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Abstract: The industrial sector is a major contributor to the economic growth of the Philippines.
However, it is also one of the top consumers of energy, which is produced mainly from fossil fuels.
The Philippine industrial sector must therefore be supported economically while minimizing the
emissions associated with energy consumption. A potential strategy for minimizing costs and
emissions is the installation of solar photovoltaic (PV) modules on the rooftops of industrial facilities,
but this approach is hindered by existing energy policies in the country. In this work, we performed
a techno-economic assessment on the implementation of rooftop solar PV in Philippine industrial
facilities under different policy scenarios. Our study considered 139 randomly sampled industrial
plants under MERALCO franchise area in the Philippines. Under the current net metering policy,
132 of the evaluated facilities were economically viable for the integration of rooftop solar PV.
This corresponds to an additional 1035 MWp of solar PV capacity and the avoidance of 8.4 million
tons of CO2 emissions with minimal financial risk. In comparison, an expanded net metering policy
supports the deployment of 4653 MWp of solar PV and the avoidance of 38 million tons of CO2.
By enabling an enhanced net metering policy, the widespread application of rooftop solar PV may
present considerable savings and emission reduction for energy-intensive industries (electrical and
semiconductors, cement and concrete, steel and metals, and textile and garments) and lower generation
costs for less energy intensive industries (construction and construction materials, transportation and
logistics, and food and beverages).

Keywords: rooftop solar PV; net metering; Philippines; industrial sector

1. Introduction

The Philippine industrial sector contributed to around 35% of the country’s gross domestic product
in 2019 [1]. Unfortunately, its development is hampered by the high cost of electricity (~USD 0.19/kWh),
which ranks as the second highest in Asia [2]. In addition, the large energy consumption of the
industrial sector is met with environmental pressure due to the CO2 emissions associated with the
country’s energy mix. To solve these problems, the implementation of rooftop solar photovoltaic
(PV) on industrial facilities has been investigated due to the ample solar energy potential in the
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Philippines [3]. The displacement of energy from the grid by solar PV generation can reduce emissions,
while selling excess solar PV generation to the grid via net metering may yield profits [4]. Typically,
these systems show a payback period (PBP) from 3 to 11 years and an internal rate of return (IRR)
between 21% to 29% [5–8]. Furthermore, the feasibility of simultaneous heating and energy generation
from solar PV has been demonstrated in other countries [9].

The cost savings and environmental benefits are not the only important factors. The widespread
deployment of rooftop solar PV is heavily dependent on regulatory policies. One of the enabling
support frameworks is net metering policy, which allows consumers to be prosumers by selling excess
generation to the grid [10]. In the Philippines, this is promulgated by the Renewable Energy Act of
2008 and implemented through Energy Regulatory Commission (ERC) Resolution 9 Series of 2013.
This scheme compensates exported electricity at a rate equal to the average monthly blended generation
rate, but is applicable only for exports below 100 kW [11]. Thus, this policy benefits residential
consumers in the Philippines [12] but provides limited opportunities for the industrial sector [13].
A study by Ghosh and co-workers demonstrated that increasing the export limit to 5 MWp in Bangalore,
India can improve the economic viability of integrating solar PV systems into their industrial sector [7].
Enabling an expanded net metering policy in the Philippines may likewise promote the widespread
adoption of solar PV by the country’s industrial sector [14].

In a prior study, we demonstrated that the implementation of rooftop solar PV in some Philippine
sub-industries (Electrical and Semiconductors, Steel and Metals, Food and Beverages, Transportation
and Logistics, and Textile and Garments) generated additional energy supply and cost savings, especially
if the export limit is amended [15]. In this work, we extend our initial study by including more
sub-industries to create a more comprehensive outlook on the viability of rooftop solar PV deployment.
This work adopts the four-part analysis employed in our previous work. First, the feasibility of rooftop
solar PV installations under the existing net metering policy was determined. Second, expanded
scenarios were formed based on possible policy interventions. Third, a techno-economic optimization
was performed on solar rooftop installations under the enhanced scenarios. Lastly, the rooftop solar
PV installations on industrial plants were assessed based on economic metrics and the possibility
for grid defection as demand-side management. This work equips various stakeholders with crucial
quantitative information on the potential of rooftop solar PV, the associated economic benefits, and the
reduction in CO2 emissions.

2. Materials and Methods

2.1. General Approach

This study will follow the same general approach used in our previous work [15]. This includes
the scenarios of rooftop solar PV implementation, shown in Table 1, which are based on current and
proposed policies in the Philippines.

The energy system in the Base Scenario, Improved Policy, and Max Roof Capacity scenarios are
illustrated in Figure 1, while that of the Off-Grid scenario is depicted in Figure 2. The off-grid operation
of an industrial facility is currently discouraged by the present economic outlook [16] but this scenario
is described by the Interruptible Load Program (ILP) of the Philippine government. When the country’s
energy supply is insufficient, especially during the summer period, the ILP encourages industrial
facilities to disconnect from the main grid and operate in islanded mode [17].

Table 1. Energy policy scenarios considered in this work.

Scenario Description

Base Scenario

• Solar PV + grid system
• 100 kWp solar PV export limit
• Excess generation paid according to blended generation rate
• Based on current net metering scheme in the Philippines
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Table 1. Cont.

Scenario Description

Improved Policy

• Solar PV + grid system
• No solar PV export limit
• Excess generation paid according to blended generation rate
• Solar PV installation size is optimized to maximize the net present value (NPV)

Max Roof Capacity

• Solar PV + grid system
• No solar PV export limit
• Excess generation paid according to blended generation rate
• Solar PV installation consumes the entire roof area

Off-Grid Scenario

• Solar PV + battery + diesel generator system
• Li-ion and lead–acid batteries will be compared
• Installation sizes is optimized to maximize the NPV
• Based on the Interruptible Load Program (ILP)
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2.2. Philippine Industrial Sector Data

2.2.1. Sampling Methodology

A total of 139 randomly sampled industrial plants were considered in this study. This consists of
the 66 facilities from the initial study [15] and 73 more facilities from the 13 additional sub-industries
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included in this work. The samples were sourced from the 17,793 plants located at the main industrial
area of the Philippines being served by Manila Electric Company (MERALCO). The random sampling
methodology was comparable to that used in surveys [18]. The total sample size was computed using
a 7.5% margin of error and 92.5% confidence level, which were selected based on the available resources
for the study. All the selected samples were classified based on the Philippine Standard of Industry
Classifications from the Philippine Statistics Authority [19]. Table 2 shows the number of samples per
industry classification and initial sub-industry demand data.

Table 2. Number of samples and electricity demand per sub-industry.

Sub-Industry Classification Count Average Load (kW)

Industries from the initial study [15] 66 133–1727
Construction and Construction Materials 11 48

Paper and Print 9 539
Plastic 8 302

Chemicals and Pharmaceutical 8 864
Cement and Concrete 7 7530
Agricultural Products 7 320

Equipment 6 131
Packaging 5 1663

Rubber 3 90
Water Utility 3 10

Glass 2 2668
Ice and Refrigeration 2 213
Oil, Gas, and Power 2 9

Total 139

2.2.2. Resource Data

The global horizontal irradiance and temperature data required for the simulation of solar PV
modules were sourced from National Aeronautics and Space Administration (NASA) [20]. These were
evaluated at the location of each industrial facility. The load profiles of the selected industries were
obtained from MERALCO. The peak demand of a representative facility from each sub-industry is
shown in Table 3, while the normalized hourly and monthly load profiles of these facilities are shown
in Figures 3 and 4, respectively. Other technical and economic parameters used in the simulations are
presented in Appendices A and B.

Table 3. Peak load from each sample sub-industry.

Label 1 Sub-Industry Classification Peak Load (kW)

A Electrical and Semiconductors 1193
B Steel and Metals 161
C Food and Beverages 111
D Transportation and Logistics 13
E Textile and Garments 991
F Construction and Cons Materials 18
G Paper and Print 2619
H Plastic 197
I Chemical and Pharmaceuticals 2487
J Cement and Concrete 37,511
K Agricultural Products 2
L Equipment 639
M Packaging 285
N Rubber 15
O Water Utility 4
P Glass 5406
Q Ice and Refrigeration 255
R Oil, Gas, and Power 9

1 These labels are used in Figures 3 and 4.
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2.3. ISLA Optimization Tool

The energy systems are simulated and optimized by the Island System LCOEmin Algorithm
(ISLA), an open-source energy systems optimization tool written in Python 3. The tool was developed
by our group and subsequently validated with HOMER Pro® [15]. The operation of the different
energy components is simulated using mathematical models. The interaction of these components
is then determined by the load-following dispatch algorithm, wherein generation from solar PV
and the battery are prioritized and the conventional resource (grid in the Base Scenario, Improved
Policy, and Max Rooftop; diesel in the Off-Grid scenario) is dispatched by just enough to meet the
load. The interaction of the components is simulated for one representative year in hourly time
steps. The results of the simulation are then used to determine the net present value (NPV) and other
economic metrics about the system. Optimization is performed by running multiple simulations with
various energy component sizes, then selecting the set of component sizes that yield the highest NPV.
Details about the optimization algorithm and the mathematical models of the energy components are
presented in [21].

2.4. Rooftop Potential

The solar PV installation capacity on the rooftop of each industrial facility is estimated using the
procedure outlined by Kouhestani [22]. An aerial photograph of the rooftop is obtained from Google
MapsTM. The maximum solar PV potential is then calculated from the image while accounting for the
rooftop construction, elevation, shading probability, and spaces for maintenance and operation workers.
The solar PV panels considered in this work have a standard rating of 0.255 kWp. Other technical
details are presented in Appendix B.

2.5. Economic and Environmental Parameters

The market competitiveness of an energy system is quantified by the levelized cost of electricity
(LCOE), defined as the total discounted costs of an energy system per unit of electricity generated over
its lifetime [23]. It is given by Equation (1) wherein d is the discount rate, N is the project lifetime (y),
C(n) is the discounted cost (USD) at year n, and Eyr is the annual energy consumption (kWh).

LCOE =
d(1 + d)N

(1 + d)N
− 1
×

∑N
n=0 C(n)

Eyr
(1)

The NPV, IRR, and PBP determine the viability of an investment project [24]. The NPV assesses the
profitability of a project and is defined as the difference between the discounted inflows and outflows.
A positive value of NPV indicates a favorable investment [25]. It is given by Equation (2) wherein R(n)
is the discounted revenue (USD) at year n.

NPV =
N∑

n=0

R(n) −C(n)

(1 + d)N (2)

The IRR compares the profitability to the discount rate. An investment is more desirable if the
difference in IRR and discount rate increases [25]. It is defined as the discount rate at which the NPV is
zero, as shown by Equation (3).

N∑
n=0

[R(n) −C(n)] ×
(

1 + d
1 + IRR

)n

= 0 (3)
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The PBP represents the number of years required to recover the investment. It is also the time
when the difference between the total discounted revenue and cost is zero, as shown by Equation (4).
A lower PBP indicates lower risk on a project investment [24].∫ PBP

0

R(n) −C(n)

(1 + d)N = 0 (4)

The environmental impact of the solar PV installations is also a key factor to its deployment [26].
It is quantified by the estimated reduction in CO2 emissions of the industrial plant upon the integration
of rooftop solar PV with the industrial facility’s energy system. This parameter is determined from the
energy supplied by the renewable energy components (solar PV and battery) and the national grid
emission factor (NGEF) of the electrical grid where the MERALCO franchise area is connected to [27].
This is given by Equation (5) wherein ∆mCO2 is the CO2 emission reduction (metric tons) and ERE is
the total energy (kWh) supplied by the renewable energy components throughout the lifecycle of the
project. Note that other sources of CO2 emissions are not considered by this metric.

∆mCO2 = ERE ×NGEF (5)

3. Results and Discussion

3.1. Case Studies

In this subsection, detailed case studies are presented for two sample industrial facilities to
demonstrate the application of the methodology to the industrial plants. The first case study illustrates
the integration of rooftop solar PV into a grid-tied system, while the second case study shows a facility
that has potential for off-grid operation.

3.1.1. Sample Cement Plant

Table 4 presents the techno-economic and environmental metrics for the sample plant while
Figure 5 illustrates the rooftop utilization of solar PV under different policy scenarios.

Table 4. Techno-economic and environmental metrics describing the cement plant.

Economic
Parameter Grid Base

Scenario
Improved Policy

Scenario
Max Roof Capacity

Scenario
Off-Grid
Scenario

LCOE
(USD/kWh) 0.19 0.13 0.12 0.13 0.32

NPV (USD) - 138,168 165,458 136,641 166,221
IRR (%) - 7.01 7.01 0.9 -
PBP (y) - 10.32 10.33 44.92 -

Emission
reduction

(tons of CO2)
- 81.08 97.15 348.9 -

Based on the NPV increase and CO2 emission reduction, the results indicate that a transition
from the Base Scenario to the Improved Policy scenario yields an improvement in profitability and
environmental impact. The IRR and BEP are unchanged, which shows that the transition does not
impose a financial risk. The application of the Max Roof Capacity scenario further decreases the
CO2 emissions but drastically reduces the economic viability of the investment. In this scenario,
the savings from the rooftop solar PV installation cannot compensate for the high capital costs within
a reasonable time frame. It is noteworthy that the Max Roof Capacity scenario has a lower NPV than
the Base Scenario, demonstrating that maximizing the rooftop solar PV installation is not necessarily
economically viable. This sample cement plant is not suitable for the Off-Grid scenario due to the high
variability of the load profile and the lack of excess solar PV during daytime.
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3.1.2. Sample Transportation Facility

Table 5 presents the techno-economic and environmental metrics for the sample plant,
while Figure 6 illustrates the rooftop utilization of solar PV under different policy scenarios.

Table 5. Techno-economic and environmental metrics describing the transportation facility.

Economic
Parameter Grid Base

Scenario

Improved
Policy

Scenario

Max Roof
Capacity
Scenario

Off-Grid
Scenario

(Lead–Acid)

Off-Grid
Scenario

(Lithium-Ion)

LCOE
(USD/kWh) 0.19 0.17 0.13 0.13 0.33 0.33

NPV (USD) - 136,641 425,954 425,954 681,489 666,412
IRR (%) - 6.96 7.01 7.01 6.73 5.38
PBP (y) - 10.44 10.31 10.31 11.03 15.14

Emission
reduction

(tons of CO2)
- 81.08 249.57 249.57 261.16 282.95
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In this case study, the optimized solar PV sizes for both the Improved Policy and Off-Grid
scenarios were equal to the maximum rooftop solar PV capacity. The expanded net metering policies
clearly decreased generation costs and CO2 emissions while improving the quality of the investment.
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Furthermore, this transportation establishment is compatible with the Off-Grid scenario, so this facility
can participate in the ILP.

3.2. Grid-Tied Scenario Results

Table 6 summarizes the results describing the application of the grid-tied scenarios (Base Scenario,
Improved Policy, and Max Roof Capacity).

Table 6. Summary of results on the grid-tied scenarios.

Metrics Base Scenario Improved Policy Max Roof Capacity

Solar PV average installed capacity (kWp) 61.8 278 344
Solar PV total installed capacity (MWp) 1035.0 4654 5760

LCOE (USD/kWh) 0.190 0.185 0.185
NPV (USD) 82,061 370,229 366,412

IRR (%) 7.8 7.0 7.0
PBP (y) 9.1 10.4 10.5

Average reduced CO2 emissions (tons of CO2) 50.15 226.01 279.23
Total reduced CO2 emissions (kilotons of CO2) 8412 37,984 47,327

The rooftop solar PV potential of the selected Philippine industries under the Base Scenario is
1035 MWp, which is comparable to the installed capacity of a large conventional power plant. Of the
139 facilities analyzed, only 7 of these were unviable for rooftop solar PV installation due to shading.
Incorporation of the Improved Policy scenario raises the solar PV potential to 4653 MWp, resulting in
a sharp increase in NPV and a large drop in CO2 emissions. This strongly supports the results of our
earlier work that relaxing the net metering limits can reduce electricity costs. Despite the increased
savings, however, the slight reduction in IRR and PBP suggest a lower quality of investment. This is
due to the high capital costs of solar PV installation. A further transition into the Max Roof Capacity
scenario increases the rooftop solar potential to 5760 MWp. This decreases the CO2 emissions without
greatly affecting the quality of investment. The NPV, however, is less than that of the Improved Policy
scenario. This supports the recommendation from our previous work that optimization must be
performed when implementing rooftop solar in these industrial plants.

3.3. Grid-Tied Scenario Results by Sub-Industry

3.3.1. Rooftop Solar PV Potential

Figures 7 and 8 show the average and total rooftop solar PV potential, respectively, of each
sub-industry under different grid-tied scenarios.

The sub-industry analysis demonstrates that energy-intensive industries (Electrical and
Semiconductors, Cement and Concrete, Packaging, and Glass) have high rooftop solar PV potentials.
In addition, 61 of the 139 facilities (~44%) analyzed in this work have an optimum rooftop solar PV
capacity greater than the 100 kWp export limit. This suggests that the expansion of the current net
metering policies will support the widespread deployment of rooftop solar PV. The average rooftop
solar PV potential among the sampled industries is 643.2 kWp. Raising the export limit to this value
will cover majority of the scenarios during the actual implementation of rooftop solar PV in industrial
plants. As for rooftop area usage, most of the sampled industries will require only 42% of their rooftop
to be fitted with solar PV.
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3.3.2. Economic Potential

Figures 9–11 show the LCOE, NPV, and CO2 emission reduction, respectively, of each sub-industry
under the different grid-tied scenarios.

Most of the sub-industries have an optimized LCOE of around USD 0.17/kWh to USD 0.186/kWh,
while only the Oil and Gas sub-industry has exceeded the average electricity retail price of ~USD
0.19/kWh. Sub-industries with low energy intensities (Construction and Construction Materials,
Transportation and Logistics, and Food and Beverages) generally exhibited a lower optimized LCOE.
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Meanwhile, energy intensive sub-industries (Electrical and Semiconductors, Cement and Concrete,
Steel and Metal, and Textile and Garments) accounted for higher NPV and lower CO2 emissions as
these parameters are directly influenced by electricity demand and, hence, the larger effect of rooftop
solar PV installation. This demonstrates the effect of a facility’s energy consumption on the LCOE,
NPV, and CO2 reduction upon the integration of rooftop solar PV.
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Figures 12 and 13 show the IRR and PBP, respectively, of each sub-industry under the different
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The IRR values of the additional sub-industries considered in this work averaged 6%–7%, which
is slightly lower than the IRR of those considered in our previous work. Nonetheless, this is still higher
than the 4% interest rate in 2019 [28], indicating minimal investment risk upon the deployment of
rooftop solar PV. This is particularly true for energy intensive sub-industries, which are characterized
by high IRR and low PBP values. In contrast, sub-industries with a low energy consumption had
a higher PBP and an IRR near the 4% interest rate.

3.3.4. Overall Potential

From the results presented above, it is evident that rooftop solar PV is a more favorable investment
particularly for energy intensive sub-industries. This is primarily because low energy intensity
sub-industries have solar PV potentials higher than the demand of the plant. Excess solar energy
generated by the system will then be sold to the grid. It is more economical, however, to utilize all the
generated solar energy because electricity is sold at a rate of USD 0.076 kWh only as opposed to the
retail electricity rate of ~USD 0.19/kWh. This explanation is validated by the findings from the Max
Roof Capacity scenario wherein the investment efficiency decreases due to the increase in solar PV
potential against the demand. This was also observed in our previous study [15] wherein the savings
incurred from rooftop solar PV does not always compensate for the high capital costs.

3.4. Off-Grid Scenario Results

Table 7 shows the results describing the application of the Off-Grid scenario.
Of the 139 industrial facilities surveyed in this work, 14 of these (~10%) were viable for off-grid

electrification. This consists of the seven viable facilities from our previous work and seven more
facilities included in this study. Six of these facilities may use either lithium-ion or lead–acid batteries
as energy storage. Four other industries can deploy only the lithium-ion battery, while the remaining
four can utilize only the lead–acid battery. Off-grid solar PV systems employing the lead–acid battery
have higher investment efficiencies based on the IRR and PBP. On the other hand, systems that have
lithium-ion as energy storage benefit from higher energy storage capacities, NPV, and reduction in CO2
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emissions. The viability of the Off-Grid scenario depends largely on the behavior of their load profile
and the rooftop area. The industrial plants’ profile must have high energy usage during night-time
and low energy usage during daytime to make it viable for off-grid application. It must also have
a large rooftop area to obtain a solar PV potential that can supply both the batteries and the facility’s
energy demand.

Table 7. Summary of results on the Off-Grid scenario.

Metrics Solar PV + Diesel +
Lead–Acid Battery

Solar PV + Diesel +
Lithium-Ion Battery

Average solar PV installed capacity (kWp) 158.6 158.6
Total solar PV installed capacity (MWp) 283.8 283.8
Average energy storage capacity (kWh) 12.7 69.7

Total energy storage capacity (MWh) 16.2 89
LCOE (USD/kWh) 0.4 0.43

NPV (USD) 237,405 316,221
IRR (%) 5.35 4.4
PBP (y) 15.6 19.6

Average reduced CO2 emissions (tons of CO2) 138.26 192.41

3.5. Sensitivity and Grid Defection Analysis

A sensitivity analysis was performed to illustrate the effect of the decreasing prices of solar PV and
lithium-ion batteries over time on the optimum system configuration. The cost of solar PV and energy
storage are projected to decrease as materials and manufacturing processes are always being improved.
The increased production of these technologies also leads to economies of scale. In particular, the New
Energy Outlook of the Bloomberg New Energy Finance predicts a 71% drop in solar PV costs by
2050 [29]. Meanwhile, lithium-ion battery prices will experience a 33% decrease by 2030 and a 50%
decrease by 2050 [30]. This case study is based on a sample packaging plant with a rooftop area of
12,445 m2 and a maximum solar rooftop capacity of 1938.6 kWp. This plant has an optimized solar PV
and lithium-ion storage potential of 743.2 kWp and 1.5 kWh in 2019, respectively, with a corresponding
LCOE of USD 0.42/kWh.

Figure 14 demonstrates the increasing optimum potential of solar PV and lithium-ion battery
installations as their cost decreases through the years. The potential of solar PV exhibited a consistent
increase, while that of lithium-ion rose sharply by 50% at around 2040. The increasing renewable
energy potentials also results in a reduction of CO2 emissions.

A grid defection study shown in Figure 15 was also performed to identify the point when the
off-grid generation costs (LCOE) will be comparable to the retail electricity price. The optimum
LCOE of the off-grid configuration experiences a slow decline from USD 0.42/kWh from 2019 to USD
0.38/kWh in 2050. The LCOE of the off-grid system and the electricity rate from the grid [31] are
predicted to intersect around the year 2040 with a generation cost of ~USD 0.397/kWh. Therefore,
industrial consumers may consider defecting from the grid around 2041. The reduced electricity costs
will consequently improve the investment quality of rooftop solar PV installation.
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4. Conclusions

In this work, we demonstrated a techno-economic assessment framework that can be utilized
by policymakers to evaluate the effect of changing policies to encourage more investments from the
private sector and by industrial facilities in the Philippines to determine the viability of implementing
rooftop solar PV. Additional conclusions from this study are outlined below.

• The untapped rooftop solar PV potential of the sampled industrial establishments is about
1035 MWp under the current net metering policy of the Philippines. This installed capacity
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is comparable to a large-scale coal power plant in the Philippines, which ranges from 500 to
1200 MW.

• Relaxing the 100 kWp net metering restriction will increase the total rooftop solar PV potential to
4654 MWp, concurring our initial results on the impact of net metering policies on the deployment
of solar PV-based energy systems.

• A decline in the performance of economic indicators such as IRR and PBP was observed
under the Max Roof Capacity scenario for several sub-industries due to the increase in capital
investment requirements.

• Energy intensive industries such as Electrical and Semiconductors, Cement and Concrete, Steel and
Metals, and Textile and Garments will greatly benefit from the integration of rooftop solar PV due
to increased savings, higher investment quality, and reduced CO2 emissions.

• Some industrial plants can be powered by off-grid hybrid systems. The viability of this
configuration depends on the load profile and rooftop solar PV potential.

• The optimum installed capacities, economic parameters, and investment efficiencies are highly
dependent on solar PV and lithium-ion battery prices.

• Grid defection for some industrial establishments within the MERALCO franchise may occur as
solar PV and lithium-ion batteries prices are declining continuously.

This framework can be applied to other electricity consumers, such as commercial and government
establishments. The study can also be extended to other distribution utilities in the Philippines to
create a nationwide rooftop solar PV resource assessment. Such a study may reduce land allocation for
ground-mounted solar PV installations. Different compensation schemes for prosumers can also be
investigated as this will affect the viability of rooftop solar PV systems, which could be patterned after
net metering policies in other countries. Lastly, technical considerations, such as solar tracking, can be
incorporated in future work.
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Nomenclature

Abbreviation Meaning
ILP Interruptible Load Program
IRR internal rate of return
ISLA Island System LCOEmin Algorithm
LCOE levelized cost of electricity
MERALCO Manila Electric Railroad and Light Company
NGEF national grid emission factor
NPV net present value
PBP payback period
PV photovoltaic
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Appendix A

The economic values used in this work are presented in Table A1. Most of these are based on 1st Quarter
2019 Philippine market prices. The operating cost, project duration, and asset life are based on an existing study.

Table A1. Economic values and assumptions used in this work.

Economic Data Value Reference

Discount rate 4% 1Q Forecast for 2019 [28]

Inflation rate 2.08% 1Q Forecast for 2019 [32]

Grid price 0.19 USD/kWh 1Q 2019 Average Local DU 1 Rate [33]

Net metering rate 0.076 USD/kWh 1Q 2019 Average Local DU 1 Rate [33]

Project duration 25 years

Solar PV capital cost 1133.5 USD/kW

Based on 1Q 2019 market price of surveyed
solar PV panels. Includes cost of
polycrystalline solar PV panels, inverter,
and frames

Solar PV annual operational costs 23.85 USD/kW Based on previous study [3]

Solar PV material life 25 years Based on previous study [3]

Diesel fuel price 0.59 USD/L Department of Energy [34]

Fuel inflation rate 4.08% From EIA 2 forecast up to 2050 [35]

Diesel generator capital cost 534.48 USD/kW Based on 1Q 2019 market price of surveyed
diesel generators

Diesel generator operating cost 0.05 USD/kW/year Based on previous study [3]

Diesel generator equipment life 10 years Based on previous study [3]

Lead–acid battery capital cost 157.06 USD/kWh Based on 1Q 2019 market price of surveyed
deep cycle lead–acid batteries

Lithium-ion battery capital cost 922.9 USD/kWh Based on 1Q 2019 market price of surveyed
lithium-ion Batteries

Charge controller capital cost 385.3 USD/kWh Based on 1Q 2019 market price of surveyed
battery charge controllers

1 DU—distribution utility, 2 EIA—Energy Information Administration.

Appendix B

The technical values used in this work are presented in Table A2. These are the specifications of equipment
often used by customers of the local distribution utility (MERALCO), except for several battery parameters which
were based on an existing study.

Table A2. Technical values and assumptions used in this work.

Technical Data Value

Polycrystalline solar PV panel area 6.42 m2 per 255 W module
Polycrystalline solar PV derating factor 0.77

Polycrystalline solar PV temperature coefficient 0.004167 ◦C−1

Diesel generator spinning reserve [36] 15%

Maximum depth of discharge of battery [37] 0.8
Charging efficiency of battery [37] 0.895

Discharging efficiency of battery [37] 0.895
Maximum number of cycles for lead–acid battery 1500

Maximum number of cycles for lithium-ion battery 5000
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