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Abstract: This article presents a remote management architecture of an unmanned aerial vehicles
(UAVs) fleet to aid in the management of solar power plants and object tracking. The proposed
system is a competitive advantage for sola r energy production plants, due to the reduction in costs
for maintenance, surveillance, and security tasks, especially in large solar farms. This new approach
consists of creating a hardware and software architecture that allows for performing different tasks
automatically, as well as remotely using fleets of UAVs. The entire system, composed of the aircraft,
the servers, communication networks, and the processing center, as well as the interfaces for accessing
the services via the web, has been designed for this specific purpose. Image processing and automated
remote control of the UAV allow generating autonomous missions for the inspection of defects in
solar panels, saving costs compared to traditional manual inspection. Another application of this
architecture related to security is the detection and tracking of pedestrians and vehicles, both for
road safety and for surveillance and security issues of solar plants. The novelty of this system with
respect to current systems is summarized in that all the software and hardware elements that allow
the inspection of solar panels, surveillance, and people counting, as well as traffic management tasks,
have been defined and detailed. The modular system presented allows the exchange of different
specific vision modules for each task to be carried out. Finally, unlike other systems, calibrated fixed
cameras are used in addition to the cameras embedded in the drones of the fleet, which complement the
system with vision algorithms based on deep learning for identification, surveillance, and inspection.

Keywords: UAV; distributed architecture; solar panel; fault detection; management; energy

1. Introduction

Global grid-connected solar capacity reached 580.1 GW at the end of 2019, along with 3.4 GW of
isolated PV, according to the International Renewable Energy Agency [1]. It is increasingly necessary
to implement new ways of managing the operation and maintenance of these plants, in order to reduce
costs [2].

The presence of drones has expanded in recent years with the appearance of smaller versions
and cost reduction. This has led to a growing interest in their use in many different applications,
beyond military use. These UAVs are adapting different technologies to expand their uses, so the
interest in these devices grows and spreads in multiple areas. Some uses are surveillance and rescue,
equipment review, agriculture, creation of 3D models, product deliveries, industrial inspection, and civil
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works, among others [3]. Most uses generally look for a reduction in costs and operating times with
respect to traditional methods [4].

Kim, H. et al. [5] proposed a hardware architecture that enables drones to identify characteristics or
elements of interest in order to support autonomous navigation. It is a complement to support another
module in charge of navigation. Bhatnagar, S. et al. [6] presented a similar system but focused on the
detection and classification of forest masses. Çetin, E. et al. [7] developed a drone-based vision-based
system for the identification of other drones flying in open spaces. It identifies whether their use is
legitimate or malicious with cameras embedded in a drone. M. Ladeira et al. [8] defined a modular
architecture for the construction of autonomous drones.

Unlike these systems, the system presented in this article performs these tasks by software and,
in addition, allows defining the navigation and mission planning for the complete management of fleets
and not only for the controller of a device. In addition, the system allows managing multiple cameras
of the fleet of drones. Further, the system is also fed by fixed and calibrated cameras, which allow
obtaining specific data from the environment.

In addition to all these uses of UAVs, the use for the inspection of photovoltaic plants is of special
interest, due to the great expansion of this type of energy source and the interest of the energy market
towards renewable sources [9,10].

To achieve greater energy and economic profitability of these plants, it is necessary that their
operation be optimal [11,12]. The inspection of each photovoltaic panel individually is a task that to
perform it manually consumes a lot of time and resources. This task can be automated with UAVs and a
series of specific sensors and cameras [13,14]. This inspection can be done by generating georeferenced
thermal image maps [10]. These maps can be generated through automatic flight route planning
systems, optimizing the type of flight to the photovoltaic plant [9].

An example of the deployment of this technology is recently observed in its use in Chinese New
Year celebrations through teleoperated block drones with centralized control. It is an achievement of
coordination and applied engineering around operability. This action points to a new path for drone
management, particularly in Europe where robotization and innovation in terms of different automation
spaces are of decisive importance. In this context, the applicability of drones is associated with other
technologies and diverse approaches in areas such as inspection, urban automation, smart cities,
urban planning, design, and engineering of large buildings in inaccessible areas. All this combined
with emerging technologies such as big data, Internet of Things, and M2M collaborates in the integral
management of this type of equipment. In this context, it is important to establish the bases for the
clustering of processes. In addition, automation is needed through artifacts capable of granting a
remarkable range of autonomy in functions of a functional nature [15].

UAVs provide an environment for automation in diverse areas such as those mentioned above,
but this ability is fundamentally based on the ability to unite different technologies. The new approach
is centered around the autonomous management of each device in relation to fleets operating with
centralized control [16]. This article defines operational aspects such as current regulations, the real
possibilities of application, and the characterization of the necessary equipment.

Within the context of the requirement of drones, equipment with high mobility and considerable
autonomy should be considered. For example, in a smart city, information management is based on
the capture of data by sensors, but these are stationary. It is also expected to receive information from
autonomous and electric vehicles, whose transition is already a reality [17]. Most of the events to be
captured happen in motion, especially in relation to the diversity of existing data. UAVs provide a basic
element of ubiquity and speed. The essence of this type of urban development refers to what is stated in
the work of Ref. [16], where smart cities must incorporate the following objectives: greater efficiency of
public services; improvement of the quality of life of its inhabitants; increased participation of citizens;
improvement of the conditions of environmental sustainability; and increased opportunities that the
city offers both people and companies. According to this premise, highly automated management
is required.
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The technology’s usefulness also refers to aspects of surveillance and control of situations in
real time. In this context, interconnected real-time information networks have been developed that
offer data on situations in inaccessible spaces [18,19]. For example, in the work of Ref. [20] related to
environmental protection, they established the viability of a fleet of drones for monitoring fauna and
habitats of species and conditions.

A nodal point in this context refers precisely to the operation and coordinated management of
the units under systematic working conditions. It is a context in which drones carry out coordinated
maneuvers through a centralized command but considering their increasingly miniaturized construction
and design aspects. UAVs are composed of two fundamental parts: the displacement device, and its
control on the ground. Likewise, their design varies from the conventional fixed-wing to the rotary
helicopter type [20]. On the other hand, the miniaturization of components allows them to contain
highly sophisticated monitoring and communication equipment, on which their applicability is based
on different functions associated with their management and interconnection in the case of fleets.

The advantage that this method offers, especially for the detection of faults in solar panels,
is the double use of convolutional neural networks in series. This new approach streamlines the
process in the learning phase since the system can be continuously improved in either of the two
areas (segmentation and detection). All this without the need to train the entire neural network each
time, and one neural network can be re-trained without modifying the other. This is a very important
improvement that allows exchanging the cameras used for higher-resolution ones. Therefore, if the
input images change in size and resolution, the segmentation neural network will suffer. In addition,
the resulting neural networks have layers of smaller size and less complexity, regardless of the images
from the cameras, which lead to very fast response times.

1.1. Photovoltaic Plants Inspection

Nowadays, one of the most consolidated inspection methods for photovoltaic (PV) plants is the use
of drones. PV plant monitoring has recently been representing an important field in the energy market,
due to the large implantation of PV plants in recent years. This trend is also being extrapolated to the
implementation of PV in buildings [21]. From the point of view of an operator and maintenance (O&M)
services provider, it is extremely important to know the current state of the different solar plants, to carry
out an optimal corrective and preventive maintenance strategy. This information allows the operator to
establish an optimal maintenance strategy based on preventive and predictive corrective maintenance.
The advancement in recent years in the use of drones for industrial applications together with specific
sensors such as vision cameras and infrared cameras has opened a new range of possibilities for
the early detection of defects in PV plants. F. Grimaccia et al. [11] provided a quite comprehensive
overview of typical defects observed after an extensive flight campaign in the north of Italy made
by light multicopter unmanned aerial vehicles over different types of PV plants. They proposed
a system based on the image integration obtained by means of UAVs to identify some defects in
PV modules and to analyze, from an economical point of view, the impact of the defects on the PV
plant [11,22,23]. In photovoltaic plants, one of the most common failures that occurs is the appearance
of hot spots. They are the most common causes of self-consumption and loss of performance in isolated
or grid-connected photovoltaic systems. Hot spots are areas of high temperature that affect solar cells
and decrease efficiency and accelerate material degradation. The hot spots dissipate energy rather
than generate it. They can appear when cells of different currents are connected in series and are due
to the damage or poor quality of the solar cell (shadows, dirt, sand, bird droppings, etc.). The work of
reference [24] shows the impact of dust settlement on the electrical, optical, and thermal characteristics
of PV modules. Dust deposited on a cell for a long period of time can lead to the appearance of a
hot spot, which can be detected even with the dust on it due to the heating of the whole cell [25–27].
The most widespread way to detect these hot spots is using infrared or radiometric cameras [28].

These inspections have traditionally been manual, which implies high costs for operators and
time, and, on some occasions, special lifting platforms. The current trend is to use new technologies
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such as drones due to their great development in recent years and the lower costs. Thanks to the
joint combination of various hardware and software technologies, it is possible to create automatic
aerial routes and to automate data acquisition and its subsequent processing [10,13]. Finally, due to
the limitation of the use of a single drone in terms of autonomy and maximum distance travelled,
great advances have been made in recent years in the development and control of drone fleets to
perform cooperative tasks.

Thanks to forecast tools such as those presented by K. Mahmoud et al. [29], the optimum moment
of inspection of the solar panels can be determined. Numerous factors can determine the timing
between inspections such as panel soiling, remaining panel life, current O&M contracts, forecast of
sandstorms, snow, and rain, and other weather factors.

1.2. Evolution of UAV Legislation

UAVs are a technology in development that involves some considerations of a diverse nature
in which issues such as security and control of the airspace of the areas in which they are used are
involved. Situations such as terrorist attacks, violation of privacy, espionage, or theft of data are
considered not only possible but also high risks associated with the use of drones. There are other
risks of an unintentional nature that can be delimited by inappropriate or uncontrolled use such as
collisions with aircraft, people, structures on the ground, birds, and interference with other activities.

In this case, the applications are as diverse and complex as the potential risks are, and this is all due
to two aspects. The regulations apply to their handling and the technological disposition to control the
proper use of this type of artifact. The problem lies in the speed with which drone technology evolves
and the ability of legislation to adapt to it, as is the case with other technologies [30]. The use of drones
and their legislation has represented a relatively complex path because they cannot be characterized as
conventional aircraft or as recreational equipment, even though they maintain common characteristics
with both concepts.

In the case of Spain, Royal Decree 1036/2017 sets out the new regulations associated with the use
and instrumental aspects for the use of civilian drones. In this case, it refers to the activities carried
out by people in areas such as recreational or functional and their associated responsibilities. It is
a highly restrictive regulatory framework, and a pilot qualification is required for the operation of
UAVs for commercial purposes [31,32]. In addition, their use is prohibited for autonomous flights
(without supervision and control of the pilot) as well as remote (beyond 500 m in VLOS mode for
drones between 2 and less than 25 kg or the range of the BVLOS flight radio with drones less than 2 kg).
However, this restriction does not exist in the case of research works. In this sense, the legislation
offers an accurate overview of the way in which automated control technology can be inserted for a
fleet of drones. In this way, some conditions are guaranteed for the responsible management of drone
fleets for activities such as control management, surveillance, contingency evaluation, event analysis,
and data collection.

In this work, the use of drone fleets with centralized control is proposed, establishing their
operability and technical requirements for the management of renewable energy plants.

It is expected that the European agency will soon change the regulations on remote UAV flights,
making them more flexible, as is happening with autonomous driving [33,34]. This is the reason
why the development of works about UAV fleet control will have an important relevance in many
applications when the regulations allow it.

The new measures of the European regulations 2019/947 and 2019/945 have been in force since their
publication in 2019 [35,36]. These new regulations are applicable to all UAVs, whether autonomous
or remotely piloted, and regardless of their mass or use [37]. Three different operational categories
have been established, considering the risk level of the operation itself: (1) low-risk operations;
and (2) medium-risk and (3) high-risk flights. A new classification is developed in five categories
according to the maximum take-off mass (MTOM, see Table 1).
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Table 1. Categories established in the new regulations based on the maximum take-off mass (MTOM)
of unmanned aerial vehicles (UAVs).

Category MTOM

C0 <250 gr.
C1 <900 gr.
C2 <4 Kg.
C3 <25 Kg.
C4 >25 Kg.

The electronic identification capability of the devices must be enabled through a real-time broadcast
system during the flight (see Table 2).

Table 2. Information available via electronic identification of the UAV with the new regulations.

N◦ UAV Information

1 Operator identification number
2 UAV serial number
3 UAV position and altitude over sea level
4 UAV direction and speed
5 Take-off coordinates

1.3. Communications 5G and IPv6

The development of 5G technology will mean a definitive boost in industrial technologies such as
UAVs [38]. This technology together with IoT will offer improvements in speed, scalability, and latency
reduction, and greater efficiency and capacity of the networks.

5G technology will have a fundamental role in the scalability of connected industrial applications
or the IoT, as shown by the plan of the Federal Communications Commission (FCC) of the USA [39].
The main objectives of this plan are as follows:

• Open an additional spectrum (in the high, medium, and low bands, and the one that is not
currently licensed) for 5G services.

• Update telecommunications infrastructure policies reducing federal and municipal regulatory
barriers to implement the infrastructure necessary for 5G and encouraging the private sector to
invest in 5G networks.

Taking these predictions into account, there will be an increase in implementation of the IPv6
protocol architecture. This is due to the enormous demand that is expected to occur due to the need for
new directions for 5G connections. According to Google data [40], in the case of the United States,
the adoption of IPv6 is 43%, compared to the European one where its penetration is very heterogeneous.
Countries like Germany or Greece stand out with an adoption of 48% and 46%. France and Portugal
have an adoption of around 40%, and Spain or Italy are below 5%.

2. System Architecture

In this work, a system based on a distributed communications architecture is proposed for the
intelligent management and control of UAV fleets in renewable energy plants. This infrastructure
has been defined and developed in a modular format, based on network communications that allow
the distributed and remote control of multiple UAVs. In addition, it enables the transmission of
data captured by the different sensors and devices onboard UAVs and, finally, the management and
processing of video from fixed cameras on the ground.

This infrastructure follows a distributed architecture that is supported by a central node and
several peripheral nodes, as can be seen in Figure 1. The central node allows for defining flight missions
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remotely, as well as centralizing the telemetry and video information acquired by the UAVs. It also
allows for performing typical management tasks (users, flight zones, UAVs, and cameras registration,
etc.), statistics, and accounting. Regarding the peripheral nodes, they can be of two types:

• A base node that forms a communications network consisting of a ground station. This node acts
as an access point to the network and the necessary software to control the UAV. Furthermore,
it incorporates the possibility of managing several fixed cameras.

• A node drone, which incorporates all this management in the aircraft itself by having all the
components onboard. The whole system has been developed in a way that allows high scalability
at low cost. In addition, it is important to highlight that devices can be registered in different use
scenarios in real time.
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2.1. Utilization Scenarios

Different scenarios for the use of this architecture, depending on the needs to be covered,
are described below.

2.1.1. Scenario 1: Simple Architecture

In this scheme, which is the simplest, as can be seen in Figure 2, the processing center and the
mission server are in the same node located near the flight area. Communications are covered by the
reach of a high-power and high-speed encrypted Wi-Fi network. In this case, the cameras are dedicated
and integrated into the monitoring system and accessible via the network. This type of scheme is
useful for the following:

- Regions not too large.
- Regions where there is no need for network access to the information managed by the sensors

and cameras of the network. This applies to both sensors and cameras embedded in the UAV as
well as fixed ones.
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Figure 2. Architecture with a local model, composed of UAVs, fixed cameras, and a Wi-Fi access point.

This arrangement is ideal for small plants or for isolated substations or subsystems that do not
require remote online management for their administration. The management and administration of
the system would be carried out from the facilities of the plant itself, by the operators of the same.

2.1.2. Scenario 2: Multiple Architecture

Several scenario 1s can be interconnected, which would lead to the formation of scenario 2 or a
multiple architecture scenario. This diagram shows the versatility of the proposed architecture.
This consists of a distributed scheme, with several flight zones, dedicated processing centers,
and distributed or onboard centers. All this is controlled by a single administration point that centralizes
all the administration and planning of flights, permits, drones, cameras, users, control regions, etc.

In Figure 1, three flight zones are described (zone A, B, and C).

- Zone A is a configuration of a small flight zone, with a single aircraft, and with non-onboard local
processing and specific cameras for the system and 4/5G to communicate with the central server.

- Zone B is another configuration with several aircrafts and local processing but using existing
security cameras in addition to using public fiber optic networks (or ADSL) to communicate with
the server.

- Zone C is an onboard processing configuration, with an aircraft-type plane, a single specific
camera, and 4/5G for communication with the server.

The management and configuration of flights from a central server are common to these areas.
All these zones are communicated through a private network (VPN) that creates a tunnel over public
network connections of a different nature, such as ADSL, fiber optics, 4G/5G mobile networks, or other
high-speed wireless communications.

The arrangement provided by this scenario allows the management of large plants or zones and
different substations or isolated subsystems that require remote management online. The management
of the system would be carried out from multiple locations in the network, being able to control
multiple plants or subsystems comfortably and by different user profiles.

2.2. System Components

From a construction and communications point of view, the hardware used in the proposed
system has elements and configurations that make it very adaptable and versatile for many use cases
or work environments. The main elements of the system can be seen in Figure 3 and are the following:

1. UAVs, which can be in both multirotor and fixed-wing configurations.
2. Cameras, both embedded in UAVs and fixed. They can be visible, infrared,

or multispectral spectrum.
3. IP communications networks, private or public, both fixed and wireless.
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4. Processing center, both telemetry and video.
5. Front- and back-end server with a database.
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The following subsections describe the different elements of the system architecture, both software
and hardware.

2.2.1. UAV

UAVs are the core elements of the system. Currently, the aircraft used has been designed with
a multirotor configuration. It has a load capacity greater than 2.5 Kg which allows all the necessary
sensors to be installed. A custom 3D-printed chassis has been designed with PLA and Carbonox
(carbon fiber filament), as can be seen in Figure 4.
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Figure 4. Multi-purpose multirotor UAV custom design.

Control is performed through an autopilot based on the PixHawk platform. Both its source
code and design are open. In addition to the typical items associated with a PixHawk-based UAV,
the following components have been installed:

• A specifically designed gimbal with support for two cameras, one in the visible spectrum and the
other in infrared.

• A second processing unit based on Raspberry Pi Zero W that serves as a gateway for telemetry and
video via a mobile network connection through the Huawei E3372 4G USB Modem. In Figure 5,
some of the electronic components embedded in the UAV can be seen.
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This configuration allows its use in both multirotor devices and fixed-wing aircrafts. The possibility
of including a fixed-wing aircraft provides greater flight autonomy for certain applications.

2.2.2. Cameras

The cameras have a dual functionality:

1. Establish multiple real-time bird views of the terrain. This allows controlling the aircraft from a
remote system, as well as monitoring its correct operation.

2. Establish an onboard view or view from the drone, which will serve as self-guidance and control
of the aircraft itself.

To provide this functionality, the vision system is equipped with several types of cameras,
which can be classified as follows:

• Static cameras: they are fixed cameras like security cameras. They are used for take-off control,
flight control in view of the second person, marking points to be inspected, or surveillance actions.
These cameras provide a real-time view of the environment. The drone guidance is marked
directly on the real environment provided by the camera and not on a satellite image.

• Onboard cameras: cameras located in the UAV, used for the autonomous control of the UAV and
to select and track points of interest. Currently with a zenith view of the terrain (although this
feature is modifiable by software since the camera is mounted on a three-axis gimbal). The type of
camera depends on the application to be made:

# RGB cameras, used for landing control, tracking of moving objects, and visual inspection,
as well as for the control of obstacles in autonomous navigation.

# Thermal cameras: they can be used as a complementary camera to the RGB camera. They are
used to locate points of interest by heat. A FLIR VUE camera has been installed in the UAV
that allows recognition of zones by temperature. These sensors in UAVs are very useful for
the inspection of defects in solar panels or areas prone to fire. It can also be used for the search
of living beings, surveillance in low-visibility conditions, and location and monitoring
of vehicles with a heat engine. Although the detection of vehicles is carried out with the
vision camera and classic computer vision algorithms, the thermographic camera could be
used to complement additional information. Adding the thermal or radiometric camera
information, the number of internal combustion vehicles could be determined [41–43]. It is
possible, through a temperature or radiation threshold, to differentiate between internal
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combustion vehicles and 100% electric vehicles. This threshold could not be used for
hybrid vehicles because their heat footprint is more confusing [44,45].

There are thermal cameras of different sensor resolutions on the market. The chosen resolution
will determine different parameters such as the flight altitude and the input layer of the neural network.
If the resolution of the thermal camera is increased, it does not necessarily imply an improvement in
the detection of solar panels and may imply a higher computational cost. However, an increase in the
resolution of the infrared camera would allow images to be acquired at a higher altitude. This would
allow creating a flight plan with fewer waypoints and more separate routes to cover the same area.
Therefore, this increase in resolution would be able to examine a larger area in the same period of time,
something very important given the limitation of autonomy in current UAVs. In the system presented,
the value of the flight altitude has been studied and determined empirically during the tests.

The complete system has two points of view: from a static camera and a flight camera. It can have
more cameras of static or flight type. Previously installed cameras can also be added in the area to be
monitored (for example, security or traffic cameras).

2.2.3. Net

The entire system is designed for control and monitoring from a central position, without the
need to be close to the flight area. Components like the aircraft and sensors need to communicate with
each other. The type of communications used is versatile and supports high-speed communications
between the onboard camera and the image processing center.

A range of types of communications allow data to be kept fluid, such as 4/5G for distant connections
or high-speed Wi-Fi for nearby connections. The net is within a secure environment encrypted through
virtual private networks (VPNs) that allow the transfer of information between the elements of the
system to be kept stable and secure. This private network capacity is implemented through a Windows
2012 server system.

2.2.4. Processing Center

The processing center is the CPU in charge of processing the information from the cameras (fixed or
onboard) as well as the control and telemetry of the aircraft. Video processing can be performed in two
different ways:

1. In a heavy processing center located on land, very useful for systems that require high
computing power.

2. On the UAV through smaller processing centers (e.g., RaspberryPi), recommended for reliable
systems (drone-processing communications are eliminated) and with agile processing tasks.

This element can have different characteristics depending on the necessary computing power.
It can be performed from a dedicated computer, a machine that shares resources with the central
node, or small computers (mini ITX). This allows for adjusting energy consumption, costs, weight,
volume, response time, etc. In the case of being mounted on the UAV, solutions such as Coral IA or
their accelerators compatible with RaspberryPi would be an option with high processing capacities,
low weight, and low energy consumption [31,32]. Different components coexist in the processing center:

1. Navigation module. It uses the MAVLINK protocol for communication with UAVs and is based
on the DroneKit libraries, developed in Python. It communicates with the rest of the modules,
except for 5.

2. Embedded vision module (C ++). Based on the latest version of the Open CV libraries [46] as
well as using neural networks for vision.

3. Fixed cameras vision module (C ++). Based on Open CV libraries as well as using neural networks
for vision.

4. Optimized routes generation module developed in MATLAB.
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5. Fixed camera calibration module (C ++). Based on Open CV libraries.

The modules (1–5) are in the central node in scenario 2 or in the base node in the case of scenario
1. The modules (1–3) communicate and work collaboratively, operating on the navigation of the UAV
based on video processing. This operation is carried out with both the fixed cameras and the cameras
embedded in the UAV. Modules (1) and (2) could be embedded in the UAV computer in the node
drone. This would make the base stations independent and provide the UAV with complete autonomy
and to be connected to the central server via 4/5G. Module (4) allows routes to be generated on demand
and its execution in the UAV would be requested via module (1). Its operation and capabilities have
been detailed in Section 3. Computer Vision.

2.2.5. Front- and Back-End Server with Database

The central node consists of a public web server. The missions or tasks to be carried out by the
system can be administered, such as surveillance tasks and inspection routines. In addition, it allows
real-time monitoring. From this server, all system resources, cameras, drones, processing centers, etc.,
can be accessed, as can be seen in Figure 6.
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In the central node, there is also a database that is deployed within the VPN network, so it is
accessible from any point of the network with very high security levels. In this database, user privileges,
flight plans for each aircraft, specifications of work zones, the configuration of each software and
hardware element of the system, etc., are stored. Currently, this database is managed with MariaDB,
a database management system with high reliability and stability, in addition to being a freely
distributed database.
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3. Computer Vision

Regarding the computer vision components, a series of software procedures has been developed
to efficiently use the cameras registered in the system. The main algorithms are as follows:

1. Calibration of static cameras;
2. Take-off and flight control;
3. Object tracking;
4. Inspection of solar panels.

3.1. Calibration of Static Cameras

This functionality allows for calibrating static cameras with only two reference points. These points
are the camera position and the ground level point that marks the center of the image. It can be
obtained directly from the GPS (marked with a red star in Figure 7). These two points, together with the
information of the parameters of the camera, allow the environment to be calibrated for a subsequent
simplified 3D reconstruction of the same. The software for calibration of static cameras can be seen in
Figure 8b.
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This functionality serves to calibrate in a new flight scenario in a short time and with few manual
steps. A highly accurate transform is achieved between image coordinates and real-world coordinates.
It is done without the need to make transforms in the perspective correction image. This achieves a
very low computational cost in the real-time processing of images from static cameras.

Simplified 3D Reconstruction

The projection of 3D “world” points (x, y, z)t into the camera’s sensor plane, producing an image
discretized as pixels (u, v)t, is commonly modelled by combining a pin-hole model containing the
camera’s internal parameters and projecting 3D points in the camera frame to the image sensor, with a
homogenous coordinate transformation matrix containing external camera parameters, mapping 3D
points from an external frame to the camera frame. It provides the projection from an external frame of
reference to sensor pixels.

s
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v
1

 =


fx 0 cx

0 fy cy

0 0 1




r00 r01 r02 dx

r10 r11 r12 dy

r20 r21 r22 dz




x
y
z
1

 (1)

In this model, fx, fy, cx, cy are the camera focal length and image center (in pixels), determined from
manufacturer specifications or a standard, short-distance calibration using a known pattern.
The rotation rij and translation dk components express the external frame axis position and orientation
(pose) expressed in the camera frame; determining them is a common problem since they are defined
once the camera is mounted on its final working position.

Determining the external frame pose is often performed using the same pattern-based camera
calibration by solving the projection of n points (PnP) problem. However, when the camera is installed
outdoors covering a large region, this approach would require a huge calibration pattern installed in a
known “pose” or determining the position of several 3D points that must then be identified in the
image. As this is unpractical, a simplified approach has been taken under the following assumptions:

A mostly levelled ground plane on the area of operation (roughly similar height on all
points). A camera installed on an elevated position at some distance from the area of operation,
horizontal (camera x axis reasonably parallel to the horizon) and pointing down by a certain angle
towards the area of operation.

Then, 3D point coordinates on the GPS frame can be determined from its corresponding position
in the image (in pixels) explicitly (back-projection), requiring only the determination of the following
two reference points:

GPS-based position of the camera mounting point; if it is on a pole, the position of the base can be
determined then the height added.

GPS-based position of a single external point: the point of the ground plane intersected by the
optical axis (in practical words, the ground point appearing at the center of the image).

These GPS points can be determined using a GPS receiver installed on them during a relatively
long period of time to improve the position resolution. The most critical parameter under this approach
is the height difference between the ground plane and the camera; any other way to determine the
height difference (i.e., angle and distance measurement) can also be used to improve its estimation in
addition to the GPS readings. There is no problem in assuming the height of the ground plane as 0 and
the height difference as the camera mounting point height.

With the assumptions above, it is possible to solve for the x and y GPS coordinates of the point
identified in the image by pixels (u, v) as
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a) Constants:

• RadImage = angles X, Y y Z in radians of the center of the image on the ground (latitude,
longitude, and altitude to the center of the image);

• RadCam = angles X, Y y Z in radians of the camera (latitude, longitude, and altitude of the
camera);

• AxisX = (XRadImage-XRadCam) * localEarthRadius;
• AxisY = (XRadImage-XRadCam) * localEarthRadius.

YawAngle = tan−1
(AxisY

AxisX

)
(2)

PitchAngle = tan−1
(

ZRadCam−ZRadImage
AxisX ∗ cos(YawAngle) + AxisY ∗ sin(YawAngle)

)
(3)

b) Calculate rotation y translation homogeneous coordinate matrix: (world to camera)

• Rotation matrix, from the world to the untranslated camera frame.

R =


sin(YawAngle) − cos(YawAngle) 0

sin(PitchAngle) ∗ cos(YawAngle) sin(PitchAngle) ∗ sin(YawAngle) cos(PitchAngle)
cos(PitchAngle) ∗ cos(YawAngle) cos(PitchAngle) ∗ sin(YawAngle) − sin(PitchAngle)

 (4)

c) Translation vector from camera origin to world 0 (-GPS coordinates of camera): T is set to 0 by
taking the origin at the camera center (and adding camera translation later).

t =


0
0
0

 (5)

d) Rotation and translation homogeneous coordinates matrix.

RT =


R1,1 R1,2

R2,1 R2,2

R1,3 0
R2,3 0

R3,1 R3,2

0 0
R3,3 0

0 1

 (6)

This allows a relatively easy deployment of the camera, and a very fast estimation of 3D positions
from camera images. Precision is sacrificed by the assumptions made and the error in the camera and
ground reference points determination; however, it is good enough to take the UAV to this point and
ensure that the point of interest is within the airborne camera field of view.

3.2. Take-Off and Flight Control

This software allows for controlling the flight of the UAV from a real point of view of the terrain,
instead of from an outdated synthesized or satellite image. This feature is important in controlling the
UAV over instantaneous events without the need to calculate where the incident has occurred in the
plane. This software, which is fed by the configuration of the camera calibration, allows indicating
directly on the ground the place where the UAV will start the flight mission, as can be seen in Figure 8a.

3.3. Object Tracking

The cameras onboard the UAV have three functions:
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1. Accurate positioning over points of interest through closed-loop control of the position of UAVs
according to the image of its embedded camera.

2. The marking, detection of incidents, or tracking of objects (like vehicles or pedestrians) in aerial
view images (Figure 9 shows vehicles and pedestrians tracking).

3. The landing control in automatic recharging places of the batteries.
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The processing of these images is distributed. Flight control feedback (positioning of the UAV
at points of interest and landing control) can be local, in onboard hardware. In this way, the control
remains precise even if there are connection problems between the base station and the UAV, while the
analysis of the images captured by the camera can be performed both on onboard hardware and on
ground hardware (such as the central node). This allows human interaction to confirm or rule out
whether the points of interest are valid.

Processing time is a critical factor when tracking moving elements or identifying objects in flight.
Furthermore, the resolution of the aerial images from the UAV must be very high to gain good detail of
the objects/incidence. This requires a great computational cost. To solve this problem, algorithms have
been developed that discriminate the search area by reducing the area of the image in which it is most
likely to find the objects of interest.

Figure 10 shows the object tracking management algorithm. Considering the location of the object
of interest in previous images and the movement of the UAV, it is determined which will be the area
with the highest probability of finding the object in the next frame. In this way, the search is limited to
this area of the image, reducing the computational cost. In case the search does not provide any results,
the search area is expanded, and a search is made again in this expanded area. If the search continues
without finding the object, over this enlarged area, the search variations are increased by turning
angles, perspectives, etc. If all this fails, the algorithm determines that the marked point (object to
follow) has been completely lost. In this case, the search constraints are deactivated and the search
process for the element of interest begins again.

On the contrary, if in any of the previous cases the object of interest is found, this information
is recorded for the new iteration of the process. Before doing a new search iteration of the object of
interest, the probability or certainty with which it has been found is calculated. If the probability is
low (sufficient, but low), a copy of the perspective of the object is saved since it is likely that it has a
modification such as a twist or semi-concealment. Furthermore, this new position information is used
to give new control orders to the UAV.
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3.4. Solar Panel Inspection

The images captured by the UAV cameras (See Figure 11) are transferred and stored in the
processing center to be processed offline. In addition, this method has worked with machine learning
techniques to detect defects in solar panels [9]. The results of the application of these algorithms are
divided into the following:

• Potential operating defects detected in solar panels;
• Zones of correct operation.Energies 2019, 12, x FOR PEER REVIEW 17 of 23 
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Once the images have been categorized, an operator can inspect only those images that indicate
possible failures, eliminating the need to review all images.

With the aim of maximizing the efficiency of the system in the work of inspecting solar panels,
the method has worked with various artificial intelligence algorithms. These algorithms are based
on convolutional neural networks previously trained with datasets focused on solar panels. For this,
images taken from a thermal camera converted to grayscale have been used. Convolutional neural
networks are characterized by being inspired by the visual cortex of people. Unlike the rest of the neural
networks, not all neurons are interconnected, but rather work in subgroups, each one specializing in
specific fragments of information.

In this work, there is an inspection of the solar panels at two levels:

• Level 1: segmentation phase. Physical detention of solar panels.
• Level 2: inspection phase. Detection inside the solar panel of the defective cells.

Segmentation Phase:

The first phase is to detect the solar panels at the photovoltaic station, which is a different problem
from inspection. It works with color and monochrome images. Color images provide better results but
carry a higher computational cost.

The artificial intelligence algorithm (see Figure 12) begins in the first layers of neurons. This extracts
the most basic information, such as lines, strokes, and simple colors or tones. As is deepened in layers,
solar panels are detected. Finally, its status is determined, based on its coloration and its location.
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In this segmentation phase, we work with low-resolution images, the size of said image, and the
encoding of said image in color. The number of color channels used will determine the number of
neurons that will make up the first layer of the neural network. The image is reduced to resolutions
of 800 × 600 px. When working with monochrome images, only one layer of 480,000 neurons is
needed. Meanwhile, if it is performed with RGB images, 1,440,000 will be necessary, which means
300% more computation. The result of this phase is a grid delimiting the inspected area that belongs to
the individual solar panels.

Inspection phase:

In this phase, the already segmented image is processed (only the areas of interest referring to solar
panels). This image is smaller, but of a higher resolution and in monochrome (thermal image). Like the
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previous phase, the size of the image represents the initial layer of the neural network. However, in this
case, its size can be reduced since the search area is limited from the previous phase. In this phase,
the main elements are the intermediate layers of the network or convolution layers. This layer takes
groups of pixels close to each other in the image and performs operations with another matrix called
“kernel”. A kernel represents a filter, a feature that is searched by this neural network. The result will
be the value obtained by that group of pixels for that characteristic.

In other words, these kernels will search for the following within the images:

• Grids representing the cells of the solar panels;
• Areas with a higher temperature (light colors);
• Areas with a lower temperature (dark colors);
• Areas where different temperatures converge gradually;
• Shapes or silhouettes of potential failures.

After filtering, a feature mapping of the entire image is obtained with the most striking
characteristics. These are represented by scores for each pixel in each kernel. Before performing a
new convolution, a process called subsampling is performed, where the image is reduced in each
operation so as not to exponentially increase the computational cost. For example, for a 4 × 4 matrix,
it is simplified using the max-pooling method, as can be seen in Figure 13:
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In this case, the process determines the areas of the image that define a high probability that there
is a defect in that area. By expanding the number of convolutions, more complex filters are achieved.
These yield a new feature mapping that is later simplified. In each new convolution, more complex
information from the image can be recognized to improve detection or classification. The results
that have provided a better score in the image set have been achieved in the range of two to four
convolutions. A greater number of convolutions does not significantly increase the score of the results,
but instead increases the computation time considerably.

The last step involves connecting the convolutional neural network to a “traditional”
neural network. To this network, a function called “SoftMax” is applied which will result in the output
layer. This layer is made up of as many neurons as possible outcomes can be. For this case, the outputs
would be: defect detection, or no defect has been detected.

4. Results

4.1. Object Tracking Results

Times rate:
With this method of narrowing the search area, these search times are achieved:

• Found in the first dimension: 76 ms on average, ~13 fps.
• Found in the second dimension: 166 ms on average, ~6 fps.
• Found in the third dimension: 254 ms on average, ~4 fps.

The success rate for each of the bounding levels is:

• Successes in the first dimension: 62.3% of the taken images.
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• Successes in the second dimension: 21.8% of the taken images.
• Successes in the third dimension: 6.1% of the taken images.

All these cases combined, the general results can be seen in Table 3:

Table 3. Percentage of successes and errors for the detection of objects.

Object Detection Hits Misses

Object of interest present 90.2% (in 97 ms) 9.8%
Object of interest not present 95.8% 4.2%

The average hit time is 97 ms with an effectiveness of 90%. In addition, a false positive rate close
to 4% is achieved. This achieves a good flight range and a very low loss of the tracking index.

In order to verify the precision of this approach based on pattern recognition, the frames in which
the objects are detected have been counted against the total frames. Different new video sections of
40 s and 10 frames/second have been tested to validate the results. In these cases, the failures in the
detection were around 75 frames from a total of 400 frames, so the accuracy of this approach varies
around 81.25% for the detection and tracking of objects. This failure rate occurred because when
detection is lost in one frame, it takes an average of 1.5 s to find the object again. This leads to many
frames accumulating without detecting an object, and this must be improved in future works.

4.2. Panel Inspection Results

The method has been working with a dataset of photovoltaic fields. The trained dataset included
the most common solar panels, and it can again be trained with new panels. The results of the
solar panel detection problem are presented in Table 4. In the case study, the presence of panels was
detected with a percentage of 97.7%. When no panel appeared or only partially appeared, the detector
determined that there was no panel present with 99.3% of accuracy.

Table 4. Detection of photovoltaic panels.

Solar Panel Detection Hits Misses

Panel present 97.7% 2.3%
Panel not present 99.3% 0.7%

Once the detection process is finished, the classification process begins. For this case study,
the pretrained classifier detected the defective panels with an accuracy of 92% and the panels without
defect with 96% as can be seen in Figure 14. It has been determined that a fourth convolution is
necessary for more accurate results. Although the accuracy of detection of non-defective panels was
high with the third convolution, it was not enough in the case of defective panels and it needed a
fourth convolution.

Finally, the processing times are as follows:

• Two convolutions: 114 ms per image, rate: 8.7 fps;
• Three convolutions: 182 ms per image, rate: 5.5 fps;
• Four convolutions: 296 ms per image, rate: 3.3 fps.
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Figure 14. Solar panel defect detection on (a) a defective cell and (b) a non-defective cell.

5. Discussion and Conclusions

This article has described an architecture for remote UAV fleet management for maintenance,
inspection, surveillance, and security in solar power plants. Some of the most prominent conclusions
about this work and whose implementation represents a competitive advantage in the sector are those
described below.

The use of UAV to track pedestrians and vehicles provides great benefits for road safety as well as
for the safety of solar plants, for example, to detect pedestrians who cross a road incorrectly or who are
traveling on a secondary road incorrectly, detection of vehicles that are performing incorrect maneuvers
such as driving in the opposite direction on a highway, prohibited direction changes, excessive speeds,
and dangerous driving, or even to locate and monitor vehicles and their occupants from the control
center in a traffic accident or accessing restricted areas without authorization.

A UAV equipped with a thermal camera, depending on the flight height, flight speed, and the
type of built-in camera, can inspect around 35 square meters of solar panels per second. This entails
carrying out an inspection flight over one hectare in about 5 min. Therefore, in a full flight of about
25 min in duration, a full inspection of a five-hectare area can be performed. Since these images are
stored in the central server and accessible from outside the solar plant, an operator could manage the
inspection. The possible faults can be identified automatically in the images captured remotely.

The results shown in Section 4.2 have been obtained empirically for a specific resolution. Since no
inspections have been performed with other cameras of different resolutions, it has not been possible
to determine how the resolution affects the computation time and accuracy. For images with different
resolutions, it is possible to pre-resize each image to be fully compatible with the architecture of the
trained convolutional neural networks. In the case that only the lenses are changed and the resolution
is maintained, the processing time would not be affected, however, the accuracy may be slightly
affected. It can occur due to the neural networks being trained for images obtained with a specific lens
and focus.

The use of this system supposes a drastic decrease in the time required to carry out inspections on
solar power plants. Daily inspections can be carried out at a very low cost to monitor the operation of
its elements, detecting early failures in the solar panels, or to carry out surveillance tasks and prevent
theft or vandalism (including night surveillance).

Another important competitive advantage is eliminating the need for an operator to travel to
the solar plant to perform a manual inspection. The system proposed in this paper allows remote
inspection from any mobile device with internet access.

Inspection time is reduced due to the recategorization of possible defective areas by machine
learning algorithms (deep learning). With this new approach, a single operator could inspect more
than one solar plant per day.
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Finally, the proposed system results in greater efficiency in the inspection of solar plants,
reduction in operator costs, and early detection of panel failures. This would maximize energy
production and reduce maintenance costs, increasing its competitiveness against other sources of
renewable energy. Among future lines, it is intended to study the integration of forecasting methods in
the architecture to maximize the efficiency of the whole system.
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