From these results, 
grain boundary passivation by hydrogen requires a relatively low in-diffusion activation energy, 
while emission energy from the grain boundary of the passivated hydrogen is 10 times more than the 
in-diffusion activation energy.  

 
Energies 2020, 13, x FOR PEER REVIEW 9 of 10 

 

 
Figure 8. Calculated results of the (a) in-diffusion and (b) out-diffusion energy of hydrogen in the 
grain boundary area. 

Therefore, the trapping effect decreases at the low temperature region (0–550 °C) due to the 
improvement of grain boundary passivation properties by the in-diffusion of hydrogen, whereas it 
increases at the high temperature region (650–850 °C) due to the deterioration of the grain boundary 
passivation properties by out-diffusion of hydrogen.  

4. Conclusions 

We observed the variations in the carrier lifetime caused by the trapping effect in an mc-Si wafer 
that were mainly attributed to the grain boundary. In addition, the changes in the trapping-center 
density based on the hydrogen behavior with annealing temperature were confirmed. To optimize 
the performance of a solar cell using mc-Si wafers, the passivation should be performed on the grain 
and grain boundary region. Therefore, it is necessary to have a hydrogen passivation process in solar 
cells based on mc-Si. It is also necessary to optimize hydrogen passivation in solar cells based on mc-
Si. This information will help in understanding the trapping effect of the grains and is expected to 
further contribute to the performance improvement of solar cells based on mc-Si wafers. 

Author Contributions: Y.J. and K.H.M. contributed equally to this work, conceptualization, data curation, 
formal analysis, performed the experiments and writing—original draft; S.B. writing—review; Y.K. and D.K. 
supervision; H.-S.L. project administration and supervision. All authors have read and agreed to the published 
version of the manuscript. 

Funding: This work was supported by the New and Renewable Energy Core Technology Program of the Korea 
Institute of Energy Technology Evaluation and Planning (KETEP) granted financial from the Ministry of Trade, 
Industry and Energy, Republic of Korea. (Nos. 20193091010240 and 20193010014530). This work was also 
supported by the KU-KIST Graduate School Project. 

Acknowledgments: The authors are grateful to reviewers and editors for helpful comments and suggestions. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Sintion, R.A.; Cuevas, A. Contactless determination of current-voltage characteristics and minority-carrier 
lifetime in semiconductors form quasi-steady-state photoconductance data. Appl. Phys. Lett. 1996, 69, 2510–
2512. 

Figure 8. Calculated results of the (a) in-diffusion and (b) out-diffusion energy of hydrogen in the grain
boundary area.



Energies 2020, 13, 5783 10 of 11

Therefore, the trapping effect decreases at the low temperature region (0–550 ◦C) due to the
improvement of grain boundary passivation properties by the in-diffusion of hydrogen, whereas it
increases at the high temperature region (650–850 ◦C) due to the deterioration of the grain boundary
passivation properties by out-diffusion of hydrogen.

4. Conclusions

We observed the variations in the carrier lifetime caused by the trapping effect in an mc-Si wafer
that were mainly attributed to the grain boundary. In addition, the changes in the trapping-center
density based on the hydrogen behavior with annealing temperature were confirmed. To optimize the
performance of a solar cell using mc-Si wafers, the passivation should be performed on the grain and
grain boundary region. Therefore, it is necessary to have a hydrogen passivation process in solar cells
based on mc-Si. It is also necessary to optimize hydrogen passivation in solar cells based on mc-Si.
This information will help in understanding the trapping effect of the grains and is expected to further
contribute to the performance improvement of solar cells based on mc-Si wafers.
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