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Abstract: Due to environmental concerns, the energy-saving train regulation is necessary for urban
metro transportation, which can improve the service quality and energy efficiency of metro lines.
In contrast to most of the existing research of train regulation based on centralized control, this paper
studies the energy-saving train regulation problem by utilizing distributed model predictive control
(DMPC), which is motivated by the breakthrough of vehicle-based train control (VBTC) technology
and the pressing real-time control demand. Firstly, we establish a distributed control framework for
train regulation process assuming each train is self-organized and capable to communicate with its
preceding train. Then we propose a DMPC algorithm for solving the energy-saving train regulation
problem, where each train determines its control input by minimizing a constrained local cost function
mainly composed of schedule deviation, headway deviation, and energy consumption. Finally,
simulations on train regulation for the Beijing Yizhuang metro line are carried out to demonstrate the
effectiveness of the proposed DMPC algorithm, and the results reveal that the proposed algorithm
exhibits significantly improved real-time performance without deteriorating the service quality or
energy efficiency compared with the centralized MPC method.

Keywords: metro line; train regulation; energy saving; distributed; model predictive control;
operational constraints

1. Introduction

With the ever-accelerating process of urbanization, transportation infrastructure and traffic
management can not meet the growing traffic demand. The traffic congestion is becoming more
serious. Urban metro transportation is considered an ideal solution to ease the traffic pressure in
large and populous cities due to its huge capacity, safety, and punctuality [1]. However, metro lines
are known to be inhrerently unstable since unavoidable disturbances will bring deviations from the
scheduled timetable and any deviation will be amplified with time [2,3]. To prevent such instability,
online train regulation is very necessary for scheduled timetable recovery by dynamically manipulating
the running time and staying time of each train.

As pioneer studies of metro train regulation, Campion et al. [2] and Van Breusegem et al. [3]
addressed the state feedback control of metro lines without considering operational constrains. Due to
the large-scale, nonlinear, constrained, and stochastic features of metro transportation systems [4–6],
model predictive control (MPC) [7–9] has become a widely used method in solving the train regulation
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problem. Grube and Cipriano [10] compared MPC strategy with the heuristic rule-based strategy
for metro train regulation, showing that MPC strategy has better performance. Lately, Li et al. [11]
presented a robust MPC method to address the metro train regulation problem in presence of the
uncertain passenger arrival flow and disturbances. Another MPC-based train regulation approach
with considering the passengers dynamic effect was proposed [12]. Moaveni and Najafi [13] proposed
a robust MPC approach for train regulation in metro loop lines based on a nonlinear uncertain traffic
model. Li et al. [14] developed a dynamic optimal control model and presented an MPC approach
for metro train regulation, which converted the optimization problem into a set of convex quadratic
programming problems so as to satisfy the real-time control requirement.

In addition, Lin and Sheu [15] proposed a novel adaptive optimal control (AOC) approach for
metro train regulation with the aid of artificial neural networks, and they [16] also developed an AOC
method with considering the influence of traffic modeling errors, which was more robust against
disturbance. Li et al. addressed the metro train regulation problem with time-varying passenger
arrival flow by using stochastic stability theory and switched system in [17,18], respectively.

Most of the existing literatures on train regulation focus on the objectives of scheduled timetable
recovery and headway adherence so that the service quality can be improved. However, the running
time and staying time employed by the train regulator will affect the energy consumption of the
train operation at the same time. Therefore, it is of great significance to study the energy-saving train
regulation problem with the objective of scheduled timetable recovery and headway adherence as
well as minimizing the energy consumption at the same time. Till now, the results on energy-saving
train regulation are still limited. Lin and Sheu [19] proposed an adaptive optimal control algorithm
to solve the energy-saving train regulation problem of metro lines through reinforcement learning.
Zhang et al. [20] presented a real-time optimal design for energy-saving train regulation based on
centralized MPC (CMPC).

On the other hand, it is worth noting that most of the existing work addressed the train regulation
problem based on the centralized control, where the departure time instants of all trains are assumed
to be collected nearly simultaneously, and the control of all trains are also assumed to be applied nearly
simultaneously. However, this assumption may not be satisfied in real scenarios, and the centralized
controller inevitably results in heavy computation and communication cost so as to threaten the
real-time control demand. Therefore, it is pressing for us to study the train regulation problem from the
perspective of distributed control, which has been a more popular approach to cope with large scale
control systems due to its features of low-cost, scalability and robustness [21–23]. Basing on distributed
MPC (DMPC) [24,25], Li et al. [26] derived a cooperative energy-efficient trajectory planning for
multiple high-speed train movement, where all the high-speed trains were modeled as the agents
that can communicate with others and each train can regulate the trajectory planning procedure to
save energy. To avoid the heavy computation burden caused by centralized railway management,
the centralized rescheduling problem was divided into a set of subproblems and solved by the DMPC
methods in [27]. To the best of our knowledge, the study on distributed control-based train regulation
problem is still scarce. In our previous work [28], we proposed a novel train regulation framework
and algorithm based on DMPC. Focusing on the automatic train regulation of large-scale complex
urban metro networks, a distributed optimal control method was designed in [29], where the original
large-scale optimization problem was decomposed into multiple small-scale optimization subproblems.
However, the energy-saving objective was not considered in [28,29].

Therefore, the aim of this paper was to investigate the energy-saving train regulation problem
for a single metro line based on DMPC, by assuming each train is self-organized and capable to
communicate with other trains. The main contributions of this paper are two-fold. (1) Focusing on
the energy-saving train regulation problem, we employ DMPC method instead of centralized control
method, so as to avoid the heavy computation and communication cost in [19,20]. (2) In contrast to
the previous work on distributed control-based train regulation [28,29], we newly take the energy
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consumption into account, with the objective of scheduled timetable recovery and headway adherence
as well as minimizing the energy consumption at the same time.

The remainder part of this paper is organized as follows. In Section 2, the energy-saving train
regulation problem is described with train traffic model and energy consumption model established.
In Section 3, a distributed framework for energy-saving train regulation of a metro open line is
presented, and then a DMPC algorithm for energy-saving train regulation is proposed. In Section 4,
simulations on energy-saving train regulation for the Beijing Yizhuang metro line are provided to
verify the effectiveness and advantages of the DMPC algorithm. Section 5 concludes the whole paper.

2. Problem Formulation

In order to be convenient and rigorous in describing the energy-saving train regulation problem,
we first give the train traffic model and energy consumption model. In this study, we consider a metro
open line which is defined as a sequence of N stations where M trains are operated. These trains
are injected at the first station successively and leave the line after station N. To study the train
regulation problem more rigorously, we made the following assumptions: (1) the overtaking and
crossing operation are prohibited; (2) each train is required to stop at all stations; (3) the staying time of
a certain train depends on the arrival passenger flow and increases proportionally with the boarding
passenger number of each stop.

2.1. Train Traffic Model of Metro Open Line

We consider a group of orderly trains running on an metro open line. To describe the train
regulation problem based on state-space model, we use the number i− 1 to denote the train ahead of
train i. In addition, to describe the train traffic transfer from one station to the next station, we denote
k as the station index and k ∈ {1, 2, . . . , N}.

Following the commonly used train traffic model [3], let di
k denote the departure time instant of

train i from station k, ri
k denote the running time of train i from station k to k + 1, and si

k denote the
staying time of train i at station k. As shown in Figure 1, the departure time instant of train i from
station k + 1 is given as

di
k+1 = di

k + ri
k + si

k+1 (1)
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Figure 1. Illustration of the train traffic model.

The running time of train i from station k to k + 1 is

ri
k = Rk + ur,

i
k + wr,

i
k (2)

where Rk is the nominal running time from station k to k+ 1, ur,
i
k represents the control action to change

the running time of train i between stations k and k + 1, and wr,
i
k is the uncertain disturbance related

to the running time. The staying time si
k+1 proportionally increases with the number of passengers

getting on the train, and it is given as

si
k+1 = tbλk+1 ·

(
di

k+1 − di−1
k+1

)
+ Sk+1 + us,

i
k+1 + ws,

i
k+1 (3)
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where tb is the average boarding time per passenger, λk is the average passenger arrival rate at station
k, Sk is the minimal staying time at station k when no passenger gets on the train, us,

i
k is the control

action to change the staying time on train i at station k, and ws,
i
k is the uncertain disturbance related to

the staying time. Substituting (2) and (3) into (1), the train traffic model for the operation of the metro
line is given as follow

di
k+1 =c1,k+1 · di

k − c2,k+1 · di−1
k+1 + c1,k+1 ·

(
Sk+1 + Rk + wi

k + ui
k

)
(4)

where 
c1,k+1 = 1/ (1− tb · λk+1)

c2,k+1 = tb · λk+1/ (1− tb · λk+1)

wi
k = wr,

i
k + ws,

i
k+1

ui
k = ur,

i
k + us,

i
k+1

It is obvious that the departure time instant of train i from station k + 1 is directly related to not
only that of train i from station k but also that of train i− 1 from station k + 1. we let ai

k+1 denote the
actual arrival time instant of train i station k + 1, which can be defined as:

ai
k+1 = di

k + ri
k (5)

Let Di
k denote the scheduled (nominal) departure time instant of train i from station k and

Di+1
k − Di

k = H, where H denotes the scheduled headway. Then the scheduled departure time is

Di
k+1 = Di

k + Sk+1 + Rk + tb · λk+1 · H (6)

2.2. Modeling Energy Consumption

In this part, the model which represent the energy consumption arising from train regulation
will be formulated. For an urban rail train, the energy consumption mainly comes from the auxiliary
system and the traction system when the train is traveling from one station to the next [30].

According to [31], the energy consumption are given as

Ei
k+1 = Ei

aux,k+1 + Ei
tr,k+1 (7)

where Ei
k+1 is energy consumption of train i among time interval [dk

i , di
k+1); Ei

aux,k+1 and Ei
tr,k+1

represent the energy consumption of the auxiliary system and traction system among time interval
[dk

i , di
k+1), respectively.

2.2.1. Modeling Energy Consumption of Auxiliary System

Considering an urban rail train, the energy consumption generated by the auxiliary system mainly
comes from air conditioning, ventilation and lighting facilities, in which the air conditioning accounts
for the largest proportion. On the one hand, the energy consumption generated by the air conditioner
is affected by the weather and climate conditions, but also depends on the onboard passenger load.
Assuming that the energy consumption of air conditioning is linearly proportional to the onboard
passenger load, the energy consumption of auxiliary system among time interval [dk

i , di
k+1) can be

modeled as follows [31]:

Ei
aux,k+1 = Pi

aux,k(d
i
k+1 − di

k) = (Pac pi
k+1 + Plc)(di

k+1 − di
k) (8)

where Pi
aux,k

∆
= Pac pi

k+1 + Plc represent the auxiliary power generated by the ith train running from the
kth station to the (k + 1)th station. Pac is the power generated by per passenger in train and Plc is the
power consumption of the auxiliary facilities otherwise.
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In (8), pi
k+1 is the the number of passengers in train i from station k to station k + 1, which can be

calculated by using the following passenger equation [32]:

pi
k+1 = pi

k + ξ i
k(d

i
k − di−1

k )−
k−1

∑
q=1

ζ i
q,k(d

i
q − di−1

q ), (9)

pi
0 = 0 (10)

where ξ i
k is the boarding passenger’s flow rate of train i at station k, ζ i

q,k is the boarding passenger’s
flow rate of the ith train at upstream station q and bounding for station k.

The ξ i
k and ζ i

q,k can be obtained from the OD (Origin-Destination) of passenger flow. The three
terms on the right side of (9), in that respective order, are the passengers in the ith train when arriving
at station k, the passengers boarding the ith train at the kth station and bound for downstream stations,
and the passengers boarding the ith train on the upstream qth (q from 1 to k− 1) station and alighting
at the kth station. The nominal onboard passenger load model can be described as follows:

pi
k+1 = pi

k + ξ̄k(d
i
k − di−1

k )−
k−1

∑
q=1

ζ̄k(d
i
q − di−1

q ), pi
0 = 0 (11)

where ξ̄k and ζ̄k are the mean boarding passenger flow rates of ξ i
k and ζ i

q,k, respectively.

2.2.2. Modeling Energy Consumption of Traction System

The traction energy consumption is related to the coasting point and the onboard passengers
when the train runs between stations, and a good coasting point can effectively reduce the energy
consumption by the traction system [33]. As stated in [31], the energy consumed by the traction system
is a non-increasing function of run time. Therefore, the traction energy consumption can be changed by
changing the running time. Furthermore, the running time can be adjusted by changing the coasting
point. Due to the analytical form of the traction energy consumption being not available, a numerical
method can be used to get the traction energy consumption [31]. It can be modeled as follows:

Ei
tr,k+1 = (1 + ωp pi

k+1)(
µ1,k

µ2,k − ri
k
+ µ3,k) (12)

where ωp
∆
= (Wp/W1), Wp is the mean passenger weight, W1 is the tare weight of the train, pi

k+1 is
the onboard passenger load defined by (9). µ.,k is the coefficient, which can be obtained by nonlinear
fitting method [19].

3. Distributed Model Predictive Control for Energy-Saving Train Regulation

As far as we know, most of the existing researches on train regulation are centralized control
methods. Using centralized control methods, one needs to assume that the departure time instants of
each train are known nearly simultaneously, which is difficult to match the actual situation. A central
server is necessary to deal with the regulation problem of all trains. Meanwhile, the information
of all trains needs to be transmitted to the central server, which greatly increases the burden of
communication and computation.

On the other hand, with the emergence and development of the new generation of train control
technology, VBTC technology will become the focus of the next generation train control technology,
because it has the characteristics of low cost, modularization, high performance, and reliability.
VBTC technology breaks through the centralized control mode based on ground command and realizes
the on-board train operation control mode. Therefore, it becomes possible to apply distributed control
to addressing the train regulation problem, in order to reduce the communication and computation cost.
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Motivated by this, we firstly present a distributed control framework for energy-saving train
regulation in metro open lines, and then propose a DMPC algorithm for energy-saving train regulation
of metro open lines with operational constraints taken into account.

3.1. Distributed Control Framework

In contrast to the exiting train regulation studies based on centralized control, we assume each
train is self-organized and capable to communicate with other trains. We use the predecessor-following
topology as shown in Figure 2 to model the communication between trains in the metro open line.
More explicitly, train i transmits information to train i + 1, and it can only receive the information from
train i− 1. Herein, we focus on the design of the control law ui

k in Equation (4) for each train by using
the DMPC method.

Train i Train 1i - Train 1Train 1M - Train 1i +Train M

Direction of running

Direction of information transmission

Figure 2. Predecessor-following topology.

3.2. Distributed Model Predictive Control Algorithm

In this subsection, we mainly propose a DMPC algorithm for energy-saving train regulation in
metro open lines, where each train determines its control input by optimizing a local constrained cost
function involving the information of its own and its predecessor.

The main objective of energy-saving train regulation is to minimize the schedule deviation,
headway deviation, and energy consumption. Then the cost function of each train i at station k is
written as

L
Σ

j=1



α1 ·
(

di
k+j|k − Di

k+j

)2

+α2 ·
(

di
k+j|k − da,i−1

k+j − H
)2

+α3 ·
(

Ei
k+j|k

)2

+α4 ·
(

ur,
i
k+j−1|k

)2

+α5 ·
(

us,
i
k+j|k

)


(13)

where L is the prediction horizon, di
k+j|k denotes the departure time of train i from station k + j

predicted at station k, da,i−1
k+j is the assumed departure time of train i− 1 from station k + j, α1 > 0,

α2 ≥ 0, α3 ≥ 0, α4 > 0, and α5 > 0. Ei
k+j|k is the energy consumption of train i running from station

k + j− 1 to station k + j predicted at station k, ur,
i
k+j−1|k is the control action to change the running

time of train i between stations k + j− 1 and k + j predicted at station k, and us,
i
k+j|k is the control

action to change the staying time on train i at station k + j predicted at station k.
The first term in (13) penalizes schedule deviation which is the departure time deviation of train i

from the nominal time schedule among the prediction horizon, and it is used to improve punctuality of
the metro line. The second term penalizes the headway deviation between trains i and i− 1 among the
prediction horizon, and it is used to enhance the headway regularity so as to improve the passenger
satisfaction. The third term denotes total energy consumption, which is used for the purpose of saving
energy. The fourth and fifth terms are related to the magnitudes of the control actions, the minimization
of which is used for reducing the control cost in real-world applications.
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In a real metro line, several operational constraints with respect to control actions and headways
need to be taken into account. The control action of train, which is applied by adjusting the running
and staying time, should satisfy

UR,min ≤ ui
r,k ≤ UR,max

US,min ≤ ui
s,k ≤ US,max

where UR,min and UR,max are the lower bound and the upper bound of the running time adjustment
from station k to station k + 1, respectively. ui

r,k < 0 means that train i needs to accelerate when running
from station k to k + 1. When ui

r,k = UR,min, it indicates that train i runs with the maximum speed from
station k to station k + 1. US,min is the lower bound of staying time adjustment at station k and US,max
is the upper bound of staying time adjustment at station k. In addition, to ensure the train operation
safety, headway between trains i and i− 1 should follow the constraint

di
k − di−1

k > Hmin

with Hmin denoting the minimum headway.
Given the cost function and operational constraints, each train i solves the following local MPC

optimization problem

min ui
r,k+j−1|k

ui
s,k+j|k


L

j=1

L

∑
j=1



α1 ·
(

di
k+j|k − Di

k+j

)2

+α2 ·
(

di
k+j|k − da,i−1

k+j − H
)2

+α3 ·
(

Ei
k+j|k

)2

+α4 ·
(

ur,
i
k+j−1|k

)2

+α5 ·
(

us,
i
k+j|k

)2


(14)

subject to (15)–(23) to obtain
{

ui∗
r,k+j−1|k, ui∗

s,k+j|k

}L

j=1
and

{
di∗

k+j|k

}L

j=1
at station k.



di
k|k = di

k (15)

di
k+j+1|k = c1,k+j · di

k+j|k − c2,k+j · da,i−1
k+j+1 + c1,k+j ·

(
Sk+j + Rk+j−1 + ui

r,k+j−1|k + ui
s,k+j|k

)
(16)

pi
k+j + 1|k = pi

k+j|k + ξ i
k+j(d

i
k+j − di−1

k+j)−
k+j−1

∑
q=1

ζ i
q,k+j(d

i
q − di−1

q ) (17)

Ei
k+j|k = Ei

tr,k+j|k + Ei
aux,k+j|k (18)

Ei
tr,k+j+1|k = (1 + ωp pi

k+j+1|k)(
µ1,k+j

µ2,k − ri
k+j

+ µ3,k+j) (19)

Ei
aux,k+j+1|k = (Pac pi

k+j+1|k + Plc)(di
k+j+1|k − di

k+j|k) (20)

UR,min ≤ ui
r,k+j−1|k ≤ UR,max (21)

US,min ≤ ui
s,k+j|k ≤ US,max (22)

di
k+j|k − da,i−1

k+j > Hmin (23)

Equation (15) represents the actual time when train i departs from station k. The predicted departure
time of train i from station k + j when train i departs from station k can be computed iteratively by
Equation (16), which is straightforward from Equation (4). The predicted number of passengers in train
i from station k + j to station k + j + 1 when train i departs from station k can be computed iteratively
by Equation (17), which is straightforward from Equation (9). The total energy consumption, auxiliary
energy consumption and traction energy consumption in the prediction horizon are described by
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Equations (18)-(20), the constraints of running time adjustment and staying time adjustment in the
prediction horizon are given in Equations (21) and (22), respectively. Inequality (23) represents the
headway constrains in the prediction horizon.

Note that in (14), the assumed departure time sequence of train i− 1, i.e.,
{

da,i−1
k+j

}L

j=1
, is obtained

as follows. When train i− 1 is ready to depart from station k at di−1
k , train i− 1 solves the optimization

problem to obtain
{

di−1∗
k+j|k

}L

j=1
, and then transmits di−1

k and
{

di−1∗
k+j|k

}L

j=1
to train i. Then, train i

updates the assumed departure time of train i− 1, i.e., da,i−1
k = di−1

k and da,i−1
k+j = di−1∗

k+j|k, j = 1, 2, . . . , L.

When train i − 1 is ready to depart from station k + 1 at di−1
k+1, the whole process repeats and the

assumed departure time sequence of train i− 1 is updated.
Then we present the DMPC algorithm for energy-saving train regulation in a metro open line,

which is presented in Algorithm 1 below.

Algorithm 1 DMPC algorithm for energy-saving train regulation

1: When train i is ready to depart from station k at di
k, it solves the constrained optimization

problem (14) to obtain
{

ui∗
r,k+j−1|k, ui∗

s,k+j|k

}L

j=1
and

{
di∗

k+j|k

}L

j=1
.

2: Train i transmits di
k and

{
di∗

k+j|k

}L

j=1
to train i+ 1, and then train i+ 1 updates its assumed departure

time sequence of train i, i.e,
{

da,i
k+j

}L

j=0
.

3: Train i adjusts its running time and staying time according to ui∗
r,k|k, ui∗

s,k|k.

4: When train i is ready to depart from station k + 1 at di
k+1, let k = k + 1 and go to Step 1.

Remark 1. In the proposed DMPC algorithm, each train collects the information of its own and its predecessor
such that the communication cost is significantly reduced. Moreover, each train solves a local optimization
problem of small size, and its computation complexity is independent of the scale of the metro transportation
system, which implies that the proposed DMPC algorithm is efficiently solvable and scalable.

Remark 2. It is still challenging for us to further prove the feasibility and convergence of the proposed DMPC
algorithm, which is excluded in this paper. We will focus on the corresponding theoretical analysis in our
future work.

4. Simulation Results

In this section, in order to verify the efficiency of the designed approach for energy-saving
train regulation of urban metro line, the proposed DMPC algorithm will be applied to actual Beijing
Yizhuang metro line to implement the numerical experiments. Figure 3 shows the map of Beijing
Yizhuang metro line, and there are 13 stations and 12 sections on the line. (i.e., N = 13). All computations
throughout the following numerical experiments are performed by MATLAB R2016b on a PC (3.30 GHz
processor speed and 8-GB RAM) with Microsoft Windows 7 platform, and we use “fmincon” function
from the MATLAB optimization tool box to solve the optimization problem (14).
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Songjiazhuang 

Xiaocun

Jiugong

Yizhuangqiao

Xiaohongmen

Yizhuang Culture Park

Wanyuanjie

Rongjingdongjie

Rongchangdongjie

Tongjinanlu

Jinghailu

Ciqunan

Ciqu

Figure 3. Beijing Yizhuang subway map.

Next, we will describe the experimental environment and related parameters to be set.
In the numerical experiment, we only take one direction into account, which is from Songjiazhuang
to Ciqu. It is generally true that the passenger flow is very large during the morning and evening
peak hours, and the delay propagation can easily be caused by the accumulation of passenger arrival
flow. In our simulations, the train regulation is carried out throughout the morning peak hours (form
7:00 a.m. to 8:30 a.m.), where 7:00 a.m is set as 0 second (s). Considering the real operating conditions,
the schedule headway H is 270 s, the number of running trains is 20, and the minimum headway is set
as 90 s (i.e., Hmin = 90)S. We chose the prediction horizon equal to 4 (i.e., L = 4). The constraints of
control values are set as UR,min = US,min = −30 s, and UR,max = US,max = 35 s, respectively, indicating
that the adjustment values of the staying time and the running time can neither exceed 35 s nor be
smaller than −30 s. Due to the fact that the metro train operation is inevitably influenced by uncertain
disturbances, we set ws,

i
k and wr,

i
k to be stochastic ranging from 0 to 15. In our simulation, we assume

Pac = 110 W/passenger and Plc = 50 kW/train.
In order to verify the efficiency of the DMPC strategy, we firstly make a comparison among the

performance of the proposed DMPC strategy, the CMPC strategy proposed in [20] and zero control
strategy (without train regulation). Next, we show the effects of different values of weights on schedule
deviation, headway deviation, and energy consumption.

4.1. Performance Comparison with Other Strategies

In order to validate the effectiveness and merit of the proposed DMPC strategy for energy-saving
train regulation, we analyzed the performance of three strategies: the proposed DMPC strategy
(i.e., Case 2), the CMPC strategy (i.e., Case 3), and the zero control strategy (i.e., Case 1, in which the
ur,

i
k = 0 and us,

i
k = 0). Both in the DMPC and CMPC algorithms, the weights with respect to schedule

deviation, headway deviation, running time control action, and staying time control action are set
fixed, which are α1 = 10, α2 = 0.01, α4 = α5 = 0.1), and the weight of energy consumption is set as
α3 = 1. The actual timetable under Case 1, Case 2 and Case 3 in contrast to the nominal timetable are
respectively shown in Figures 4–6.
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4.1.1. Case 1 (Zero Control Strategy)

In this case, we only consider the basic constraint conditions, which include the safety constraint
and staying time constraint and do not adopt any adjustment method. Then, we got the schedule
deviation and the headway deviation, which are respectively displayed in Figure 7 (dashed blue lines)
and Figure 8 (dashed blue lines), for clarity.

Figure 4. The timetable without train regulation under Case 1 in contrast to the nominal timetable.

4.1.2. Case 2 (DMPC Strategy)

In this case, the proposed DMPC algorithm is applied to simulate the operation of the metro
line. Then, we obtain the schedule deviation and the headway deviation, which are shown in Figure 7
(solid red lines) and Figure 8 (solid red lines) respectively.

Figure 5. The timetable with train regulation under Case 2 in contrast to the nominal timetable.
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4.1.3. Case 3 (CMPC Strategy)

In this case, the CMPC algorithm proposed in [20] is applied to simulate the operations of
metro line.

Figure 6. The timetable with train regulation under Case 3 in contrast to the nominal timetable.

In order to verify the effectiveness of the proposed DMPC algorithm, we firstly make a comparison
between DMPC strategy (Case 2) and the zero control strategy (Case 1). From Figure 4, we can easily
observe that in Case 1, the deviations from the nominal timetable caused by uncertain disturbances
are amplified with time. While in Case 2, as shown by Figure 5, the deviations from the nominal
timetable are regulated within a much smaller range. To make a quantized comparison, the trajectories
of schedule deviation of certain trains along stations under Case 1 and Case 2 are plotted in Figure 7,
and so is the headway deviation as shown in Figure 8. In Figure 7, the schedule deviations under Case 1
are amplified with time and exceed 300 s, while under in Case 2, the schedule deviations are regulated
below 35 s. In Figure 8, the headway deviations under Case 1 are also amplified with time and
exceed 200 s, while the headway deviations under Case 2 are regulated within (−30 s, 30 s). Till now,
we conclude that the schedule deviations and headway deviations in Case 2 are all controlled in a
much smaller range compared with Case 1, indicating that the DMPC method significantly improves
the regulation performance when compared with the case without control.
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Figure 7. The schedule deviation comparison between Case 1 and Case 2 (dashed blue lines correspond
to Case 1, and solid red lines correspond to Case 2).
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Figure 8. The headway deviation comparison between Case 1 and Case 2 (dashed blue lines correspond
to Case 1, and solid red lines correspond to Case 2).

Moreover, we compare the regulation performance of Case 2 with that of Case 3 by giving the
probability density distribution of both schedule deviation and headway deviation which are shown
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in Figures 9 and 10. From Figure 9, we can easily obtain that the mean, the maximum, and distribution
shape of schedule deviation are all almost the same under Case 2 and Case 3, and so are those of
headway deviation as shown in Figure 10. Then, we can conclude that the DMPC method exhibits
comparable regulation performance as CMPC method.
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Figure 9. Distribution of schedule deviation under Case 2 and Case 3.
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Figure 10. Distribution of headway deviation under Case 2 and Case 3.

To make a more comprehensive comparison, we calculate the statistical characteristics of schedule
deviation, headway deviation, energy consumption and computational time under all the three cases,
which are shown in Table 1. Note that the energy consumption refers to the energy consumed by a
train running from the first station to the terminal station. From Table 1, we can obtain that under



Energies 2020, 13, 5483 14 of 18

case 2, the means of schedule and headway deviations respectively decrease by average of 90.0% and
89.6% compared with Case 1, and the energy consumption decreases by an average of 3.7% compared
with Case 1. It can be observed that the performance of the DMPC is not as good as that of the CMPC,
but it is close to the CMPC. The computational time of the proposed DMPC method and the CMPC is
0.02s and 5.2s, respectively. Remarkably, the computational time of the proposed DMPC method is far
less than that of the CMPC method. This shows that the distributed control method can remarkably
improve the real-time performance without sacrificing the service quality or energy efficiency.

Table 1. Performance statistics of train regulation.

Schedule Headway Energy CTDeviation Deviation Consumption
(s) (s) (kwh) (s)

SD Mean SD Mean

NC 77.0 104.2 89.7 60.9 4533 –
CMPC 7.8 16.5 10.2 8.1 3999 5.2
DMPC 7.6 16.6 9.6 7.5 4362 0.02

SD—standard deviation, NC—without control, CT—computational time.

4.2. Effects of Different Weights on Performance

In this subsection, in order to balance the punctuality, regularity, and energy efficiency,
the sensitivity analysis is carried out for weights α1, and α3 in cost function (7). By only changing one
of these weights, the effects of it on schedule deviation, headway deviation, and energy consumption
of the train are analyzed.

Firstly, we analyze the effects of α1 on the regulation performance. In this simulation, we let
α2 = 0.01, α4 = α5 = 0.1, α3 = 1. Four cases with different values of α1 are given, and the corresponding
simulation results are shown in Table 2. With the increase of α1, both the standard deviation and the
mean of the schedule deviation are decreasing, while the standard deviation and the mean of the
headway deviation are increasing. At the same time, we also notice that the adjustment of α1 has little
effect on the change of energy consumption.

Table 2. The effects of α1 on the regulation performance.

α1

Schedule
Deviation (s)

Headway
Deviation (s) Energy

Consumption (kwh)SD Mean SD Mean

1 7.90 17.73 9.55 7.44 4362
2 7.68 16.95 9.59 7.45 4361
5 7.64 16.68 9.62 7.48 4362

10 7.63 16.58 9.64 7.49 4362

Then, we analyze the influence of α3 on the regulation performance. In this case, we let α1 = 10,
α2 = 0.01, α4 = α5 = 0.1. The simulation results are shown in Table 3. With the increase of α3, the energy
consumption is obviously reduced, but punctuality and headway regularity performance are slightly
worse. That means, if we enlarge α3, the energy consumption can be reduced at the expense of
deteriorating punctuality and headway regularity.

Thirdly, the effects of α3 on the performance of energy consumption and control action is analyzed.
We let α1 = 10, α2 = 0.01, α4 = α5 = 0.1. The simulation results are given in Table 4. We use ur_mean to
indicate the mean of running time control action, and us_mean to indicate the mean of staying time
control action. With the increase of α3, the energy consumption is decreasing, ur_mean is increasing,
and us_mean is decreasing. This indicates that increasing running time and reducing staying time can
reduce energy consumption.
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Table 3. The effects of α3 on the regulation performance.

α3

Schedule
Deviation (s)

Headway
Deviation (s) Energy

Consumption (kwh)SD Mean SD Mean

1 7.64 16.61 9.64 8.14 4362
2 7.63 16.59 9.63 8.14 4323
5 7.64 16.63 9.63 8.15 4276

10 7.67 16.71 9.62 8.15 4248

Table 4. The effects of α3 on the energy consumption and control action.

α3
Energy Consumption

(kwh)
ur_mean

(s)
us_mean

(s)

0 4407 −7.4 −6.8
1 4362 −2.7 −11.1
5 4276 4.6 −17.8

Lastly, we define the total schedule deviation (TSD) for train i at all stations as (∑
k
(di

k − Di
k)(d

i
k −

Di
k))

1
2 and the total headway deviation (THD) as (∑

k
(di

k− di−1
k −H)(di

k− di−1
k −H))

1
2 . We let α2 = 0.01,

α4 = α5 = 0.1. We give the analysis about the effects of α1 and α3 on the TSD and THD. The simulation
results are given in Tables 5 and 6. From Table 5, we can observe that with the increase of weight α1 and
unchanged weight α3, the TSD for all the trains are reduced, i.e., the punctuality is improved with the
increase of weight α1. With the increase of weight α3 and the unchanged weight α1, the TSD for all the
trains are increased, i.e., the punctuality is deteriorated with the increase of weight α3. From Table 6,
we can observe that with the increase of weight α1 and unchanged weight α3, the THD for all the trains
are increased, i.e., the regularity is deteriorated with the increase of the weight α1. With the increase
of weight α3 and unchanged weight α1, the THD for all the trains are increased, i.e., the regularity is
deteriorated with the increase of weight α3.

Table 5. Total schedule deviation for trains (TSD).

α1 1 2 5 10 10 10
α3 1 1 1 1 2 5

T1 68.2 66.7 66.2 65.5 65.5 65.6
T2 78.4 76.7 76.1 75.2 75.3 75.6
T3 61.2 59.7 59.2 58.5 58.5 58.7
T4 74.0 72.6 72.1 71.3 71.4 71.8
T5 66.7 65.1 64.6 63.9 63.9 63.9
T6 78.1 76.1 75.5 74.6 74.6 74.8
T7 75.3 73.3 72.8 72.0 72.0 72.0
T8 70.6 68.5 68.0 67.2 67.2 67.4
T9 64.4 61.9 61.5 60.8 60.8 60.9
T10 60.9 59.3 58.8 58.1 58.1 58.2
T11 76.5 73.8 73.2 72.4 72.4 72.6
T12 74.5 71.8 71.2 70.3 70.4 70.7
T13 73.2 69.5 69.0 68.2 68.2 68.3
T14 72.8 69.4 68.9 68.2 68.2 68.2
T15 79.0 75.1 74.5 73.6 73.6 73.8
T16 57.8 55.2 54.8 54.2 54.2 54.3
T17 63.4 59.3 58.9 58.2 58.2 58.3
T18 65.4 60.4 59.9 59.2 59.2 59.3
T19 62.1 56.3 55.9 55.3 55.3 55.3
T20 70.6 63.8 63.3 62.6 62.6 62.7
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Table 6. Total headway deviations for trains (THD).

α1 1 2 5 10 10 10
α3 1 1 1 1 2 5

D2-D1 31.4 31.7 31.7 31.9 31.8 31.7
D3-D2 32.0 31.9 31.9 31.9 31.9 31.9
D4-D3 29.6 29.9 30.0 30.2 30.1 29.9
D5-D4 41.5 42.2 42.5 42.9 42.9 42.7
D6-D5 39.6 39.5 39.6 39.7 39.7 39.7
D7-D6 33.9 34.4 34.5 34.7 34.7 34.6
D8-D7 37.9 38.5 38.7 39.1 39.1 39.0
D9-D8 30.3 30.7 30.9 31.3 31.2 31.1

D10-D9 36.6 37.1 37.2 37.3 37.3 37.3
D11-D10 38.7 38.5 38.5 38.5 38.5 38.5
D12-D11 34.9 35.0 35.1 35.1 35.1 35.1
D13-D12 41.2 40.6 40.5 40.4 40.4 40.6
D14-D13 33.3 33.7 33.7 33.8 33.8 33.8
D15-D14 35.9 35.7 35.6 35.6 35.6 35.8
D16-D15 44.1 44.0 43.9 43.7 43.7 43.8
D17-D16 18.9 18.5 18.6 18.7 18.7 18.7
D18-D17 25.9 26.0 26.0 26.1 26.1 26.1
D19-D18 28.1 28.5 28.6 28.9 28.8 28.8
D20-D19 28.7 28.9 29.1 29.3 29.3 29.2

Through the above analysis, we can achieve the trade-off between the performance of the
punctuality, regularity, and the energy consumption by selecting appropriate weights.

5. Conclusions

This paper has studied the energy-saving train regulation problem in urban metro transportation
by using DMPC control. A distributed control framework for train regulation in metro lines has
been proposed, based on which, a novel DMPC algorithm for energy-saving train regulation has
been proposed. In the DMPC algorithm, each train determines its control input by optimizing a local
cost function subject to operational constraints. To validate the proposed DMPC algorithm, we have
made several numerical experiments based on Beijing Yizhuang metro line. The simulation results
have shown that the proposed algorithm is effective, and its real-time performance is remarkably
improved compared with the routine CMPC. The main contributions of this paper are summarized
as follows. Firstly, the DMPC method is used to solve the energy-saving train regulation problem,
and the predecessor-following topology is adopted, which requires a very low communication cost.
Secondly, from the experimental results, the computational cost of the algorithm is greatly reduced
without sacrificing the regulation and energy-saving performance. Open research issues to explore
may include proving the convergence of the proposed DMPC algorithm and robust DMPC for train
regulation under more complex communication topologies.
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