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Abstract: Due to the large-scale renewable energy connected to the power grid by power electronic
converters, the inertia and stability of the power grid is declining. In order to improve the inertia
and support the grid recovery, the three-phase converter works as a virtual synchronous generator
(VSG) to respond to the frequency and voltage changes of the power grid. This paper proposes
a model predictive control for the virtual synchronous generator (MPC-VSG) strategy, which can
automatically control the converter output power with the grid frequency and voltage changes.
Further consideration of fault-tolerant ability and reliability, the method based on improved voltage
vector selection, and reconstructed current is used for MPC-VSG to ensure continuous operation for
three-phase converters that have current-sensor faults, and improve the reconstruction precision.
The proposed method can respond to the frequency and voltage changes of the power grid and
has fault-tolerant ability, which is easy to realize without pulse width modulation (PWM) and a
proportional-integral (PI) controller. The effectiveness of the proposed control strategy is verified
by experiment.

Keywords: virtual synchronous generator; model predictive control; current reconstruction;
voltage vector

1. Introduction

The three-phase converter is applied widely in renewable energy power generation [1,2]. As the
connection between renewable energy and the power grid, the converters controlled by conventional
power decoupling cannot respond to the grid frequency and voltage changes due to lack of connection
with the frequency and voltage of the grid. With the high penetration of large-scale renewable energy
into the power grid, the inertia and stability of the power grid are declining. Hence, it is necessary to
improve the inertial response capability of the three-phase converter.

By simulating the characteristics of the traditional synchronous generator (SG), the converter
under the control of a virtual synchronous generator (VSG) can change the output power alone, with the
frequency or voltage providing inertial support for the power grid [3,4]. Compared with conventional
droop control, the grid-connected converter controlled by VSG has better dynamic characteristics
and inertial response capability [5,6]. The VSG has been used in storage system, wind turbine,
micro-grid, and multi-terminal high-voltage direct current (MTDC) systems to improve the inertia and
stability of power grids [7–11]. A hybrid energy storage system (HESS) consisting of a battery and an
ultra-capacitor is proposed in [7] to achieve the power management of the VSG, which allows reduction
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of the battery power fluctuations. The VSG-controlled doubly-fed induction generator (DFIG) is
investigated in [8] to provide the desired inertial support to the power grid. A comprehensive VSG
control method is proposed in [10] for the full converter of wind turbines with energy storage, and the
power balance of the wind turbine system is achieved. An extended VSG is introduced in [9] for a
micro-grid. The virtual controller combines the virtual rotor, virtual primary, and virtual secondary
control to regulate the system frequency. A VSG control strategy is proposed in [11], using MTDC to
damp the low-frequency oscillation. The rotational inertia part and governor part are both controlled by
VSG. The parameters for VSG are constrained by stability considerations and transfer function analysis
is validated in [12]. In addition to the application of VSG research, the expansion and fault-tolerant of
VSG need to be further studied.

Model predictive control (MPC) has attracted researchers’ interest recently, due to the advantages
of flexibility, strong robustness, and simple implementation. Without pulse width modulation (PWM),
phase-locked loop (PLL), or a proportional–integral (PI) or proportion resonant (PR) controller, the MPC
outputs the optimal switching state of the converter by comparing the predictive and reference values
with the cost function [13,14]. The MPC has been used in quasi-Z-source inverters, three-phase
inverters, rectifier–inverter systems, multilevel converters, wind turbine systems, and three-phase
soft-switching converters [15–20]. A discrete-time average model-based predictive control (DTA-MPC)
is proposed in [15] for a quasi-Z-source inverter to predict future behaviors of the shoot-through
duty cycle and modulation signals. A disturbance rejection-based MPC with two flexible modes
for three-phase inverters is investigated and a disturbance observer is designed to simplify the
prediction model in [16]. To address the dc-link voltage fluctuation, an improved MPC scheme is
proposed for the PWM rectifier –inverter system in [17] based on the system-level power balance
model. The MPC proposed in [18] divides variables into layers to reduce the number of states, and a
method for compensating the distortion is also described. For a permanent-magnet synchronous
generator (PMSG) wind turbine system, a multiple-vector direct model predictive power control is
proposed in [19] for the grid-side power converter to improve the steady-state control performance.
A robust constant-frequency model-predictive control proposed in [20] can reduce the total harmonic
distortion under the unbalanced grid condition. The effectiveness of MPC has been verified with good
performance, which is better than traditional PWM vector control [21,22]. However, the converter
controlled by conventional MPC cannot respond to the power grid changes and provide inertial support.

The fault-tolerant research for the three-phase converter is necessary to improve the operation
reliability. The reliability of the current sensor is essential for a grid-connected converter because the current
signals sampled by current sensors influence the control performance directly. Current reconstruction
can rebuild the three-phase current with fewer current sensors, which is an effective way to improve
system reliability [23,24]. The current reconstruction has been used in switched reluctance motors
(SRM), three-level converters, and permanent-magnet synchronous motors (PMSM) [25–28]. A phase
current reconstruction method from the dc-link current is proposed in [25] for four-phase 8/6-pole
SRM and confirmed by experimental results. A space vector PWM scheme to reconstruct phase
currents is proposed in [26] for three-level T-type converters by using neutral-point current sensing.
A zero-voltage vector sampling method (ZVVSM) is proposed in [28] for PMSM vector control system
without modifying the PWM signal. The above current reconstruction methods are based on PWM
and need to sample multiple points in one period. The easy way to reconstruct current for MPC needs
to be researched.

This paper proposes a model predictive control for VSG (MPC-VSG) with reconstructed current
considering inertial support for the power grid and fault-tolerant operation. The three-phase current
is reconstructed by dc current and standard ac current under the control of improved voltage vector
selection. The VSG is used to respond to grid changes and offers a reference current. The MPC
generates the predictive current of the next instant in different voltage vectors. The voltage vector that
makes the cost function minimal is the optimal vector. Then the corresponding switching states are
applied for the converter. The main contributions of this paper are as follows:
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(1) The MPC method is applied to VSG control to achieve the effectiveness control of the three-phase
converter and improve the response capability for changes of grid frequency and voltage, which is
flexible and simple without PWM and a PI controller.

(2) The reconstructed current, based on the relationship of the dc current, ac current, and the voltage
vectors, is used for MPC-VSG, which needs less current sensors and improves the fault-tolerant
capability of the three-phase converter.

(3) In order to improve the accuracy of current reconstruction, an improved voltage selection method
is proposed for MPC-VSG, which can reduce the error of current reconstruction.

The three-phase converter controlled by the proposed MPC-VSG method can automatically adjust
the output power according to the frequency and voltage of the power grid, and realize fault-tolerant
operation under phase current-sensor fault. The effectiveness of the proposed method is verified by
experimental results.

2. Models of VSG, MPC, and Current Reconstruction

The combination of VSG and MPC is used in this paper to achieve participation in the frequency
and voltage regulation of the power grid and keep the flexible adjustment advantage of MPC.
The current reconstruction is applied in case of current-sensor failure. The detailed models of VSG,
predictive current model, and current reconstruction are shown in this section.

2.1. Model of VSG

The VSG control for the three-phase converter shows the same inertia and damping characteristics
as synchronous generators by simulating the mechanical and electromagnetic characteristics of
traditional synchronous generators (SG). The configuration of the VSG is shown in Figure 1.
The converter can be controlled as a VSG to emulate the characteristics of an SG. In order to
achieve the direct current control, the reference current can be obtained by VSG through the control
shown in Figure 2.
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Figure 1. The three-phase converter and configuration of the virtual synchronous generator (VSG). Figure 1. The three-phase converter and configuration of the virtual synchronous generator (VSG).

As shown in Figure 2, the control strategy includes three parts: active power-frequency regulation,
reactive power-voltage regulation, and the output reference current. The mechanical torque equation
of SG is:

..
θ =

1
J

(
Tm − Te −Dp

.
θ
)

(1)

where Tm, Te, J, Dp, are the mechanical torque, electromagnetic torque, moment of inertia,
friction coefficient, and rotation angle, respectively.
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As illustrated in Figure 2, Pref and Qref (Pset and Qset) are the injection power from the VSG,
which are determined by the Power Dispatching Control Center. However, in this paper, we set
Pref = 500 W and Qref = 0 Var as the initial value, then changed the value to test the proposed method.

The electromagnetic equation of SG is shown as:

L
diabc
dt

= eabc − uabc −Riabc (2)

where L, R, iabc, eabc, uabc are the inductance, resistance, stator three-phase current, back electromotive
force, and phase voltage of the SG port.

The back electromotive force generated by the rotor motion in the stator winding is obtained as:

eabc = θM f i f sinθ (3)

where Mf is mutual inductance between excitation winding and stator winding; if is the excitation
current of the rotor.

According to the mathematical model of the synchronizer, it is defined as follows:
i =

[
ia ib ic

]T

sinθ =
[

sinθ sin
(
θ− 2π

3

)
sin

(
θ+ 2π

3

) ]T

cosθ =
[

cosθ cos
(
θ− 2π

3

)
cos

(
θ+ 2π

3

) ]T
(4)

The calculation formula of electromagnetic torque is:

Te = M f i f 〈i, sinθ〉 (5)

where “< >” represents the dot product.
The active and reactive power of SG is shown as: P = Te ·

.
θ

Q = −
.
θM f i f 〈i, cosθ〉

(6)

In order to obtain the voltage amplitude, the following formula can be used [29]:

Vm =

√
−

4
3
(uaub + ubuc + ucua) (7)
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The three-phase converter can work as the traditional SG by using a VSG control. When the
frequency or voltage of power grid decrease or increase, the corresponding active or reactive power
increase or decrease to provide inertial support for the grid.

2.2. Predictive Current Model

The topology and voltage vectors of the three-phase converter are shown in Figure 3. The voltage
equation based on the Kirchhoff Voltage Law (KVL) can be obtained as:

eabc − L
diabc
dt
−Riabc − uabc = 0 (8)

where L, R, eabc, iabc, uabc are the filter inductance, line resistance, converter output voltage,
grid-connected current and grid voltage, respectively.
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After Clark coordinate transformation of Equation (8), the voltage equation in stationary frame is
expressed as:

L
diαβ
dt

= eαβ −Riαβ − uαβ (9)

Discretize the Equation (9), and the following current expression can be obtained:

L
iαβ(k + 1) − iαβ(k)

Ts
= eαβ(k) −Riαβ(k) − uαβ(k) (10)

The following expression could predict the current:

iαβ(k + 1) =
Ts

L

(
eαβ(k) − uαβ(k)

)
+

(
1 +

RTs

L

)
iαβ(k) (11)

where Ts, iαβ(k + 1), iαβ(k), eαβ(k), uαβ(k) are sampling period, predictive current at k + 1 instant,
sampled current at k instant, converter output voltage, and sampled grid voltage at k instant, respectively.

The switching state of the converter is defined as Si (i = a, b, c). When the upper switch of the i
phase is on, Si = 1. If the lower switch of the i phase is on, then Si = 0. The output voltage under eight
voltage vectors can be obtained as:

(
eα
eβ

)
=

2
3

(
1 −1/2 −1/2
0
√

3/2 −
√

3/2

)
SaVdc
SbVdc
ScVdc

 (12)

where eα, eβ are the output voltages of the converter under αβ two stationary coordinates. Sa, Sb, Sc are
the switching states of three phases.

2.3. Current Reconstruction Model

In the three-phase converter, to avoid over-current damaging the equipment and to protect the dc
side, a dc current sensor is installed at the dc side to collect dc current, and three ac current sensors
are installed at the ac side to sample the three-phase current and participate in the control method.
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Some researchers mention that two ac current sensors are used to save costs and collect the current of
two phases [30,31].

As shown in Figure 4, the current of dc, phase A, and phase C is sampled by the current sensor.
Then the current of phase B can be obtained as −ia − ic based on the Kirchhoff Current Law (KCL).
However, if one phase current sensor (taking phase C as an example) has a fault due to the harsh
environment or aging sensors, then the current of phases B and C cannot be obtained, which leads to
the control failure of the converter.
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Figure 4. Current-sensor fault of a three-phase grid-connected converter.

For eight voltage vectors of the converter, the current flow is shown in Figure 5. Based on the current
relationship shown in Table 1, the current reconstruction method is applied to obtain the three-phase
current so that the reliability operation under the current-sensor fault is improved. It can be seen that
the dc current is related to the ac current for difference voltage vectors. Therefore, the three-phase
current can be obtained by using the normal dc current idc and phase A current ia as shown in Table 1.
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Table 1. Current relationship and reconstructed current under eight voltage vectors.

Voltage Vector DC Current idc
The Current of

Phase A iar

The Reconstructed
Current of Phase B ibr

The Reconstructed
Current of Phase C icr

U0(0 0 0) 0 ia ib(k + 1) −iar − ibr
U1(0 0 1) ic ia −iar − icr idc
U2(0 1 0) ib ia idc −iar − ibr
U3(0 1 1) −ia ia ib(k + 1) −iar − ibr
U4(1 0 0) ia ia ib(k + 1) −iar − ibr
U5(1 0 1) −ib ia −idc −iar − ibr
U6(1 1 0) −ic ia −iar − icr −idc
U7(1 1 1) 0 ia ib(k + 1) −iar − ibr
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When the dc current idc just has a relationship with phase A under voltage vector U3, U4, or zero
voltage vectors U0 or U7; to reconstruct the three-phase current, the current of phase B can be
obtained as:

ib(k + 1) =
Ts

L

(
eb(k) − ub(k)

)
+

(
1 +

RTs

L

)
ib(k) (13)

where ib(k), ub(k), eb(k) are the last reconstructed current, grid voltage, and converter output voltage of
phase B.

The current reconstruction method can obtain the three-phase current by using one dc and one
phase current sensor, which can enhance the reliability and fault-tolerance performance.

3. The Proposed MPC-VSG Method

Based on the model of VSG and MPC, the proposed method takes advantage of both by combining
the two models. In order to improve the fault-tolerant performance under one ac current-sensor
fault, the current reconstruction is used to obtain three-phase current with standard dc and ac current
sensors. An improved voltage vector selection method is proposed to make the reconstructed current
for the MPC method more accurate. The delay compensation method is used for computing delay in
processors to improve the MPC effect.

3.1. Improved Voltage Vector Selection

The voltage vector selections, including the traditional MPC and improved MPC method,
are shown in Figure 6. As shown in Figure 6a, the vector selection method of traditional MPC selects
the optimal voltage vector, which minimizes the cost function from seven different voltage vectors.
The optimal voltage vector of the next sampling period may be other vectors or the same as the
present vector. For example, the present vector U3(0 1 1) can be converted to any vector for the next
interval based on cost function by a traditional MPC. The traditional MPC needs to calculate predictive
current under six non-zero vectors and one zero vector at one sample interval, which leads to a high
computational burden. Besides, if the voltage vector U3, U4 or zero voltage vector is used continuously
at several intervals, the current reconstruction error is increased because the current of phase B is
derived from the previous reconstructed current.

An improved voltage vector selection method for current reconstruction is proposed, as shown
in Figure 6b. The voltage vectors U3, U4, and zero cannot be transformed into each other, which can
avoid error accumulation by the continuous use of U3, U4, and zero vectors. For example, the present
vector U3 (0 1 1) is converted to optimal vector from U1, U2, U5, and U6, which have a corresponding
relationship between the dc current and ac current of phase B or C. The optimized voltage vector
selection ensures that the previous current of phase B or C is sampled and can improve the current
reconstruction accuracy, as shown in Figure 6c.

According to the current reconstruction method in Table 1, when U3, U4, and zero vectors are used,
there is no corresponding relationship between the dc current and ac current of phase B or C. Then the
reconstructed current of phase B is obtained through the current ib(k), grid voltage ub(k), and inverter
output voltage eb(k) at the last moment according to Equation (13). Then the current of phase C is icr =

−iar − ibr. There is estimation error between estimated current and the actual current of phase B and
C. If U3, U4, and zero vectors are used continuously or mutually, the error will be accumulated and
the effect of current reconstruction may get worse. However, the continuous use or mutual use of U3,
U4, and zero vectors may occur by the conventional MPC algorithms. Therefore, the improved vector
selection avoids the phenomenon and is helpful for current reconstruction.



Energies 2020, 13, 5435 8 of 16Energies 2020, 13, x FOR PEER REVIEW 8 of 17 

 

U2 U6

U4U3

U1 U5

U0/U7

 

U2 U6

U4U3

U1 U5

U0/U7

 
(a) (b) 

U1

U2

U5

U6

U3

U4U0

U7

Vector
Selection

U0 U3

U7 U4

U1 U2

U5 U6

(
)1

bi
k +

Probability of error 
increasement

error surpression

MPC 
control

Vector transformation

 
(c) 

Figure 6. Voltage vector selection: (a) traditional model predictive control (MPC) method; (b) 
improved MPC method for current reconstruction; (c) flow chart of improved MPC vector selection. 

An improved voltage vector selection method for current reconstruction is proposed, as shown 
in Figure 6b. The voltage vectors U3, U4, and zero cannot be transformed into each other, which can 
avoid error accumulation by the continuous use of U3, U4, and zero vectors. For example, the present 
vector U3 (0 1 1) is converted to optimal vector from U1, U2, U5, and U6, which have a corresponding 
relationship between the dc current and ac current of phase B or C. The optimized voltage vector 
selection ensures that the previous current of phase B or C is sampled and can improve the current 
reconstruction accuracy, as shown in Figure 6c. 

According to the current reconstruction method in Table 1, when U3, U4, and zero vectors are 
used, there is no corresponding relationship between the dc current and ac current of phase B or C. 
Then the reconstructed current of phase B is obtained through the current ib(k), grid voltage ub(k), and 
inverter output voltage eb(k) at the last moment according to Equation (13). Then the current of phase 
C is icr =−iar − ibr. There is estimation error between estimated current and the actual current of phase 
B and C. If U3, U4, and zero vectors are used continuously or mutually, the error will be accumulated 
and the effect of current reconstruction may get worse. However, the continuous use or mutual use 
of U3, U4, and zero vectors may occur by the conventional MPC algorithms. Therefore, the improved 
vector selection avoids the phenomenon and is helpful for current reconstruction. 

The calculation of the optimal vector needs to consume time in MPC, which results in a time 
delay between the optimal vector and the actual applied vector. Then the method of calculating the 
optimal vector for one step ahead is designed to compensate for the time delay. Hence, the delay 
compensation is used to obtain the predictive model for k + 2 instant and apply the voltage vector for 
the next interval. Assuming that the grid voltage u(k) remains unchanged for two sampling cycles, 
the predictive current for k + 2 instant can be expressed as: 

Figure 6. Voltage vector selection: (a) traditional model predictive control (MPC) method; (b) improved
MPC method for current reconstruction; (c) flow chart of improved MPC vector selection.

The calculation of the optimal vector needs to consume time in MPC, which results in a time
delay between the optimal vector and the actual applied vector. Then the method of calculating the
optimal vector for one step ahead is designed to compensate for the time delay. Hence, the delay
compensation is used to obtain the predictive model for k + 2 instant and apply the voltage vector for
the next interval. Assuming that the grid voltage u(k) remains unchanged for two sampling cycles,
the predictive current for k + 2 instant can be expressed as:

iαβ(k + 2) =
Ts

L

(
eαβ(k + 1) − uαβ(k)

)
+

(
1 +

RTs

L

)
iαβ(k + 1) (14)

where iαβ(k + 2) is the predictive current for k + 2 instant, iαβ(k + 1) is the predictive current for k + 1
instant obtained by Formula (10), eαβ(k + 1) is the converter voltage, uαβ(k) is the grid voltage.

The voltage vector that can make the current closest to the reference value is the optimal vector and
it is applied to the converter. When the cost function is minimum, the corresponding voltage vector is
optimal and applied at the next instant. In order to control the grid-connected current directly, the cost
function is defined as the sum of absolute error between the reference current and predictive current:

g =
∣∣∣iα_re f − iα(k + 2)

∣∣∣+ ∣∣∣iβ_re f − iβ(k + 2)
∣∣∣ (15)

where iα_ref, iβ_ref is reference current obtained by VSG in αβ frame, iα(k + 2), iβ(k + 2) is the predictive
current for k + 2 instant.
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3.2. The Proposed MPC-VSG Control Structure

In this paper, the MPC and VSG are combined. The VSG outputs the reference current for MPC.
Then the MPC controls the inverter to track reference current. The reconstructed current is obtained by
inverter output dc and single-phase ac current with improved vector selection. Then the reconstructed
current returns to VSG and MPC to achieve closed-loop control as shown in Figure 7. The former
VSG realizes the power response for grid frequency and voltage. The latter MPC control is used for
flexible current control of a grid-connected converter. The reconstructed current is used to improve
fault-tolerant capability. The combined method can not only adjust the output current of the inverter,
support the power grid for changes of frequency and voltage, but also improve the fault-tolerance
ability of the inverter under sensor fault.
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As shown in Figure 8, the reference current is obtained by a VSG control that has been illustrated 
in Figure 2, which can respond to changes in grid frequency and voltage. The predictive current of 
different voltage vectors at the next instant is obtained by delay compensation and predictive 
function (14). In order to make the output current close to the reference value, the cost function (15) 
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Figure 7. The connection among VSG, MPC, and current reconstruction.

As shown in Figure 8, the reference current is obtained by a VSG control that has been illustrated
in Figure 2, which can respond to changes in grid frequency and voltage. The predictive current of
different voltage vectors at the next instant is obtained by delay compensation and predictive function
(14). In order to make the output current close to the reference value, the cost function (15) is used to
determine the optimal voltage vector by improved voltage vector selection. When the cost function g
is minimum, the corresponding voltage vector is the best choice at the next instant and is applied to
the grid-connected converter. The MPC method can control the output current directly without using
PWM and a PI or PR controller.

To further improve the reliability of the converter, the ac current-sensor failure is taken into
consideration. When the current sensor of phase C is faulty, the dc current and normal phase A current
are used to reconstructing the three-phase current based on the current relationship under different
voltage vector. Then the reconstructed current iabcr is participated in the VSG-MPC control method.

For a more detailed explanation of the MPC method, the flowchart of improved voltage selection
is shown in Figure 9. Firstly, the dc current idc, ac current of phase A ia, and previous voltage vector
Uj are collected. Then the three-phase reconstructed current is obtained by the current relationship.
If the previous voltage vector Uj is U0, U3, or U4, then the optimal voltage vector is selected from U1,
U2, U5, and U6 by substituting (k + 2)th instant predictive current values into the function (15). If the
previous voltage vector Uj is other vectors, then the optimal voltage vector is selected from seven
different vectors (U0~U6). Finally, the voltage vector which minimizes the cost function is the optimal
vector and the corresponding switch state is applied for the converter.
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4. Experimental Verification

As shown in Figure 10, the experimental setup is established to verify the effectiveness of the
proposed control method for the three-phase grid-connected converter. The dc power source APL-II is
used to obtain a stable dc voltage. The programmable ac power source AMETEK MX-30 is used as grid
voltage with adjustable frequency or amplitude. The experimental parameters are shown in Table 2.
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Table 2. Experimental parameters.

Parameter Symbol Value

dc voltage Vdc/V 400
Filter inductor L/mH 10
Line resistance R/Ω 0.2

Grid phase voltage u/V 110
Grid frequency f /Hz 50

Sampling frequency fs/kHz 10
Frequency regulation coefficient Dp 5

Voltage regulation coefficient Dq 100
Inertia coefficient J 0.0122

Proportionality coefficient K 740.1

4.1. Current Reconstruction

To verify the performance of proposed voltage vector selection on the current reconstruction,
the dynamic experimental waveforms of reconstructed current and actual output current for traditional
voltage selection and improved voltage selection when active power steps from 500 W to 1000 W are
shown in Figure 11.

As shown in Figure 11, the errors between actual current and reconstructed current are also
presented to compare the effects. The reconstructed current obtained by the improved voltage selection
strategy (IVSS) is closer to the actual current, the THD of the current is smaller and the errors are fewer,
which demonstrates that the current reconstruction effect by IVSS is better than traditional MPC.

Since the proposed method selects the voltage vector that can avoid the simultaneous changes
of three-phase switching states and continued use of voltage vector U3, U4, or zero voltage vector at
several intervals, the reconstructed current ibr, icr under the proposed method is better than traditional
MPC and is closer to the actual current ib, ic.

4.2. Active Power with Frequency Regulation

During the experiment, the grid frequency drops or increases in order to test the active power
with frequency regulation performance of the proposed MPC-VSG method, and the experimental
waveforms are shown in Figure 12.
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Figure 11. Current reconstruction when active power steps from 500 W to 1000 W (from top to bottom:
reconstructed current of phases B and C ibr, icr; reconstructed and actual current of phases B and C ibr,
icr, ib, ic in 5 ms/div; errors between reconstructed and actual current of phases B and C error_ib, error_ic
in 5 ms/div; reconstructed and actual current of phases B and C ibr, icr, ib, ic in 2 ms/div; errors between
reconstructed and actual current of phases B and C error_ib, error_ic in 2 ms/div): (a) the traditional
voltage selection; (b) the improved voltage selection method.

The experimental results with frequency decreasing are shown in Figure 12a. The reference power
Pset = 500 W, Qset = 0. It can be seen from Figure 12a that the output power of the grid-connected
converter can track the reference power stably before the frequency changes. When the grid frequency
drops of 0.05 Hz, the frequency of VSG reaches the grid frequency in less than 0.7 s and the active
power increases close to 1000 W to support the grid power. The three-phase grid current varies steadily
without overcurrent impact and THD is 4.9% when Pset = 1000 W, which demonstrates the effectiveness
of the proposed control method. The reconstructed current coincides with actual current basically,
which shows the good effect of the current reconstruction method.

As shown in Figure 12b, the reference power Pset = 1000 W, Qset = 0. When the grid frequency
increases by 0.05 Hz, which means oversupply of power, the output active power of converter drops
to 500 W to reduce the grid-connected power. The three-phase grid-connected current changes with
the output power and no big fluctuation occurs with 8.6% THD. The reconstructed current and
actual output current waveform shown in Figure 12b are very close, which indicates the good current
reconstruction effect. The results show that the converter under the proposed method can increase or
reduce the active power of converter automatically when frequency drops or increases, and the current
reconstruction is effective under the condition of one ac current-sensor fault.
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4.3. Reactive Power with Voltage Regulation

The reactive power-voltage regulation experimental results are shown in Figure 13. When the
grid voltage sag occurs, the active power should increase to support the voltage recovery. As shown in
Figure 13a, the output reactive power changes from the reference value 500 Var to about 1200 Var and
the output active power approaches the set value 0 W within 1 s. The grid voltage is set to drop by 5%
and the three-phase current is sinusoidal with 8.8% THD. Since the current of phase A and the dc side is
sampled, the current of phases B and C is reconstructed. The reconstructed current ibr, icr, in Figure 13a
is close to actual output current ib,ic, which confirms the validity of the current reconstruction effect.

When the grid voltage rises by 5% at the rated value, the reference and actual output power,
three-phase voltage and current, the output line voltage of the inverter, reconstructed and actual
current of phases B and C are shown in Figure 13b, respectively. It can be seen from the results
that the reactive power decreases from 1000 Var down to 300 Var, which drops of 700 Var for grid
voltage stability. Although the active power falls at the beginning of voltage rise, it returns to the
reference value quickly. According to the VSG model, the electromagnetic torque Te affects the active
power regulation, while the output of reactive power control mfif affects Te according to Formula (5).
Therefore, when the reactive power changes, the active power will be affected. But when the reactive
power is stable, Te tends to be stable, and the active power is stable. When the reactive power decreases
in Figure 13, the output mfif of the reactive controller decreases, which results in the decrease of Te.
According to the power Formula (6), the active power will decrease. When the reactive power is stable,
the active power is stable. The three-phase grid-connected converter under the control of the proposed
method using reconstructed current has a good dynamic performance with 5.1% THD grid current.
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Figure 13. Experimental waveform of reactive power with voltage regulation (from top to bottom:
reference and actual active power Pset, P, reference and actual reactive power Qset, Q; grid voltage
ua,ub,uc, grid current ia,ib,ic; reconstructed and actual current of phases B and C ibr, icr, ib, ic): (a) the
grid voltage drops by 5%; (b) the grid voltage increases by 5%.

From the active power with frequency regulation and reactive power with voltage regulation
experimental results, the proposed MPC-VSG method based on current reconstruction is verified to
provide inertial support capability for the power grid and has effective control performance with fewer
current sensors.

5. Conclusions

This paper proposed an MPC strategy that ensures the VSG continuous operation after a phase
current-sensor fault. Firstly, the reference current is obtained by a VSG, which can participate in
the frequency and voltage regulation of the power grid through imitating the output characteristics
of synchronous generators. Secondly, the MPC method is used to obtain the predictive current
and optimal voltage vector by the cost function. Finally, the three-phase current is reconstructed in
case of current-sensor fault, and an improved voltage vector selection method is applied to reduce
reconstruction error. The experimental platform is built to test the performance of the proposed control
method. The main contribution of this paper is listed as follows:

(1) The grid-connected converter under the control of the proposed method can adjust the output
active or reactive power with the sinusoidal current to support the grid.

(2) The reconstructed current was analyzed, and the approach to relieving the increase of the error
caused by continuously selecting the same type of vectors was detailed.

(3) By applying the proposed MPC, the robustness of the power system with a high-penetration level
was enhanced due to the continuous operation ability after current-sensor fault.



Energies 2020, 13, 5435 15 of 16

However, the limitation of the proposed strategy is it can only solve single-phase current-sensor
fault. In order to maintain the VSG’s continuous operation ability after the current-sensor fault,
a non-current-sensor MPC strategy should be studied in the future.
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