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Abstract: The paper presents the results of research on liquid flow maldistribution in the shell
side of a shell-and-tube heat exchanger (STHE). This phenomenon constitutes the reason for the
formation of the velocity reduction area and adversely affects heat transfer and pressure drop.
In order to provide details of the liquid distribution in STHE, two visualization methods were utilized.
First, computational fluid dynamics (CFD) code coupled with the k-ε model and the laser-based
particle image velocimetry (PIV) technique was applied. The tests were carried out for a bundle
comprising 37 tubes in an in-line layout with a pitch dz/t = 1.5, placed in a shell with Din = 0.1 m.
The STHE liquid feed rates corresponded to Reynolds numbers Rein equal to 16,662, 24,993, and 33,324.
The analysis demonstrated that the flow maldistribution in the investigated geometry originates the
result of three main streams in the cross-section of the shell side: central stream, oblique stream,
and bypass stream. For central and oblique streams, the largest velocity reduction areas were formed
in the wake of the tubes. On the basis of the flow visualization, it was also shown that the in-line layout
of the tube bundle helps to boost the wake region between successive tubes in a row. Additionally,
unfavorable vortex phenomena between the last row of tubes and the lower part of the exchanger
shell were identified in the investigations. The conducted studies confirmed the feasibility of both
methods in the identification and assessment of fluid flow irregularities in STHE. The maximum error
of the CFD method in comparison to the experimental methods did not exceed 7% in terms of the
pressure drops and 11% in the range of the maximum velocities.

Keywords: CFD; PIV; shell-and-tube; shell side; tube bundle; heat exchanger; baffle; maldistribution

1. Introduction

Shell-and-tube heat exchangers (STHEs) find widespread applications in industry. They are
utilized not only in areas whose purpose is only heat exchange but also in devices that are applied to
perform other processes in technology. Consequently, the performance of many processes is dependent
on the operating parameters of heat exchangers. The improvement of the operating parameters of heat
exchangers is associated mainly with the need to perform geometric modifications sometimes leading
to the comprehensive redesign of heat exchangers and thus the development of new types of devices.
Another direction of modifications can be associated with material use that ensures better heat transfer
parameters coupled with adequate strength parameters of heat exchangers. Extensive research is also
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carried out in the areas concerned with selecting optimal parameters of fluid flow in the heat exchanger.
One of the first significant modifications to the STHE was associated with the use of segmental baffles
in the shell side. The use of baffles leads to the fluid flow in such a way that its turbulence is increased,
which directly contributes to the improvement of the performance of the heat exchangers. Although
new heat exchanger designs have emerged in recent years, STHEs are still a standard solution in many
cases and in some cases forms the only viable solution. Today, the development research of industrial
flow equipment is most often carried out in two stages. Initially, analysis using computational fluid
dynamics (CFD) is performed, whose main purpose involves the selection the most suitable alternative
of the investigated parameters among many possibilities. Then, experimental verification of selected
parameters is performed. In this area, in particular, methods based on optical techniques are recognized
in all fields of engineering and contribute to a significant increase in the reliability of the results gained
on the basis of CFD codes. One of the most popular techniques currently utilized for this purpose is
particle image velocimetry (PIV). It is one of the laser-based methods that allows the representation and
analysis of the velocity fields in an investigated region. As a consequence, PIV offers a complementary
tool to the application of CFD. Numerical and experimental investigations of classical STHEs with
baffles are often undertaken in a variety of papers (see the following sections). However, little research
has dealt with identifying flow structures and examining flow maldistribution across the tube bundle.
The aim of this paper is to demonstrate the role taken by the adequate selection of flow parameters
in the generation of variations of the local flow velocity in the device, which in turn led to flow
maldistribution. In addition, the results should serve to provide assistance to an extensive group of
researchers who carry out CFD tests in flow systems containing tube bundles in a variety of devices.

1.1. Insights from Literature in the Field of CFD Application in Heat Exchangers

Following the rapid development of computer techniques, research applying CFD methods is
becoming increasingly common. Due to a number of advantages (e.g., low research costs, easy design
modifications in the investigated devices, access to the common results), this method can provide the
ready solution to the ever increasing economic and technical demand for devices applied in chemical
and process engineering. The CFD method has been successfully applied on many occasions in research
concerned with the description of the flow and heat transfer phenomena and the optimization of heat
exchangers. When we perform an analysis of research on using the CFD method in heat exchangers,
we can make particular reference to the study reported by Bhutta et al. [1], which forms an overview
of the studies carried out by application of this method. The authors state that the CFD method was
applied in the studies involving fluid flow maldistribution, pressure drop and thermal analysis, fouling,
and in the design and optimization phases. A variety of interesting results can be found in the area
of plate-fin heat exchangers, where flow maldistribution forms one of the major factors affecting the
decrease of the effective heat exchange [2–4].

Kim et al. [5] performed an assessment of the types of flow patterns in STHE. For this purpose,
three types of headers were investigated: A, B, and C. The conclusion is that the design with the longest
fin offers the best performance. Ozden et al. [6] carried out a study by application of the same type
of the heat exchanger. The conclusion section contains a statement that few recirculation regions are
formed at the rear of the baffles when the number of baffles is small.

A large proportion of research works takes on the subjects concerned with the aspects of pressure
drop reduction. Wang and Dong [7] conducted the research on various types of supporting structures
applied for STHEs. The authors concluded that their geometry forms an important aspect in terms of
the performance of the devices. As a result of the comparison of six types of supporting structures,
it was demonstrated that rod elements are the most reliable and suitable supporting structure with a
minimum pressure drop.

The study by Wang et al. [8] contains a statement that the pressure drop of a combined multiple
shell-pass shell-and-tube heat exchanger tends to be lower than shell-and-tube heat exchanger with
segmental baffles, for the same heat transfer conditions by almost 13%. Mohammadi et al. [9]
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demonstrated that the heat exchanger comprising a horizontal baffle has a 20% higher heat transfer
coefficient combined with 250% greater pressure drop than the one with vertical baffles. Other examples
of works concerned with STHEs and focusing on heat exchange aspects include articles Ozden and
Tari [6] and Raj and Velraj [10].

A noteworthy research is reported in Sun et al. [11]. The authors investigated the effects of the
application of inclined trefoil-hole baffles on the performance of STHEs. For this purpose, a comparison
of this design with a similar model of the heat exchanger equipped with segmented baffles was
performed. The comparison of numerical calculations demonstrated that the heat transfer coefficient in
the exchanger with inclined trefoil-hole baffles is lower by 23.89% than in the exchanger with standard
segmented baffles. However, a significant decrease in pressure drop was observed (pressure drop
decrease was equal to 44.19%), which resulted in the higher specific value of the heat transfer coefficient
related to the pressure drop by 36.38% than in the traditional heat exchanger design. The literature
also contains studies on fouling in various types of heat exchangers (e.g., Jun and Puri [12], De Bonis
and Ruocco [13]).

A detailed analysis of the studies available in the field of CFD application and concerned with
heat exchangers indicates that several models can be applied to successfully represent turbulent flow.
The obtained experimental results have repeatedly confirmed the compliance of CFD applications with
the results of other research techniques in the validation processes. The standard k-εmodel forms the
most commonly model applied in the literature. The use of this model ensures high compliance of
CFD test results with experimental tests (the range of the error in the analyzed works was from 2% to
10%) with the minimum possible load of computational units [1].

1.2. Insights from the Literature in the Field of PIV Application in Heat Exchangers

The common applications of the PIV method in the studies concerned with heat exchangers often
involve studies concerned with the effect of the geometry of individual structural elements on either
hydrodynamics or aerodynamics of the fluid flow. Such issues were raised e.g., by Iwaki et al. [14].
Using the PIV method, the study investigated the variations in the hydrodynamic characteristics of
liquid flow across the tube bundle depending on the layout of the tubes in the bundle. The experiments
were performed for in-line and staggered bundles with a pitch to diameter ratio of 1.5. The research
demonstrated that parameters such as velocity distribution, flow structures, wake, and turbulent
structures in the tube bundles should be taken into account when heat exchangers are designed,
as formation of these structures is considerably dependent on the geometrical conditions in which
fluid flow occurs. During the measurements, it was noted that turbulence for the staggered system
behind the second row of pipes increases to a greater extent than for the in-line system. It was
also confirmed that the flow in the staggered system was more homogeneous, since such geometry
results in the mixing of flow streams and stabilization of the flow structure over a shorter distance.
The extension of the above research to be applied with regard to the conditions of two-phase gas-liquid
flow can be found in study: Vertical, bubbly, cross-flow characteristics over tube bundles [15]. In a
study conducted in a system with a similar geometry, it was found that despite the fact that the
difference in turbulence intensity between two configurations decreased in comparison to two-phase
and single-phase conditions, the degree of turbulence in a staggered system still remains higher than in
an in-line system. An important conclusion contained in this publication also includes the confirmation
of the possibility of the application of computer image analysis in the measurement of velocities of
both the liquid and gas phases and in the determination of the void fractions.

More complex shell-side geometry was previously investigated (e.g., Zhang et al. [16]), where the
investigation involved the distribution of oil flow in a disc-type transformer winding. Despite the
difficult imaging, it was noted that total volume of liquid derived from the PIV measurements
is constantly slightly higher compared to the results gained by measurements using a flowmeter.
The authors also pointed out that the end-wall effects in such geometry are usually neglected. We can
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note that such effects should be considered important in the experimental research concerned with
various types of shell-side designs in heat exchangers.

The first attempt of visualizing PIV flow in an industrial heat exchanger was reported in paper
Planar PIV experiments inside a transparent shell-and-tube exchanger [17]. This investigation involved
the classic STHE with an internal diameter of 0.301 m and a bundle of 54 tubes with a diameter
of 0.2 m. The authors carried out their research in their subsequent works (Turbulent flow in a
no-tube-in-window shell-and-tube heat exchanger [18], Two-Phase Flow Regimes in Exchangers and
Piping: Part 1. [19]), where a description was provided of the case of the shell side with four segmental
baffles, for which the characteristic velocity contours were determined in different span-wise locations.
It was indicated in the study that individual streamlines are superimposed as well as stagnation points
are identified. In the research, it was clearly demonstrated that in the case of testing of flows in as
complex geometries as in the case of shell side, it is very important to combine experimental research
and CFD.

The literature also includes research on fluid distribution systems in heat exchangers. Tests of
this type were carried out in the shell side as well as in the tube side. Wang et al. [20] investigated the
effects of the introduction of two types of porous baffles installed with the purpose of regulating fluid
distribution in the inlet part to the tube side and in the splitter bar to the tubes. It was found that the
use of porous baffles can lead to a significant improvement of the fluid distribution. The comparison
of the straight and arc baffle demonstrated that the latter offers better performance of the rectification
process. In contrast, the introduction of a splitter bar into the tubes effectively reduces vortex formation
in the tube side.

The issues associated with improvement of fluid distribution in heat exchanger tubes were also
reported in article PIV measurement of flow structures in a circular heat exchange tube with central
slant rod inserts [21]. The authors determined the liquid flow velocity fields in a circular heat exchange
tube with central slant rod inserts using the stereoPIV method and additionally, on the basis of CFD
simulations, the characteristics of heat transfer were determined. This study also demonstrated that the
number of generated vortices is relative to the geometry of the central slant rod and the vortex intensity
increases with the increase of the Reynolds number. The uncertainty of the velocity field measurement
was also estimated, and it was demonstrated that the maximum relative errors for the velocities in
the x, y and z directions are equal to approximately 3%, 6%, and 1.5%, respectively. The work also
included a comparison of the results obtained by CFD simulations and experiment results using the
stereoPIV technique, and it was found that the deviations of vorticity and z-velocity distribution are
found within the range of 8% and 5%, respectively. Therefore, the study contains a conclusion that the
overall efficiency of heat transfer in tubes equipped with central slant rod inserts is reliable.

The analysis of fluid flow in the shell side was also investigated by Lee at al. [22] and Delgado
at al. [23]. The two works report the results of flow visualization using the PIV method in a helical
coil steam generator. In the research, the authors observed several dark regions resulting from the
difficulties of applying the PIV method for the analysis in the shell side. In order to improve the
measurement methodology in the work of Delgado at al. [24], the optical system was coupled with a
Scheimpflug module and a computer image correction was applied, and consequently, the image was
converted from trapezoidal to rectangular. The authors noted, however, that the use of the Scheimpflug
module resulted in a maldistribution of the light and led to shadow formation in the tube bundle.
Hence, it was therefore necessary to use a Gaussian distribution for the color scale and the image
brightness was increased by 20% for the purposes of obtaining better identification of seeding particles
on this side of the image, where illumination was unsatisfactory. Besides, Im at al. [25] discussed
obstacles faced during imaging process in the shell side. In the case of large field of view, a greater
part of the area that could be potentially applied for flow analysis of the shell side was obstructed by
horizontal heating rods. Consequently, the velocity vectors in these areas were found to be incorrect.
This problem did not occur in the case of local measurements using small fields of view.
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The effect of segmented baffles on the STHE performance was analyzed by Chang et al. in [26].
Tests were performed by application of a heat exchanger with two baffles located along a tube bundle.
Velocity profiles between the baffles for co-current and countercurrent flow were determined for this
purpose. CFD simulations were also performed, the results of which were identical to the reported PIV
experiment. The paper also discussed the effect resulting from the presence of an intense liquid stream
in the bottom part of the shell side. This phenomenon was linked to clearance between the baffle and
the shell of heat exchanger. During the research, a zone of large circulation behind the baffle was also
identified. There were also differences in the liquid distribution depending on the technique applied to
feed fluid into the heat exchanger.

A testing procedure carried out along the tube bundle for the case of a heat exchanger comprising
helicoidal baffles was reported by Wen et al. [27]. In this case, researchers conducted an experiment
with the purpose of comparing standard plain helical baffles with an improved fold helical baffle
design in which a triangular gap forming between adjacent baffles was embedded. The upgraded
baffle made it possible to obtain better heat transfer characteristics coupled with virtually unchanged
pressure drops. The performance of such a heat exchanger increased in the same flow conditions in the
range from 2% to 8%, and the results correlated very well with the analysis of velocity field changes
obtained on the basis of PIV tests.

In the summary of the literature in the field of PIV research concerned with heat exchangers, we can
note the widespread use of this technique. The analyzed cases apply a wide range of geometries and
flow parameters and in the conditions combined with adequately selected measurement methodology,
the results derived from PIV measurements are well simulated by means of computer techniques as
well as other experimental measurement techniques.

1.3. The Research Gap and the Adopted Target of the Study

As we can see from Sections 1.1 and 1.2, studies of the flow maldistribution in STHEs have so
far been carried out mainly in model rectangular geometries, along a tube bundle, or due to the
perspective phenomenon in a limited region captured by a camera. While reviewing the state of the art,
papers could not be found that address the subjects related to simultaneous CFD and PIV studies of
fluid flow maldistribution in STHE on an industrial scale, with segmented baffles across a tube bundle
and carried out by means of imaging of the complete cross-section the shell side. There were also no
works concerned with identifying and analyzing the role of fluctuating vortex phenomena occurring
in the bottom part of the shell side. Currently, designers and operators of STHE obtain information
about the flow in these devices primarily from industry standards. Therefore, extending the state of
knowledge with data obtained with the use of modern non-invasive measurement methods forms an
important task from many points of view. Validation of the numerical model and assessment of the
flow in the actual geometry of the cross-section of a tube bundle, taking into account the synergy of a
variety of geometric and flow factors form a novelty in this research. Therefore, the purpose of the
research was the use of CFD and PIV methods to demonstrate the role taken on by flow and geometrical
parameters in the generation of variations of the local flow velocities in the device, which in turn
lead to flow maldistribution and evolution of flow structures in the shell side. In addition, the results
should serve to provide assistance to an extensive group of researchers who carry out CFD and PIV
tests in flow systems containing tube bundles in a variety of devices.

2. Materials and Methods

2.1. Numerical Model and Computational Scheme

In numerical research, finite volume method (FVM) was utilized for the analysis of flow fields
and flow parameters on the basis of Ansys Fluent CFD code. The pressure-based solution method
segregated solver was applied for this purpose. The pressure-velocity coupling was performed with
the semi-implicit method for pressure linked equations (SIMPLE) algorithm [28]. This algorithm
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was successfully utilized in research concerned with heat exchangers in a number of works [29–35].
Second-order upwind interpolation was used to determine representative samples of component values
on the control volume surface and standard wall function. Variable values of under-relaxation factors
were determined. They were equal to 0.6, 0.5, 0.8, and 0.8 for the pressure, momentum, turbulent
kinetic energy, and turbulent energy dissipation, respectively. The following convergence criteria were
adopted: 1 × 10−7 for the continuity equations, and 1 × 10−5 for others. Boundary conditions for the
inlet: “velocity inlet” (turbulence intensity: 5%, hydraulic diameter: 0.1); for the outlet: “pressure
outlet.” A no slip boundary condition was used along the surface of the heat exchanger. Figure 1
presents the computational domain in an isometric view.

Figure 1. Isometric view of the computational domain.

The standard k-εmodel was used as a closing model in simulations of turbulent flow incorporating
Reynolds-averaged Navier–Stokes equations (RANS). It has been widely used for CFD research on
heat exchangers [29–34,36]. The governing equations in the computational domain are presented in
the following forms [37]:
continuity part:

∂u j

∂x j
= 0 (1)

momentum part:

ρ
∂
(
uiu j

)
∂x j

= −
∂pi

∂xi
+

∂
∂x j

[
µ

(
∂ui
∂x j

+
∂u j

∂xi

)]
(2)

energy part:

ρ
∂
(
u jT

)
∂x j

=
∂
∂x j

(
λ
Cp

∂T
∂x j

)
(3)

where u is the averaged velocity of the fluid [m/s]; p is pressure; ρ is the density of the fluid; T is
temperature; µ is the kinematic viscosity of the fluid [m2/s]; Cp is the specific heat capacity [J/kgK];
and λ is the thermal conductivity [W/mK].

The regular k–e model is adopted to simulate turbulent flow in present paper, which is presented as:
turbulent kinetic energy part:

ρ
∂(kui)

∂xi
=

∂
∂x j

[(
µ+

µT

σk

)
∂k
∂x j

]
+ Gk − ρε (4)
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turbulent energy dissipation part:

ρ
∂(εui)

∂xi
=

∂
∂x j

[(
µ+

µT

σε

)
∂ε
∂x j

]
+

C1εε
k

Gk −C2ερ
ε2

k
(5)

where k is turbulent kinetic energy [m2/s2], ε is turbulent dissipation rate [m2/s3], Gk is producing term
of turbulent kinetic energy generated by mean velocity gradient, C1ε and C2ε are constants, σε and σk
are Prandtl numbers corresponding to turbulent kinetic energy and turbulent dissipation rate, and µT
[Pas] is expressed as

µT = ρCµ
k2

ε
(6)

where Cµ = 0.09 [-], C1ε = 1.44 [-], C2ε = 1.92 [-], σk = 1.0 [-], σε = 1.3 [-], and Gk [-] is defined as

Gk = −ρu′i u
′

j

∂u j

∂xi
(7)

2.2. Application of Particle Image Velocimetry Technique

The PIV technique forms one of the most common experimental methods that is applicable for
verification of CFD models. It forms an optical method in which specific conditions of an experiment
have to be fulfilled. It is necessary to ensure the transparency of the surface of the investigated device
and illumination of the selected plane of the device with a coherent light, and thus the formation of a
laser sheet plane. The illuminated phenomena are registered with a camera synchronized with the
light source. In order to visualize the flow of the fluid, it is necessary to add suitably selected inert
seeding particles to it in order to match the flow and physicochemical parameters of the fluid. The PIV
technique uses the relationship between the displacement (in direction x and y defined as ∆x and ∆y
respectively) of seeding particles recorded in the images and the known time between subsequent
images often referred to as time between laser pulses ∆t. Taking into account the above, the velocities
u and v defined as ∆x/∆t and ∆y/∆t are calculated. On this basis, with the use of statistical methods,
the velocity vector V which is expressed as

√
u2 + v2 can be determined (Figure 2).

Figure 2. Idea of measurements applying the particle image velocimetry (PIV) technique.

In the research, the planar PIV method was used to visualize the fluid velocity field across a
tube bundle. The model of the tested heat exchanger was made of Poly(methyl 2-methylpropenoate)
(PMMA). Inside the exchanger, in the shell with an internal diameter D = 0.244 m, a tube bundle was
installed, consisting of 37 tubes with an external diameter Dz = 0.02 m, mounted on 10 segmented
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baffles with a cut of 25%. Since the goal of the research involved the analysis of the phenomena in the
shell side, the exchanger model did not include either head chambers or tubesheets; therefore, the fluid
flow did not occur in the tube side (as the tubes were sealed on both sides). Water formed the fluid
applied in the tests, and it was circulated in a sealed system. The liquid was extracted by a Grundfos
CR5-7 pump (Grundfos, Bjerringbro, Denmark) from a tank with the capacity of 0.2 m3 and routed
through a pipeline to the heat exchanger, and then returned to the tank. The pump was controlled by a
signal from the ENKO EM-005C electromagnetic flowmeter (ENKO, Gliwice, Poland). The applied PIV
method required that seeding particles were introduced into the flow. Fluorescent seeding particles
PMMA-RHB-10 stained with rhodamine B were applied for this purpose. A stirrer was installed in the
tank to maintain constant homogenization of the water. The type and number of seeding particles
were determined on the basis of Adrian and Westerweel [38] and own research. The hydrodynamic
characteristics of the heat exchanger model were evaluated for three liquid flow rates equal to 5 m3/h
(Rein = 16,662), 7.5 m3/h (Rein = 24,993), and 10 m3/h (Rein = 33,324), respectively. These values
corresponded to the inlet velocity vin of 0.177 m/s, 0.266 m/s, and 0.354 m/s respectively. A Dantec
Dynamics FlowSense EO-4M CCD camera (Dantec Dynamics, Skovlunde, Denmark) was installed
in perpendicular plane to the cross-sectional plane of the shell side. The image was recorded at a
resolution of 2048 × 2048 pixels in the double frame mode with a frequency of 10 Hz. The time between
pulses was equal to 750, 500 and 300 µs for the flow rates of 5 m3/h, 7.5 m3/h, and 10 m3/h, respectively.
Two hundred double frame images were taken for each series of measurements. The measurement area
was illuminated by a Dantec Dynamics DualPower TR Nd: YAG laser (Dantec Dynamics, Skovlunde,
Denmark) via a laser sheet targeting mirror in such a way as to provide illumination of the imaging
plane in a distance of 0.010 m from the last segmental baffle and in distance L2 = 0.0135 m from the end
of tube bundle. The justification for the selecting this location of the measurement plane is presented
in Section 2.3. The optical system of the camera is equipped with an Omega Optical 550LP filter
(Omega Optical Inc., Brattleboro, VT, USA), which cuts off more than 98% of the transmission of the
light wave for wavelengths shorter from 5.5 × 10−7 m. As a result, no laser light with a wavelength of
5.32 × 10−7 m reaches the camera matrix, but only excited light emitted by fluorescent seeding particles,
as it is characterized by the range of wavelength from 6.1 × 10−7 m to 6.5 × 10−7 m, i.e., above the
cut-off threshold. The PIV calculations were performed using Dantec Dynamics Dynamic Studio
software, ver. 2015a (Dantec Dynamics, Skovlunde, Denmark). The obtained test results are based
on the analysis of the components of velocity u and v and the inlet velocity vin. For the purposes
of determining measure scale factor, a target located in the same plane as the generated laser sheet
was used. During image calibration, no optical distortions were identified characteristic of imaging
through curved surfaces or in the StereoPIV technique, where the cameras are inclined in relation to
the measurement plane [38,39]. The use of images without optical correction, recorded in analogous
optical paths, is common in the planar PIV technique [40–43]. Due to the assumed distance from
the laser sheet and the size of the recorded image, the parallax error was not prevented. As a result,
the field of view around the outer tubes in the tube bundle was excluded from analysis at a maximum
distance of 1.07 mm (40 pixels) from the tube edge. Following the discussion in the work of Adrian and
Westerweel [38], the uncertainty of estimating the displacement of seeding particles and the uncertainty
of determining the velocity vectors have the greatest influence on an accuracy of the PIV measurement.
Based on these two parameters, the maximum uncertainty of velocity determination in this experiment
was set at 12%, which is illustrated by the corresponding error bars in Section 3.2.

The methodology of PIV calculations and analysis used during the research is presented in
Figure 3. Figure 4 presents the scheme of the measuring station. Detailed dimensions of the model can
be found in Figure 5 and Table 1.
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Figure 3. Applied PIV methodology.

Figure 4. Experimental stand: shell-and-tube heat exchanger model (1), mirror (2), laser (3), CCD camera
(4), tank (5), pump (6), flowmeter (7), differential pressure transmitter (8), and control and data
acquisition station (9).
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Figure 5. Geometry of the tested shell-and-tube heat exchanger (STHE) model. (a) Longitudinal section
of the sell side; (b) cross-section of the shell side with the directions of velocities u and v; (c) location of
the measuring area with direction of the velocity vin.

Table 1. Detailed dimensions of the model.

Dimension Value, m

D 0.244
Dout 0.1
Din 0.1
S 0.178
g 0.0035
L 2
h 0.183
t 0.030

dz 0.020
L1 1.7665
L2 0.0135
L3 1.8213

2.3. Assumptions and Conditions Applied in the Research

From the literature review we can note that the problem of perspective poses a challenge in the
research applying tube bundles. The variable position of each tube in the bundle depending on its
distance leads to the interferences in the visibility of the measurements (by obscuring the region of
interest). This problem was already reported in previous works [22,25]. One of the solutions used in
such conditions is to adjust an index of refraction of the fluid to the material from which the tubes are
made. The results of the application of such approaches are presented in references [14,22]. In the
current research, another solution was proposed, which involved the removal of the fraction of the tube
bundle that obstructs the region of interest. CFD tests were carried out, and the results demonstrate
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that the removal of the tube section behind the final baffle only slightly affects the flow characteristics
(Figure 6). The maximum differences of the dimensionless parameters defining the velocities differ
by a maximum of 3.5%, which does not exceed the absolute differences between the results gained
from simulations and ones gained on the basis of the experimental procedure. The pressure drops also
vary within a small range that does not exceed 3%. Therefore, it was concluded that the geometric
modifications performed in this research could provide a solution to the problem of perspective in
visualizations across tube bundles.

Figure 6. Comparison of velocity profiles for standard and modified tube bundle geometry. (a) Velocity
profiles for Q = 5 m3/h; (b) location of the lines 1–4.

3. Results and Discussion

3.1. Analysis of Sensitivity of Computational Mesh and Validation of Research Method

3.1.1. Analysis of Sensitivity of Computational Mesh

Before the discretization of the computational region was performed, the results were analyzed
in terms of the optimization of the computational mesh. It was found that in the case of 3D heat
exchanger models, tetrahedral type cells are most often employed in research. Therefore, inside the
apparatus, a hybrid mesh with tetrahedral cells was utilized. Additionally, in order to maintain the
correct density and proper values of the bridging functions in the shell side, a densified, five-layer mesh
with hexahedral cells was used. In the next step, sensitivity analysis of the computational mesh density
was performed. Four meshes with various densities were generated for this purpose (mesh 1: 8,435,989
elements; mesh 2: 10,266,557 elements; mesh 3: 12,112,572 elements; mesh 4: 12,972,099 elements).
The layout of mesh cross-sections utilized in the research is presented in Figure 7. The reference
for the sensitivity analysis applied the values of the recorded pressure drop in the heat exchanger
(in relation to the results of experimental tests for the flow rate of 10 m3/h) and the maximum velocities
in the plane selected for the analysis. It was found that the mesh no. 3 offered considerable level
of the consistency of the results combined with the lowest possible load of the computing resources
(therefore, mesh 3 was included in further research). Additionally, by analyzing the obtained values
of these parameters for the first three meshes, we can conclude that their values increase with the
increase in the mesh density. In turn, for the fourth mesh with the greatest density, the results did not
demonstrate a further increase in the values of the analyzed parameters. To illustrate this phenomenon,
the obtained velocity distributions for individual meshes in the analyzed plane are presented in
Figure 8. Additionally, Figure 9 shows the velocity distribution along an example of line 2 along the
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analyzed plane. A complete list of the analyzed numerical meshes coupled with the results is presented
in Table 2.

Figure 7. Layout of mesh cross-sections.

Figure 8. Velocity contours for analyzed geometric meshes.
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Figure 9. Velocity distributions for analyzed geometric meshes in line 2.

Table 2. Characteristics of computational fluid dynamics (CFD) meshes.

Parameter Mesh 1 Mesh 2 Mesh 3 Mesh 4 Experimental
Results and PIV

Total number of elements 8,435,989 10,266,557 12,112,572 12,972,099 —
Mean skewness 0.25 0.24 0.23 0.23 —

Maximum velocity [m/s] 0.68 0.67 0.65 0.65 0.58
Results compatibility [%] 85 87 89 89 —

Pressure drop ∆P [Pa] 2960 2930 2900 2904 2698
Results compatibility [%] 91 92 93 93 —

3.1.2. Validation of Research Methods

When several methods are used in research, it is necessary to validate the obtained results to
ensure their credibility. For the purposes of this study, the results of investigations using CFD were
validated by application of the results of experimental tests (in terms of pressure drop) and the PIV
method (in terms of the velocity values obtained in the selected plane). The comparison was performed
by application of three analyzed values of the volumetric flow rate (5 m3/h, 7.5 m3/h, and 10 m3/h).
Table 3 presents the results of the comparative analysis. In the case of the pressure drop value,
the calculation error was equal to, respectively, for Q = 5 m3/h—2%, for Q = 7.5 m3/h—2%, and for
Q = 10 m3/h—7%. On the basis of the comparison of the second of the analyzed parameters (maximum
velocity), the authors noted that the values of calculation errors were equal to: 10%, 10%, and 11%,
respectively. In the case of the third of the considered parameters (mean velocity), the following
calculation errors were noted: 6%, 8%, 9% for Q = 5 m3/h, 7.5 m3/h, and 10 m3/h, respectively.
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Table 3. Validation of the results.

Parameter Value

Volumetric Flow rate [m3/h] 5 7.5 10
Pressure drop (CFD) [Pa] 758 1693 2900

Pressure drop (exp. results) [Pa] 746 1656 2698
Results compatibility [%] 98 98 93

Maximum velocity CFD [m/s] 0.31 0.5 0.65
Maximum velocity PIV [m/s] 0.28 0.45 0.58

Results compatibility [%] 90 90 89
Mean velocity CFD [m/s] 0.17 0.26 0.35
Mean velocity PIV [m/s] 0.16 0.24 0.32
Results compatibility [%] 94 92 91

The obtained compatibility of both the pressure drop and the flow velocity is high and can form
the basis for the statement that the adopted procedures, numerical models, and parameterization of
the calculation conditions applied in the research process were adequate.

3.2. Analysis of a Liquid Flow Maldistribution across the Tube Bundle

One of the methods applicable for evaluating the maldistribution of the liquid flow through a tube
bundle involves the analysis of velocity fields. This paper presents the results of the reconstruction
of scalar velocity fields derived by both the PIV and CFD methods. On this basis, regions located
in the cross-section of the shell side are identified, in which flow maldistribution occurs as a result
of rapid variations in the hydrodynamic parameters of the liquid over time. The intensification of
flow maldistribution in the shell side often leads to the development of adverse wake regions behind
the tube. In these regions, the efficiency of the heat transfer process decreases. Flow visualization
analysis can be applied for the purposes of locating zones that negatively affect the performance of
heat exchangers, as well as those with a fully developed flow around the tubes. In Figures 10–12, in the
central row of tubes in the bundle, we can observe typical zones with clearly reduced local velocity.
They are located in the wake of each tube and have an orientation that is parallel to the direction of
liquid flow. When an analysis is performed of the successive rows of tubes, and moving from the center
of the shell, one can observe oblique deviations of the velocity reduction zones. This phenomenon is
clearly symmetrical.

Figure 10. Comparison of scalar velocity fields V/vin for Q = 5m3/h (CFD on the right, PIV on the left).
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Figure 11. Comparison of scalar velocity fields V/vin for Q = 7.5m3/h (CFD on the right, PIV on the left).

Figure 12. Comparison of scalar velocity fields V/vin for Q = 10 m3/h (CFD on the right, PIV on the left).

In addition, we can also note that the increase in the inflow rate of the liquid from Q = 5 m3/h to
Q = 7.5 m3/h did not significantly affect the flow homogeneity or the distribution of the wake regions
behind the tubes. However, a further increase in the flow rate to Q = 10 m3/h resulted in the increase
in velocity in these regions and their further reduction. The determination of the velocity profiles
in the lines 1–4 marked in Figure 13 made it possible to quantify this observation (Figures 14–16).
Thus, the variations in the velocity V/vin in individual rows of tubes were compared for the flow rates
of Q = 7.5 m3/h and Q = 10 m3/h. Consequently, it was observed that the increase in the flow rate
Q from 7.5 m3/h to 10 m3/h leads to a moderate increase in the mean velocity V/vin by 20%, 10.42%,
6.25%, and 4.83% for the first, second, third, and fourth velocity profiles. Besides, on the basis of the
comparison of the results obtained from PIV tests and calculations using CFD, we should note that
the general flow diagrams overlap in most of the investigated cases. On the basis of the analysis of
the velocity profiles in vertical lines (lines 5–8 in Figure 13), it was noted that the fluctuations of the
liquid flow velocity may provide assistance in defining the start-up zone. In each of the analyzed cases,
the fully developed flow specific for the middle part of the cross-section of the shell side, was developed
only from the point when the first clear maximum of the velocity V/vin was reached. In this region,
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there is a satisfactory compliance of the results gained by CFD and PIV methods. However, in the
regions occupied by the first rows of tubes (both the horizontal and vertical velocity profiles) there
were significant differences between the experimental and numerical results. It should be assumed that
this is the effect of dynamic changes in this zone, where both the k-e model and the adopted PIV system
parameters offer less accurate results. This is justified by the simplification applied in the calculation
method, which does not take into account all the details of the multi-parameter flow evolution in this
area, as well as the limitations of the experimental method, one drawback of which is associated with
the decrease in the reliability in the regions characterized by considerable dynamic characteristics of
velocity fluctuations. In regions characterized by smooth flow, the degree of conformity is satisfactory
and does not exceed 10% of the maximum velocities. However, on the basis of the visual analysis of
the flow, we can state that in the case of flow studies in the shell side, the CFD method provides results
with smaller degree of detail in comparison to the application of PIV.

Figure 13. Location of lines applied for data extraction for purposes of determining velocity profiles.

Figure 14. Comparison of velocity profiles derived by CFD method and gained from PIV for Q = 5 m3/h.
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Figure 15. Comparison of velocity profiles derived by CFD method and gained from PIV for Q = 7.5 m3/h.

Figure 16. Comparison of velocity profiles derived by CFD method and gained from PIV for Q = 10 m3/h.

The subsequent stage of the research into the maldistribution of the flow through shell side in
STHE involved the analysis of the details on the direction of liquid flow. For this purpose, the vector
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velocity field and streamlines were applied. The enlarged region of the vector velocity field marked in
Figure 17 indicates a satisfactory compliance of the results gained by the CFD and PIV methods. In both
cases the converging regions and the diverging regions have been recognized, as well as quantitative
velocity distribution along the successive rows of tubes was identified. The calculated results also
demonstrate that the velocity reduction areas always form in the wake of the tubes, on the opposite side
of the tubes in relation to the direction of the liquid inflow. Liquid streams flowing obliquely between
the tubes are characterized by velocity that is clearly above the mean for the entire cross-section of
the shell. It is one of the main factors responsible for the formation of swirl centers in the wake of the
tubes. In these regions, the velocity also drops to values close to the minimum. However, due to the
fact that an in-line tube bundle layout was applied in the research, the distance between oblique tubes
in the consecutive rows is greater from the distance between the tubes in the same rows. As a result,
velocity reduction areas do not extend to the subsequent tube rows (see also Figures 10–12). They are
also characterized by a lower velocity gradient. Under such flow conditions ahead of the next tube,
the velocity of the liquid increases, which can be considered a positive phenomenon.

Figure 17. Sample comparison of vector velocity fields PIV and CFD for flow rate Q = 7.5 m3/h.

Throughout the streamline analysis, both in the case of CFD and PIV method (Figure 18), the central
streams, oblique streams and bypass streams were identified, and, very importantly, large vortex cells
in the lower part of the shell side. The area occupied by the generated vortex comprised the lower
surfaces of the last row of tubes and in particular the central tube. This vortex pattern is influenced by
the central liquid stream and the two bypass streams. In the baffle window, these two types of streams
tend to mix dynamically, and behind the baffle window, the direction of movement is additionally
altered. As a consequence, extensive vortex patterns develop at the bottom of the shell. Due to the
proportionality in the variations of the velocity of the central stream and bypass streams for the flow
parameters investigated in the paper, we can conclude that the presence of vortex patterns in the
baffle window is not dependent on the inflow rate Q. Therefore, we should forecast that the factor
responsible for the intensity and characteristics the vortex zone in the baffle window is associated with
the geometric parameters. The streamlines analysis indicates considerable conformity of the CFD and
PIV results. Only the area between the shell and the first row of tubes is characterized by significant
differences in the streamlines. These results are also reflected in the distribution of the vertical velocity
profiles (lines 5–8 in Figures 14–16). In order to obtain knowledge about the dynamics of large vortex
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cells in the lower part of the shell side, the variability of the velocity of liquid flow in this area was
examined in the further part of the study.

Figure 18. Comparison of streamlines PIV (left row) and CFD (right row) for various liquid flow rate:
(a) Q = 5 m3/h, (b) Q = 7.5 m3/h, and (c) Q = 10 m3/h.

The occurrence of displacement of vortex patterns is also noteworthy. This is illustrated in Figure 19
by determining the variations in the velocity in time at point F, located in the middle of the distance
between the final tube in the middle row and on the shell wall of the heat exchanger. Taking into
account the theoretical velocity distribution in the vortex structure, characterized by an increase in
velocity on the borders of the vortex and a decrease in velocity in its core, it can be demonstrated that in
the area of the border rows of the tubes, we have to do with recurrent fluctuations in the vortex location.
Regardless of the flow rate Q, these fluctuations are at a similar level (see dynamic velocity V/vin
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changes in Figure 19). Thus, it is possible that the observed mechanism of the vortex displacement
may generate erosive interactions on the outer surfaces of tubes in such regions, occurring by analogy
to the erosive interactions inside the tubes, in tube bends [44]. An additional factor that supports such
observation is associated with the fact that contaminants accumulate on the bottom of the STHE shell,
which may enhance the erosive effect of the vortex structures. This area should therefore be monitored
for accelerated erosive wear. In extreme conditions, the fluctuation of vortices in the lower part of
the shell side could interfere in the symmetry of the flow and contribute to imbalanced heat transfer.
The solution that could counteract this situation could be associated with geometrical modifications in
the form of bars preventing the displacement of vortices.

Figure 19. Variations in velocity for point F in time for (a) Q = 5 m3/h, (b) Q = 7.5 m3/h, and (c)
Q = 10 m3/h.

4. Conclusions

On the basis of the numerical and experimental investigations of the shell side in STHEs, it was
found that the information in the images of the liquid velocity fields is sufficient for the purposes of
the effective evaluation of flow maldistribution. On the basis of the analysis, the following conclusions
were formulated:

1. The study presented a method of eliminating perspective phenomenon on the recorded image of
the shell side resulting from the geometric modification involving the removal of a section of the
tube bundle behind the last baffle. This procedure extends the area of the image feasible for the
planar PIV analysis of the full cross-section resulting from the actual geometry of the shell side.
At the same time, the variations in the hydrodynamic parameters resulting from the removal
of a section of the tube bundle remain at an acceptable level. The maximum differences of the
dimensionless parameters defining the velocities differ by a maximum of 3.5%, also pressure
drops vary within a small range that does not exceed 3%.

2. The results obtained in the validation process (in relation to the values of pressure drops obtained
on the basis of experimental tests and the values of average and maximum velocities - in relation to
the PIV tests) of the adopted numerical strategy allow us to conclude that, in case of the numerical
calculations in the shell side of a STHE, the use of hybrid mesh with tetrahedral cells and the
standard k-εmodel with RANS enables reliable analysis of the flow inside the heat exchanger.

3. Liquid flow maldistributions were identified in the studies. Two central streams could be
distinguished, flowing in parallel on both sides of the middle row of tubes. Between the tubes
in the middle row, regardless of the flow rate Q, there were cyclic areas with reduced velocity
and high vortex generation potential. Their occurrence was considered unfavorable due to their
negative role in forming heat transfer parameters.

4. In the areas on the outer sides of the central streams there were symmetrical oblique streams,
where the regions of reduced velocities did not extend to the subsequent tube rows. Oblique liquid
flow in an in-line layout transforms the flow patterns toward structures specific to liquid flow
into a staggered layout.
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5. An increase in the velocity gradient was observed with an increase in the flow rate Q for the
successive tube rows. The highest velocity gradient was noted for line 1 and the lowest for line 4
located in Figure 13. On this basis, it was concluded that the evolution of velocity in the tested
geometry is an important factor that should be taken into account in thermal calculations.

6. The phenomenon of the displacement of vortices in the baffle window was observed. This can
potentially lead to unfavorable erosive effects on tubes within the vortex zone. Structural elements
in the form of bars in the lower part of the exchanger shell may prevent the displacement of
vortices in the baffle window. Such modifications are likely to extend the effective service life of
the heat exchanger.
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