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Abstract: In this paper, an effective simulation method for lightning impulse voltage tests of reactor
and transformer windings is presented. The method is started from the determination of the realized
equivalent circuit of the considered winding in the wide frequency range from 10 Hz to 10 MHz.
From the determined equivalent circuit and with the use of the circuit simulator, the circuit parameters
in the impulse generator circuit are adjusted to obtain the waveform parameters according to the
standard requirement. The realized equivalent circuits of windings for impulse voltage tests have
been identified. The identification approach starts from equivalent circuit determination based on a
vector fitting algorithm. However, the vector fitting algorithm with the equivalent circuit extraction
is not guaranteed to obtain the realized equivalent circuit. From the equivalent circuit, it is possible
that there are some negative parameters of resistance, inductance, and capacitance. Using such
circuit parameters from the vector fitting approach as the beginning circuit parameters, a genetic
algorithm is employed for searching equivalent circuit parameters with the constraints of positive
values. The realized equivalent circuits of the windings can be determined. The validity of the
combined algorithm is confirmed by comparison of the simulated results by the determined circuit
model and the experimental results, and good agreement is observed. The proposed approach is very
useful in lightning impulse tests on the reactor and transformer windings.

Keywords: lightning impulse voltage test; genetic algorithm; reactor and transformer windings;
vector fitting

1. Introduction

Transformers and reactors are employed in a high-voltage (HV) system in many applications.
The transformers are utilized for adjusting voltage levels in the AC transmission and distribution
systems. The reactors are utilized for limitation of over voltage, reactive power compensation,
tuned and detuned filters, and so on. During the operation of the transformers and the reactors,
there are possibilities in insulation failure due to direct lightning and electromagnetic-induced lightning
effects. Therefore, it is necessary to test the transformer and reactors with lightning impulse voltage for
being an assessment of the insulation performance of the transformers and reactors before installation.

The crucial problem in the lightning impulse voltage tests on the transformer and reactor winding
is the adjustment of the test voltage waveform according to the standard requirement. As shown
in Figure 1, the front time (T1), time to half (T2), and overshoot rate (βe) will be in the ranges of
1.2 µs ± 30% (0.84 µs to 1.56 µs), 50 µs ± 30% (40 µs to 60 µs), and less than 5%, respectively [1–5].
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Figure 1. Generated lightning impulse voltage waveform. 
Figure 1. Generated lightning impulse voltage waveform.

Conventionally, the generator circuit named Marx’s circuit, as shown in Figure 2, is applied
in the lightning impulse voltage tests. The charging capacitance (Cs) will be much higher than
load capacitance (Cb), since the efficiency of the circuit is necessary to be controlled at a high level
(normally more than 90%). The spark gap (G) is used as a high-voltage switch. It will be sparked
or switched on to connect the charging capacitor to the load for the generation of lightning impulse
voltage. For the front time and time to half, according to the standard requirement, the front time and
tail time resistances (Rd and Re) can be calculated by Equations (1) and (2) [6].

Rd =
T1

2.96

(
Cs + Cb

CsCb

)
(1)

Re =
T1

0.73

(
1

Cs + Cb

)
(2)
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Figure 1. Generated lightning impulse voltage waveform. 
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Practically, in the low frequency range (below 10 kHz) the winding can be represented well by 

an equivalent circuit of an inductor in parallel with a capacitor. It is noticed by Glaninger that, if the 

inductance of the winding is less than 15 mH, the conventional circuit is quite difficult to apply and 

it is difficult to adjust T2 to longer than 40 μs [7]. Therefore, Glaninger’s generator circuit, as 

illustrated in Figure 3, is recommended to apply in the lightning impulse voltage test.  
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Figure 2. Conventional generator circuit used in the lightning impulse voltage tests, where Cs is a 

charging capacitor, G is a spark gap, Re is a tail time resistor, Rd is a front time resistor, Cb is a load 

capacitor, and LL is a load inductor. 

In Glaninger’s circuit, as shown in Figure 3, the parallel connection of the additional inductor 

(Ld) with the front-time resistor (Rd) is used. This is for the purpose of extending the time to half in 

the impulse waveform. The parallel connection of the additional parallel resistor (Rp) with the test 

object is used for controlling the overshoot rate of the generated waveform. In 1978, K. Feser [8] 

proposed the approach for the selection of the appropriate circuit parameters—i.e. the charging 

Figure 2. Conventional generator circuit used in the lightning impulse voltage tests, where Cs is a
charging capacitor, G is a spark gap, Re is a tail time resistor, Rd is a front time resistor, Cb is a load
capacitor, and LL is a load inductor.

Practically, in the low frequency range (below 10 kHz) the winding can be represented well by
an equivalent circuit of an inductor in parallel with a capacitor. It is noticed by Glaninger that, if the
inductance of the winding is less than 15 mH, the conventional circuit is quite difficult to apply and it
is difficult to adjust T2 to longer than 40 µs [7]. Therefore, Glaninger’s generator circuit, as illustrated
in Figure 3, is recommended to apply in the lightning impulse voltage test.

In Glaninger’s circuit, as shown in Figure 3, the parallel connection of the additional inductor (Ld)
with the front-time resistor (Rd) is used. This is for the purpose of extending the time to half in the
impulse waveform. The parallel connection of the additional parallel resistor (Rp) with the test object
is used for controlling the overshoot rate of the generated waveform. In 1978, K. Feser [8] proposed the
approach for the selection of the appropriate circuit parameters—i.e. the charging capacitance (Cs),
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the front-time resistance (Rd), the additional inductance (Ld), and the additional parallel resistance (Rp),
as given in Equations (3) to (7). In addition, the appropriate tail-time resistor (Re) has to be selected to
obtain the undershoot voltage less than 50% of the peak voltage [7–11].

Cs ≈ T2
2/LL (3)

Rd =
(
0.4× 10−6

)
/Cb (4)

Ld = 1.25× 10−6Rd (5)

Rp = (RdLL)/Ld (6)

Re = 1.6
√

LL/Cs (7)
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Figure 3. Glaninger’s generator circuit for the lightning impulse voltage tests on the winding. 
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Figure 3. Glaninger’s generator circuit for the lightning impulse voltage tests on the winding.

However, the distortion in the waveform generated by the circuit with parameters from
K. Feser’s suggestion was noted. A trial and error approach, then, is employed to adjust the
circuit parameters to mitigate the waveform distortion and to obtain the waveform parameters,
according to the standard requirement. An alternative method was proposed based on a neural
network for the selection of appropriate Glaninger’s circuit parameters [11].

Another concern is that impedance characteristics cannot be represented well by only simple lump
elements throughout the frequency range of the applied lightning impulse voltage. Especially the
frequency dependent impedance of the winding in the higher frequency range (>10 kHz) affects the
waveform parameters—i.e. peak voltage, front time, time to half, and overshoot rate. In some cases,
it is quite hard to adjust such waveform parameters according to the standard requirement [1–5].
In practice, for the generation of the standard lightning impulse voltages on the transformer and
reactor windings, test engineers have to select appropriate components with their experience, and also
make attempts with trial and error approaches. The damage on the windings and their insulation,
therefore, can occur unintentionally during the process of the voltage waveform adjustment.

It is noted that the combination of an equivalent circuit of a transformer or reactor winding with
circuit parameters of an impulse generator has to be taken into account so that the proper impulse voltage
waveform can be generated during impulse tests. Simulation approaches have been proposed [12,13] to
investigate the interaction between a transformer or reactor winding and the impulse generator circuits.
These methods employ the results of frequency response analysis of the windings for computing
multi-port networks and input impedances of the windings. The network impedances combined
with the equivalent circuit of the impulse generator are utilized in the simulation in the frequency
domain, and the results in the time domain can be obtained by inversed Laplace transformation.
The generator circuit parameters are required to be adjusted to obtain the impulse voltage waveform
according to the standard requirement. The results have shown that such methods provide very high
accuracy. However, most of these methods require the construction of the complicated model and
computation, and it also cannot be implemented directly to the circuit simulator. It is advantageous for
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test engineers to use a circuit simulator, such as EMTP, to verify expected impulse voltage waveforms
when performing impulse tests of the transformer or reactor windings. To implement cases on the
circuit simulator, accurate equivalent circuits of the windings, as well as proper circuit components
of the impulse generator, have to be identified. Therefore, the number of attempts for the waveform
adjustment in the experiments will be reduced significantly, and the risk of the damage to the reactor
under the waveform adjustment process is also reduced.

In this paper, an approach for a realized equivalent circuit identification of the transformer and
reactor windings is presented. The determined equivalent circuit can be represented well by the
characteristic in the lightning impulse voltage test. With the accurate circuit model, the effective
approach based on the circuit simulation is also presented. The validity and accuracy of the proposed
approach are ensured by comparison between simulated and experimental results. This paper is
organized as follows. The identification of the accurate and realized equivalent circuit of the winding
is presented in Section 2. The approach based on simulation for the lighting impulse voltage tests of
the reactor and transformer windings is proposed in Section 3. Then, in Section 4, some study cases
are considered, and the comparison of the results used the proposed method and experiments are
presented for confirming the validity and accuracy of the proposed method. Finally, the conclusion is
addressed in the final section.

2. Equivalent Circuit Identification

For the equivalent circuit identification, the impedance of a transformer or reactor winding
was measured throughout the frequency range from 10 Hz to 10 MHz. The vector fitting [14] was
employed to extract the equivalent circuit by matching the model impedance with the measured one.
The equivalent circuit is composed of several series sets of RLC circuits, as shown in Figure 4.
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However, it is possible that negative circuit parameters can be found from the vector fitting. In this
paper, the circuit components with the negative values were changed to be positive with the same
absolute value. Such changed circuit components were set as starting values in a genetic algorithm
with constraints of the only positive values. The genetic algorithm [15] was employed to search for the
appropriate positive circuit parameters for obtaining the realized equivalent circuit and the guarantee
of the passivity condition.

The brief details of the vector fitting and the genetic algorithm are presented as follows:

2.1. Vector Fitting

The vector fitting is an approach for fitting a rational function as expressed in Equation (8).

F(s) = es + d +
n∑

i=1

(
resi

s− pi

)
(8)

where, F(s) is the considered fitting rational function; e and d are real coefficients; resi and pi are the
residue and the pole which can be either real numbers or complex conjugate pairs.

The approach has proven its performance in terms of stability, accuracy, and efficiency. The fine
detail of the vector fitting approach can be found in [14].
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For two rational terms with the complex conjugate pairs, the equivalent circuit can be represented,
as illustrated in Figure 5, and the impedance with Laplace variable (s) of the equivalent circuit can be
derived as Equation (9).

Zi(s) =
1

C1i

(
s + R1

Li

)
(
s2 +

(
1

R2iC1i
+ R1

Li

)
s +

( R1i
R2iLiC1i

+ 1
LiC1i

)) (9)
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The circuit parameters associated with Figure 5 and Equation (9)—i.e., C1i, R2i, Li, and R1i—can be
calculated from the poles (p1 and p2) and residues (res1 and res2) of the complex conjugate pairs using
Equation (10) to (13), respectively.

C1i =
1

(res1 + res2)
(10)

R2i = (res1 + res2)/
[
−(p1 + p2) +

(res1p2 + res2p1)

(res1 + res2)

]
(11)

Li =
(res1 + res2)

p1p2 +
[
−(p1 + p2) +

(res1p2+res2p1)
(res1+res2)

] × (res1 + res2)

(res1p2 + res2p1)
(12)

R1i =
L(res1p2 + res2p1)

(res1 + res2)
(13)

2.2. Genetic Algorithm

The genetic algorithm is a random-based classical evolutionary algorithm, which is often used for
solving the constrained and unconstrained optimization problems. A simple genetic algorithm [15,16]
applied in this paper relies on the process of natural selection, which is composed of reproduction,
selection, crossover, and mutation. In this paper, parameter estimation based on a genetic algorithm
(GA) [15,16] is employed to search for the most appropriate circuit parameters, in which the impedances
of the transformer or reactor winding from calculation using the equivalent circuit model and experiment
are matched. The objective function (Ob(X)), which the genetic algorithm uses in the minimization,
is shown in Equation (14).

Ob(X) =
n∑

k=1

(
Zo(exp)(k) −Zo(sim)(X, k)

)2
(14)

where, X is the unknown circuit parameters—i.e. C1i, R2i, Li, and R1i; Zo(exp) and Zo(sim) are the
impedances from the experiment and the simulation model using the lumped circuit model, as shown
in Figure 4; k is the k th frequency point, and n is the number of frequency points of the measured and
simulated impedances. Only positive values of the parameters were set as the constraints in the genetic
algorithm. The flowchart of parameter optimization for searching the proper circuit parameters by the
genetic algorithm is shown in Figure 6.
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3. Procedures of the Effective Approach

The procedure of the proposed method starts from the measurement of the input impedance of
the considered winding. The impedance analyzer, shown in Figure 7, is used to measure the input
impedance from the frequency range of 10 Hz to 10 MHz. Figure 7 also shows the example of the
experimental set up for the measurement of input impedance of the reactor and transformer windings.
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Figure 7. Experimental set up for measuring input impedance of the windings, where (1) is the winding
under test, (2) is the impedance analyzer, and (3) is the transformer under test. (a) Reactor winding
under tests. (b) Transformer winding under tests.

The flowchart of the proposed approach is presented in Figure 8. In steps 1 and 2, the proposed
approach is initiated from the identification of the realized equivalent circuit of the considered
winding, as presented in Section 2. Then, the generator circuit is selected from the criteria of the low
frequency inductance (LL), which can be determined from the impedance in the low frequency range
from 1 kHz to 5 kHz. When LL is less than 15 mH, the Glaninger circuit, as shown in Figure 3, will be
recommended to represent the generator circuit [7]. For other values of LL, the conventional circuit in
Figure 2 will be selected as the generator circuit. From the identified equivalent circuit of the winding
and the selected generator circuit parameters, the circuit simulator is utilized to compute the generated
waveform, and the waveform parameters are evaluated according to the standards, IEC 60060-1 [1] and
IEC 61083 [17–20]. If the waveform parameters are not in accordance with the standard requirement,
the circuit parameters of the generator circuit will be adjusted until the waveform parameters are
required by the standard are obtained. The determined generator circuit parameters are employed in
the actual lightning impulse voltage tests.
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4. Case Studies

To validate and investigate the accuracy of the proposed approach, case studies were performed
on a reactor, a power transformer, and two distribution transformers.

4.1. Reactor

In this case, a reactor with an inductance of 1.3 mH was considered. With the proposed approach,
the equivalent circuit of an air-core reactor was extracted from the measured input impedance of the
reactor. The number of RLC sets was four, as shown in Figure 9. The circuit parameters determined
by the vector fitting and proposed algorithms are expressed in Tables 1 and 2. It is found that some
parameters determined by the vector fitting algorithm are negative real, and the proposed algorithm
(combination of the vector fitting and genetic algorithms) can find the realized appropriate circuit
parameters (positive real). The good agreement between impedances from the experiment and the
equivalent circuit model are observed and shown in Figures 10 and 11.
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Table 1. Circuit parameters determined by the vector fitting approach.

Section No.
Circuit Parameters

R1i (Ω) Li (mH) R2i (kΩ) Ci (pF)

1 42.95 0.0239 40.18 85.57
2 −13.86 0.0860 13.80 659.30
3 −15.05 0.1087 6.649 532.60
4 −22.43 1.1680 30.24 663.90

Table 2. Circuit parameters determined by the proposed approach.

Section No.
Circuit Parameters

R1i (Ω) Li (mH) R2i (kΩ) Ci (pF)

1 0.000 0.0079 0.309 268.20
2 0.001 0.0224 4.286 549.40
3 0.001 0.1087 13.030 532.60
4 0.021 1.1680 49.190 663.90

Energies 2020, 13, x FOR PEER REVIEW 9 of 19 

 

realized appropriate circuit parameters (positive real). The good agreement between impedances 

from the experiment and the equivalent circuit model are observed and shown in Figures 10 and 11. 

R22

R12L2

C12

R21

R11L1

C11

R24

R14L4

C14

R23

R13L3

C13

 

Figure 9. An extracted equivalent circuit of an air-core reactor. 

Table 1. Circuit parameters determined by the vector fitting approach. 

Section No. 
Circuit Parameters 

R1i (Ω) Li (mH) R2i (kΩ) Ci (pF) 

1 42.95 0.0239 40.18 85.57 

2 −13.86 0.0860 13.80 659.30 

3 −15.05 0.1087 6.649 532.60 

4 −22.43 1.1680 30.24 663.90 

Table 2. Circuit parameters determined by the proposed approach. 

Section No. 
Circuit Parameters 

R1i (Ω) Li (mH) R2i (kΩ) Ci (pF) 

1 0.000 0.0079 0.309 268.20 

2 0.001 0.0224 4.286 549.40 

3 0.001 0.1087 13.030 532.60 

4 0.021 1.1680 49.190 663.90 

From the experiment

From the proposed method

 

Figure 10. Magnitude of input impedances of the reactor from the measurement and the proposed 

method. 

Figure 10. Magnitude of input impedances of the reactor from the measurement and the
proposed method.Energies 2020, 13, x FOR PEER REVIEW 10 of 19 

 

From the experiment

From the proposed method

 

Figure 11. Phase of input impedances of the reactor from the measurement and by the proposed 

method. 

This determined model has to be employed in combination with an impulse voltage generation 

circuit. From the flowchart shown in Figure 8, in the case that the inductance is less than 15 mH, 

Glaninger’s circuit must be employed for impulse voltage generation [7]. To present the necessity of 

Glaninger’s circuit for the generation of the standard lighting impulse voltage waveform on the low 

inductance load, the determined model with the conventional generator circuit is considered. In this 

case the capacitance of the model is quite low (less than 1 nF), so it is necessary to add a load 

capacitance (Cb) of 2 nF in the generation circuit. In case 1, the charging capacitance was set to be 0.5 

μF, and the calculated front and tail time resistances (Rd and Re) by Equations (1) and (2) are 200  

and 150 , respectively. As shown in Figure 12, the front time and time to half are 1.23 μs and 5.57 

μs, respectively. Based on the conventional circuit, to increase the time to half the Re and Cs should be 

increased. In case 2, Re was set to be infinity or no tail time resistor connected in the generator circuit. 

The front time and time to half are 1.29 μs and 6.30 μs, respectively. In case 3, there was no tail time 

resistor connected in the generator circuit and Cs was changed to be 3 μF, but the front time and time 

to half are 1.30 μs and 6.62 μs, respectively. All generated waveforms are presented in Figure 12. It 

can be concluded that the conventional circuit is not appropriate to use in the generation of the 

standard lightning impulse voltage in the cases of low inductance loads. 

 

Figure 12. Generated waveforms by the conventional circuit. 

The equivalent circuit of the completed test system (an identified model and an impulse 

generator circuit) is presented in Figure 13. Additionally, the experimental set up for lightning 

impulse voltage generation on the reactor is shown in Figure 14. The initial impulse generator circuit 

parameters are calculated by Equation (3) to (7). The generated waveform with these circuit 

Figure 11. Phase of input impedances of the reactor from the measurement and by the proposed method.



Energies 2020, 13, 5399 10 of 19

This determined model has to be employed in combination with an impulse voltage generation
circuit. From the flowchart shown in Figure 8, in the case that the inductance is less than 15 mH,
Glaninger’s circuit must be employed for impulse voltage generation [7]. To present the necessity
of Glaninger’s circuit for the generation of the standard lighting impulse voltage waveform on the
low inductance load, the determined model with the conventional generator circuit is considered.
In this case the capacitance of the model is quite low (less than 1 nF), so it is necessary to add a load
capacitance (Cb) of 2 nF in the generation circuit. In case 1, the charging capacitance was set to be
0.5 µF, and the calculated front and tail time resistances (Rd and Re) by Equations (1) and (2) are 200 Ω
and 150 Ω, respectively. As shown in Figure 12, the front time and time to half are 1.23 µs and 5.57 µs,
respectively. Based on the conventional circuit, to increase the time to half the Re and Cs should be
increased. In case 2, Re was set to be infinity or no tail time resistor connected in the generator circuit.
The front time and time to half are 1.29 µs and 6.30 µs, respectively. In case 3, there was no tail time
resistor connected in the generator circuit and Cs was changed to be 3 µF, but the front time and time
to half are 1.30 µs and 6.62 µs, respectively. All generated waveforms are presented in Figure 12. It can
be concluded that the conventional circuit is not appropriate to use in the generation of the standard
lightning impulse voltage in the cases of low inductance loads.
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Figure 12. Generated waveforms by the conventional circuit.

The equivalent circuit of the completed test system (an identified model and an impulse generator
circuit) is presented in Figure 13. Additionally, the experimental set up for lightning impulse voltage
generation on the reactor is shown in Figure 14. The initial impulse generator circuit parameters
are calculated by Equation (3) to (7). The generated waveform with these circuit parameters is
not in accordance with the standard requirement, so these parameters required further adjustment.
The proper circuit parameters are given in Table 3. Good agreement of the simulated and experimental
voltage waveforms is observed, and the results are shown in Figure 15. The front time (T1), the time
to half (T2), and the overshoot rate (βe) collected from the experiment are 1.35 µs, 42.0 µs, and 4.60%,
respectively, whereas T1, T2, and βe from the simulation using the proposed model are 1.51 µs, 42.3 µs,
and 3.11%, respectively. These parameters are in the accepted ranges of the standard requirement.
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4.2. Power Transformer

In this case, a power transformer (60 MVA 115 kV/24 kV) was considered. With the proposed
approach, the equivalent circuit of a 24-kV winding was extracted. The number of RLC sets was four,
as shown in Figure 9. The realized circuit parameters are expressed in Table 4. The good agreement
between impedances from the experiment and the equivalent circuit model are observed and shown in
Figures 16 and 17.

Table 4. Circuit parameters determined by the proposed approach.

Section No.
Circuit Parameters

R1i (Ω) Li (mH) R2i (kΩ) Ci (nF)

1 0.000 0.0018 0.021 4.450
2 0.101 0.0063 0.061 14.130
3 0.402 0.2350 0.819 16.120
4 0.515 5.2400 10.120 8.663
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Figure 17. Phase of input impedances of the transformer winding from the measurement and by the
proposed method.

This determined model was employed in the proposed method in lightning impulse voltage
test. As with the procedure in Section 3, the low frequency inductance of 5.58 mH was computed.
Therefore, Glaninger’s circuit is recommended to employ as an impulse voltage generation circuit.
The equivalent circuit of the completed test system (an identified model and an impulse generation
circuit) is presented in Figure 18. The initial impulse generator circuit parameters are calculated by
Equations (3) to (7). The generated waveform with these circuit parameters is not in accordance
with the standard requirement, so these parameters require further adjustment. The proper circuit
parameters are given in Table 5. The good agreement of the simulated and experimental voltage
waveforms is observed, and the results are shown in Figure 19. The front time (T1), the time to half (T2),
and the overshoot rate (βe) collected from the experiment are 1.15 µs, 41.0 µs, and 4.23%, respectively,
whereas T1, T2, and βe from the simulation using the proposed model are 1.41 µs and 41.9 µs, and 3.32%,
respectively. These parameters are in the accepted ranges of the standard requirement.
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4.3. Distribution Transformer

In this part, two distribution transformers are considered. In the first case of the distribution
transformers, a distribution (2 MVA 420 V/24 kV) was considered. With the proposed approach,
the equivalent circuit of a 24-kV winding was extracted. The number of RLC sets was 3. The realized
circuit parameters are expressed in Table 6. The good agreements between impedances from the
experiment and the equivalent circuit model are observed and shown in Figures 20 and 21.

Table 6. Circuit parameters determined by the proposed approach.

Section No.
Circuit Parameters

R1i (Ω) Li (mH) R2i (kΩ) Ci (nF)

1 0.00 0.0054 0.071 11.30
2 0.06 0.3352 0.767 18.10
3 0.95 31.0200 9.876 3.13
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Figure 21. Phase of input impedances of the transformer winding from the measurement and by the
proposed method.

This determined model was employed in the proposed method in lightning impulse voltage test.
As with the procedure in Section 3, the low frequency inductance of 31.0 mH was computed. Therefore,
the conventional circuit, as shown in Figure 2, is recommended as an impulse voltage generation circuit.
The equivalent circuit of the completed test system (an identified model and an impulse generation
circuit) is presented in Figure 22, and the experimental set up is also presented in Figure 23. The initial
generator circuit parameters are calculated by Equations (1) to (2). The generated waveform with
these circuit parameters is not in accordance with the standard requirement, so these parameters are
required for further adjustment. The proper circuit parameters are given in Table 7. Good agreement of
the simulated and experimental voltage waveforms is observed, and the results are shown in Figure 24.
The front time (T1), the time to half (T2), and the overshoot rate (βe) collected from the experiment are
1.02 µs, 52.5 µs, and 3.52%, respectively, whereas T1, T2, and βe from the simulation using the proposed
model are 1.21 µs and 53.9 µs, and 1.71%, respectively. These parameters are in the accepted ranges of
the standard requirement.
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In the second case of the distribution transformers, a distribution (250 kVA 420V/22 kV) was
considered. With the proposed approach, the equivalent circuit of a 22-kV winding was extracted.
The number of RLC sets was 2. The realized circuit parameters are expressed in Table 8. The good
agreements between impedances from the experiment and the equivalent circuit model are observed
and shown in Figures 25 and 26.

Table 8. Circuit parameters determined by the proposed approach.

Section No.
Circuit Parameters

R1i (Ω) Li (mH) R2i (kΩ) Ci (nF)

1 2.42 7.353 9.752 10.02
2 48.3 331.2 159.09 0.741
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Figure 26. Phase of input impedances of the transformer winding from the measurement and by the
proposed method.

This determined model was employed in the proposed method in a lightning impulse voltage
test. As with the procedure in Section 3, the low frequency inductance of 320.3 mH was computed.
Therefore, the conventional circuit, as shown in Figure 2, is recommended as an impulse voltage
generation circuit. The equivalent circuit of the completed test system (an identified model and
an impulse generation circuit) is presented in Figure 22. The initial generator circuit parameters,
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calculated by Equations (1) to (2), can be used for lightning impulse voltage properly. The proper
circuit parameters are given in Table 9. Good agreement of the simulated and experimental voltage
waveforms is observed, and the results are shown in Figure 27. The front time (T1), the time to half (T2),
and the overshoot rate (βe) collected from the experiment are 1.15 µs, 45.1 µs, and 0.52%, respectively,
whereas T1, T2, and βe from the simulation using the proposed model are 1.09 µs and 43.9 µs, and 0.61%,
respectively. These parameters are in the accepted ranges of the standard requirement.

Table 9. Selected circuit parameters of the lightning impulse voltage generation circuit.

Circuit Parameters

Cs (µF) Re (Ω) Rd (Ω) Cb (nF)

0.5 150.0 500.0 0.0
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Figure 27. Comparison of the generated impulse voltage waveforms collected from the experiment
and computed by the proposed method.

5. Conclusions

In this paper, the effective simulation approach for lightning impulse voltage tests of transformer
and reactor windings has been proposed. In this approach, a combination between an accurate wide
frequency model (10 Hz to 10 MHz) of transformer as well as reactor windings and the proper impulse
generation circuit has been described. For the realized equivalent identification of the windings,
the combined methods of the vector fitting and the genetic algorithm have been employed. The vector
fitting has been utilized to determine the starting circuit parameters, and the genetic algorithm has
been employed to search for the realized circuit parameters (positive values). Case studies have
been performed on a reactor, a power transformer, and two distribution transformers. Additionally,
experiments have been carried out to confirm the validity of the proposed approach. From the good
agreements of the simulated and the experimental results, the validity with a promising accuracy
has been confirmed. It has been shown that the realized circuit parameters of the winding high
frequency model function very well with the proper impulse generation circuits (both Glaninger’s
circuit and conventional circuit) in effective simulation approaches for impulse voltage testing on
transformers and reactors. From this achievement, the possibility of the damage on the windings and
their insulation occurring unintentionally during the process of the voltage waveform adjustment will
be reduced significantly.
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