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Abstract: The one of main quality requirements of natural gas as an engine fuel is the methane
number (MN). This parameter indicates the fuel’s capability to avoid knocking in the engine. A higher
MN value indicates a better natural gas quality for gas engines. Natural gas with higher methane
content tends to have higher MN value. This study presents analysis of deviation of liquefied natural
gas (LNG) composition and its impact on LNG quality as an engine fuel. The analysis of higher
hydrocarbons and nitrogen content impact on LNG parameters was considered for several samples
of LNG compositions. Most engine manufacturers want to set a new, lower limit value for methane
number at 80. This fact causes significant restrictions on the range of variability in the composition of
liquefied natural gas. The goal of this study was to determine the combination of the limit content
of individual components in liquefied natural gas to achieve the strict methane number criterion
(MN > 80). To fulfill this criterion, the methane content in LNG would have to exceed 93.7%mol, and a
significant part of the LNG available on the market does not meet these requirements. The analysis
also indicated that the methane number cannot be the only qualitative criterion, as its variability
depends strongly on the LNG composition. To determine the applicability of LNG as an engine fuel,
the simultaneous application of the methane number and Wobbe index criteria was proposed.
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1. Introduction

Liquefied natural gas (LNG) is commonly used in power industry as a fuel for gas engines to
produce electricity or as a fuel for natural gas vehicle (NGV) engines. Natural gas utilization in the
power or automotive industry require quality standards in accordance with the effective design of
the engine to obtain maximum power [1–5]. For reciprocating gas engines the methane number (MN)
is one of the natural gas quality parameters. Methane number is a measure of the resistance of fuel
gases to engine knock. It is assigned to a tested fuel based on operation in a knock testing unit at
the same standard knock intensity [1–3]. The knocking phenomenon results from the spontaneous
ignition of a portion of the gas mixture in the combustion chamber ahead of the propagating flame [4,5].
The required minimum MN value depends on the engine manufacturer or automotive associations.
A higher MN value indicates a better gas fuel quality and allows one to avoid knocking which is one
of the reasons for engine power decreases [6]. The methane number of pure methane (CH4) is 100.
It means that during fuel combustion knocking phenomena does not occur. Pure hydrogen (H2) has a
value of MN 0 (zero) which means it very easily causes knocking in the engine [5–7]. More and more
engine manufacturers or automotive associations require fuel with a minimum methane number of
80. Some engine manufacturers still maintain methane number limits below 80 (most often 70) [8–19].
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The heavier natural gas components content range can be extended with lower methane number values.
In the LNG regasification process, high methane number of natural gas can be obtained only from light
LNG, in which the methane mole content usually exceeds 95%. Increasing the mole fraction of CH4
can be achieved by reducing the content of heavier components by substituting them i.e., from C2H6+

to CH4. This study determines the combination of LNG individual component limit contents in terms
of maintaining the assumed criteria of methane number values. Knowledge of the features of burning
fuels based on LNG is crucial for suppliers and traders in providing reliable and efficient products.
Analysis of liquefied natural gas composition variability impact on the possibility of its utilization
as an engine fuel in terms of the methane number criterion is not a widely recognized research area.
While in case of classical fuels such as gasoline or diesel, the basic properties of the fuel, including the
qualitative ones, are described in great detail and standardized, for liquefied natural gas, the most
important aspect is the variability of its composition, which results in fuel quality changes. For LNG,
different compositions, which depend on the export sources causes significant changes in fuel quality.
Variability of LNG quality parameters does not have to adversely affect the basic methods of using
natural gas after regasification, and in the case of maintain restrictive quality conditions, it is always
possible to apply additional gas treatment methods. Fuel quality is very important for proper operation
of precisely designed car engines. Development of the LNG market causes that deliveries of this fuel
take place from new different sources, causing significant fluctuations in the values of LNG physical
and quality parameters. The aim of this study is to define, systematize and standardize universal limit
values of individual LNG components for which the assumed quality of defined methane number
value can be achieved.

2. Basics of Liquefied Natural Gas

Liquefied natural gas (LNG) plays an important role in the global natural gas market. Global
demand for natural gas will grow over the coming years [20,21]. Diversification of supplies of this
eco-friendly fuel is the key element of the energy security of each country [22–24]. Liquefied natural gas
is transported by ships and stored in suitable storage tanks. The main component of LNG is methane
and remaining components are primarily ethane, propane, butane and nitrogen. LNG composition
may vary significantly depending on its origin. Generally liquefied natural gases from different sources
can be divided into three groups, depending on the content of individual components. The first group
is ‘Light LNG’, in which the methane content is usually above 90%mol or even above 95%mol. LNG
with a methane content below 90% is usually considered as ‘Heavy LNG’. It has a high ethane content
(usually up to 10%), propane (usually up to about 3–4%), butanes (usually up to 1.5%) and trace
amounts of pentanes and heavier components. In addition to hydrocarbons, liquefied natural gas
contains small amounts of nitrogen.

In general, the content of nitrogen in LNG does not exceed 0.5%, and the requirements for LNG
indicate that its content should not exceed 1%. Due to its strong influence on the LNG evaporation
process, LNG which contains more than 1% of nitrogen should be qualified to a separate LNG group
(‘LNG with nitrogen’). Table 1 presents the assumed approximate limits for the content of individual
components in liquefied natural gas.

Table 1. Typical content limits of liquefied natural gas components.

Component Minimum Molar Content Maximum Molar Content

Methane 87% >99%
Ethane <1% 10%

Propane <1% 5%
Butanes <1% 1.5%
Nitrogen <0.1% 1%
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Quality Criteria for Liquefied Natural Gas

Liquefied natural gas parameters and composition are governed by strict quality requirements,
which are generally determined by domestic regulations and specifications for regasified natural gas
and by strict requirements for the natural gas liquefaction installations at the LNG producer side.
A separate group of requirements is indicated by carriers who receives LNG directly in the liquid
phase (e.g., LNG carriers or bunkering ships). Generally, typical elements of the quality specification
of liquefied natural gas are:

(1) Molar content of methane in LNG (see Table 1);
(2) LNG higher heating value and Wobbe Index (usually min - max range) (Table 2);
(3) Boiling temperature range (Table 2);
(4) Relative density (the ratio of the average molecular weight of gas to that of air), (Table 2);
(5) Maximum permitted levels of impurities (H2S, H2O, CO2, S) (Table 3);
(6) Molar content of heavier hydrocarbons, in particular C4+ (Table 3);

Table 2. Typical quality parameters limits of liquefied natural gas based on various sources and
calculated from various available LNG compositions (own calculations).

Component Min Max

Higher (Gross) Heating Value, MJ/mn
3 39.4 46.0

Wobbe Index, MJ/mn
3 52.7 56.9

Relative density, - 0.55 0.66
Boiling temperature (p = 1 atm), K 108.7 115.5

Commonly the most important quality criterion used by the LNG recipient is the so-called Wobbe
index [25,26]. In many countries, the maximum limit of the Wobbe index of natural gas is assumed
around 56–57 MJ/mn

3.

Table 3. Maximum impurities limits for liquefied natural gas [27,28].

Impurity/Component Maximum Content

Vapor water H2O 0.1 ppmv 0.8 mg/mn
3

Hydrogen Sulphide H2S 4 ppmv 6.07 mg/mn
3

Sulphur S 28 ppmv 40 mg/mn
3

Carbon dioxide CO2 50 ppmv 98.21 mg/mn
3

Mercury Hg 0.01 µg/mn
3

Butanes and heavier hydrocarbons C4+ 2%
Pentanes and heavier hydrocarbons C5+ 0.1%

Nitrogen N2 1%

Most liquefaction processes begin with some form of gas pre-treatment. During this process
natural gas should be cleaned by removing impurities like carbon dioxide, hydrogen sulfide, mercury
and water vapor. Next, the natural gas without non-hydrocarbon impurities is passed to a fractionation
process where the heavy hydrocarbons content (C2+) is reduced. This process includes also make-up
unit which adds heavy hydrocarbons to adjust the composition if necessary. The natural gas treatment
process at the LNG liquefaction plant has a key role in the preparation of gas to achieve the quality
requirements for natural gas before liquefaction process. Required permitted maximum limits of
impurities in liquefied natural gas are presented in Table 3.
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3. Methane Number Criteria

3.1. Methane Number

LNG is produced in various locations around the world. The composition of LNG depends on
its geographical origin due to differences in natural gas sources, production technologies and target
markets for LNG. Table 4 presents approximate compositions of liquefied natural gas from various
export sources. In addition, the ‘evaporation’ of volatile components during LNG transport and
storage leads to a change in composition, also known as ‘LNG aging’. Methane number is not a gas
thermodynamic property, so it cannot be calculated using the equation of state (EOS). This means that
the methane number determination methods are based on empirical experiments. The results obtained
with individual methods may vary significantly. It should also be noted that some of these calculation
methods do not include components heavier than butane. Usually the content of components heavier
than butane should be small, so they are usually added to the butane content as an approximation,
but in order to determine the methane number it may be necessary to additionally modify these basic
calculation methods.

Table 4. LNG compositions from various export sources [20].

Source
Composition Methane C1 Ethane C2 Propane C3 C4+ Nitrogen N2

Australia NWS 87.33 8.33 3.33 0.97 0.04
Australia Darwin 87.64 9.97 1.96 0.33 0.1
Algieria–Skikda 91.4 7.35 0.57 0.05 0.63

Algieria–Bethioua 89.55 8.2 1.3 0.31 0.64
Algieria–Arzew 88.92 8.42 1.58 0.37 0.71

Brunei 90.12 5.34 3.02 1.48 0.04
Egypt–Idku 95.31 3.58 0.74 0.35 0.02

Egypt–Damietta 97.25 2.49 0.12 0.12 0.02
Indonesia–Badak 90.14 5.46 2.98 1.41 0.01

Libya 81.39 12.44 3.51 0.64 2.02
Malaysia–Bintulu 91.69 4.64 2.6 0.93 0.14

Nigeria 91.7 5.52 2.17 0.58 0.03
Norway 92.03 5.75 1.31 0.45 0.46
Oman 90.68 5.75 2.12 1.25 0.2
Peru 89.06 10.26 0.1 0.01 0.57
Qatar 90.91 6.43 1.66 0.73 0.27

Russia–Sakhalin 92.54 4.47 1.97 0.95 0.07
Trynidad 96.78 2.78 0.37 0.06 0.01

USA–Alaska 99.7 0.09 0.03 0.01 0.17
Yemen 93.17 5.92 0.77 0.12 0.02

The description of methane number is simple if the gas mixture consists of only two methane and
hydrogen components. However, in the case of natural gas, where in its composition, in addition to
methane, there are heavier components like ethane, propane, etc., determination of methane number
is much more. There are various methods to determine the methane number based on natural gas
composition. Some of them are proposed by standardization associations and some are proprietary
methods proposed by engine manufacturers. The results of these methods can vary significantly [29–31].

3.2. Methane Number Calculation Methods

Among developed methods for methane number determination, some have been proposed by
standardization associations. The most common standard for methane number determination is
ISO-TR-22302: 2014 “Natural gas–Calculation of methane number”. This standard describes two
methods for methane number determination. The first simple method is based on the linear dependence
of the motor octane number (MON) on the mole content of natural gas components. This method has
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some disadvantages which limit the motor octane number determination only to hydrocarbons up to
butanes. In addition, it includes linear factors for carbon dioxide and nitrogen content. The hydrogen
to carbon ratio (H/C) is the second method for motor octane number calculation and then the methane
number. Formula for determination of motor octane number contained in ISO-TR-22304:2014 standard
is given by Equation (1) [30–32]:

MON = 406.14 + 508.04R-173.55R2 + 20.17R3 (1)

where R–ratio of hydrogen atoms to carbon atoms in molecule (H/C).
In addition to the methods for MN calculation mentioned above, several semi-empirical methods

commonly used in the automotive industry were developed. These methods are based on experimental
measurements for various natural gas compositions and include: AVL method, improved AVL methods
and methods developed by engine manufacturers (Cummins (Columbus, IN, USA); Wartsilla (Helsinki,
Finland), Caterpillar (Deerfield, IL, USA)). Methods developed by engine manufacturers usually
operate best for the criteria specified for the engines produced by a given company. Most of these
methods have disadvantages such as limited accuracy for heavier than butane hydrocarbons due to the
fact empirical studies for hydrocarbon mixtures do not consider hydrocarbons heavier than butanes.
Generally, the differences in obtained results (methane number determined by various methods) do
not exceed 5 between minimum and maximum value [30–33].

3.3. Hydrogen to Carbon (H/C) Ratio

H/C ratio is defined by the ratio of the hydrogen atoms number to carbon atoms number in a
given molecule. For example, for methane it is H/C = 4, for ethane it is H/C = 3, etc. The situation
becomes more complicated when a mixture of hydrocarbons has more components. Figure 1 shows
the dependence of the H/C ratio on the molar fraction of methane in a binary mixture with ethane,
propane or butanes. The relationship to determine the H/C ratio for multi-component hydrocarbon
mixtures is presented in Equation (2):

R =
H
C

=

k∑
i=1

xi ·NiH

k∑
i=1

xi ·NiC

(2)

where xi–mole content of each component, Ni–number of atoms of hydrogen or carbon in each
component molecule and k–number of components.

Figure 1 shows the dependence of the H/C ratio on the molar fraction of methane in a binary mixture
with ethane, propane or butanes. H/C ratio was calculated with use Equation (2). Hydrogen and carbon
atoms are separately summed taking into consideration the molar content of each component, next
obtained sum of hydrogen atoms is divided by sum of carbon atoms in assumed mixture. High H/C
ratio determines higher hydrogen molecules in the fuel. Hydrogen has the highest burning velocity
among fuels weather gases or liquids. Increasing hydrogen content in the fuel combination causes that
the fuel burning velocity will be higher and cleaner as burning hydrogen only produces water.
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Figure 1. Hydrogen to carbon ratio (for ethane, propane and butanes) vs. methane molar fraction for
binary mixtures.

3.4. Methane Number Criteria for Motor Engines

Highly developed engines are designed for MN ≥ 80 so that they can achieve high power, low
emissions and excellent fuel economy. Lower methane number values can reduce the economics of
gas engine applications but increase greenhouse gas emissions or decrease engine efficiency [25,29].
Considering the above issues, changes in standardization which describes the acceptable limits of
methane number for internal combustion engines should be expected in near future. The current
standard for natural gas combustion engines is a minimum methane number of 70 (DIN 51,624 standard).
This requirement is fulfilled by liquefied natural gases from most of the world’s sources (except Australia,
Libya–similarly to the Wobbe index criterion).

The current world trends related to maximizing the engine energy efficiency and limiting
emissions into the natural environment increase the probability of tightening the methane number
criteria for internal combustion engines. The first proposals to tighten these requirements appeared
already in 2011 and were submitted by the European Commission and the European association of
engine manufacturers Euromot [34]. After considering methane number as a gas quality parameter,
the proposal (Euromot) specified that the value of methane number should be as high as possible in
order to avoid incorrect operation of internal combustion engines and increase their efficiency. Euromot
recommends in its proposal that the methane number of natural gas as engine fuel should not be lower
than 80.

4. Methane Number Determination for Different LNG Compositions

4.1. Assumptions

The main purpose of this work is to present the dependence of changes in the value of methane
number on the content of individual components in liquefied natural gas.

Fifteen sets of exemplary LNG compositions were selected for analysis, in which the content of
individual components is described by a linear relationship (Table 5). In these sets of compositions,
binary systems methane-ethane, methane-propane, methane-butanes were also presented for
comparison purposes. Linear relationships describing the variability of natural gas compositions are
presented in Table 4. In addition to the three comparative binary systems, the relationships for the
C1-C2-C3, C1-C2-C3-C4, C1-C2-C3-C4-C5 systems are presented as main subject of prepared analysis.
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LNG composition containing nitrogen was also presented - for comparative purposes to determine the
differences in obtained quality parameters of the Wobbe index and the methane number.

Table 5. Assumed sets of liquefied natural gas compositions (molar composition).

Set No. Methane C1 Ethane C2 Propane C3 Butanes C4 Pentanes C5 Nitrogen N2

1 (100 − n)% 0.75 n% 0.25 n% - - -
2 (100 − n)% 0.6 n% 0.4 n% - - -
3 (100 − n)% 0.8 n% 0.15 n% 0.05 n% - -
4 (100 − n)% 0.65 n% 0.25 n% 0.1 n% - -
5 (100 − n)% 0.55 n% 0.35 n% 0.1 n% - -
6 (100 − n)% 0.6 n% 0.25 n% 0.15 n% - -
7 (100 − n)% 0.45 n% 0.35 n% 0.2 n% - -
8 (100 − n)% 0.7 n% 0.2 n% 0.07 n% 0.03 n% -
9 (100 − n)% 0.6 n% 0.25 n% 0.1 n% 0.05 n% -

10 (100 − n)% 0.6 n% 0.2 n% 0.12 n% 0.08 n% -
11 (100 − n)% 0.5 n% 0.25 n% 0.15 n% 0.1 n% -
12 (100 − n)% n% - - - -
13 (100 − n)% - n% - - -
14 (100 − n)% - - n% - -
15 (99 − n)% 0.8 n% 0.15 n% 0.05 n% - 1%

4.2. Methane Number and Component Content

The assumed sets of liquefied natural gas (LNG) compositions were analyzed to determine the
most significant aim of this paper, i.e., to determine the dependence of the methane number value
on the content of individual components. Figures 2–5 show the dependence of the methane number
(calculated using the H/C ratio method) on the methane, ethane, propane and butanes content in
liquefied natural gas. For methane, the methane number criterion above 80 was achieved for selected
composition sets for methane content above 92–95%mol excluding methane-ethane binary systems
(above 90.5%mol C1) and methane-butanes binary systems (above 97%mol C1). For ethane, the methane
number is higher than 80 for its maximum content of 2.5–6 mol%, and especially for the binary system
C1-C2 maximum 9.5%mol. In liquefied natural gas, the propane content should not exceed 1.2–2.8%mol,
and the butane content should not exceed 0.4–1.2%mol, so that the methane number is higher than 80.
If the methane number criterion is lowered to 70, the methane content may be reduced to a minimum
86.3%mol and in the case of a binary system with ethane up to 83 mol%. In such cases the ethane
content can be increased to 4.3–10.8%mol and for a binary system with methane up to 17 mol%. The
propane content for the methane number criterion 70 should not exceed 2–5%mol, and the butane
content 0.7–1.9%mol. Specification of the methane number values criteria allows to approximately
determine the maximum content of heavier hydrocarbons and the minimum content of methane for
various LNG compositions. Unfortunately, on basis of different LNG compositions, it is only possible
to approximate the maximum content of individual components and the minimum content of methane
for a given criterion of methane number. The obtained value ranges for various combinations of
composition should be confronted with other LNG quality parameters.
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Figure 6 presents the relation between the ratio of hydrogen to carbon atoms in molecule and
methane content for given sets of liquefied natural gas compositions. Due to the fact that the methane
number is determined in one of the methods based on the value of H/C ratio, the dependence of this
coefficient on the molar content of methane is similar to the dependence of the methane number on the
content of methane in the LNG composition. The H/C ratio for a methane number above 80 should be
a minimum of 3.83 and for a methane number above 70 - 3.71.
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Figures 7 and 8 show the detailed dependence of the methane number on the molar fraction
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presented in the Tables 6 and 7.
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composition set 7.

Table 6. Limit contents of methane and other components for methane number equal to 80.

Set No.
Methane C1 Ethane C2 Propane C3 Butanes C4 Pentanes C5 Nitrogen N2

Min %mol Max %mol Max %mol Max %mol Max %mol %mol

1 92.5 5.6 1.9 - - -
2 93.2 4.1 2.7 - - -
3 92.3 6.2 1.2 0.3 - -
4 93.5 4.2 1.7 0.6 - -
5 94.0 3.3 2.1 0.6 - -
6 94.0 3.6 1.5 0.9 - -
7 94.5 2.5 1.9 1.1 - -
8 93.3 4.7 1.3 0.5 0.2 -
9 94.0 3.6 1.5 0.6 0.3 -

10 94.3 3.4 1.1 0.7 0.5 -
11 95.0 2.5 1.3 0.7 0.5 -
12 90.5 9.5 - - - -
13 95.2 - 4.8 - - -
14 96.8 - - 3.2 - -
15 91.5 6.1 1.1 0.3 - 1.0

The performed analysis showed that an increase in heavier hydrocarbons content causes an
increase in the minimum methane content limit for the assumed methane number criterion. Also,
appearance of a new heavier component in the LNG composition causes a significant reduction in
methane number. Therefore, in order to maintain the assumed criteria for the value of methane
number, it is necessary to increase the minimum limit of methane content in the LNG composition.
For instance, if the LNG composition contains hydrocarbons not heavier than propane, the minimum
required methane content oscillates near 92–93%mol for the criterion of methane number equal to
80. If the LNG contains butanes, the minimum required methane content for this criterion usually
increases to 93–94%mol, although combinations are possible in which the minimum methane limit
decreases below 93%mol in particular for a high ratio of ethane to heavier components contents.
The appearance of trace amounts of pentanes in the LNG composition means that the criterion of the
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minimum methane number equal to 80 can be maintained usually for minimum methane content in
the range of 94–95 mol%, with special combinations up to minimum 93.5%mol.

Table 7. Limit contents of methane and other components for methane number equal to 70.

Set No.
Methane C1 Ethane C2 Propane C3 Butanes C4 Pentanes C5 Nitrogen N2

Min %mol Max %mol Max %mol Max %mol Max %mol %mol

1 86.5 10.2 3.3 - - -
2 87.8 7.4 4.8 - - -
3 86.4 10.8 2.0 0.8 - -
4 88.2 7.7 3.0 1.1 - -
5 89.0 6.1 3.8 1.1 - -
6 89.0 6.6 2.8 1.6 - -
7 90.5 4.3 3.3 1.9 - -
8 88.0 8.4 2.4 0.8 0.4 -
9 89.5 6.3 2.6 1.1 0.5 -

10 90.0 6.0 2.0 1.2 0.8 -
11 91.0 4.5 2.3 1.3 0.9 -
12 83.0 17.0 - - - -
13 91.5 - 8.5 - - -
14 94.3 - - 5.7 - -
15 85.5 10.8 2.0 0.7 - 1.0

Similar results were obtained for the criterion of methane number equal to 70. The minimum
methane content oscillates from 86%mol (for the LNG composition including only methane, ethane and
propane) to 91%mol (with trace amounts of pentanes). These results do not apply to binary systems
and nitrogen containing compositions.

4.3. Wobbe Index and Methane Number

The basic quality criterion used in the natural gas industry is the Wobbe Index, which is the
ratio of the calorific value determined for one cubic meter of natural gas to square root of its relative
density, under the same reference conditions. The Wobbe Index exists in two forms related to the heat
of combustion (gross/higher heating value) and calorific value (lower heating value) and they are
described by the Equations (3) and (4) respectively:

WIU =
HHV
√

d
(3)

WIL =
LHV
√

d
(4)

where WIU–upper Wobbe Index, MJ/mn
3, WIU–lower Wobbe Index, MJ/mn

3, HHV–gross heating value,
MJ/mn

3, LHV –lower heating value, MJ/mn
3 and d–specific density.

The higher heating value (HHV) is determined by bringing all the products of combustion back to
the original pre-combustion temperature, and in particular condensing any vapor produced. Lower
heating value (LHV) is determined by subtracting the heat of vaporization of the water from the higher
heating value. The energy required to vaporize the water therefore is not released as heat.

In the performed analysis, the relation of the methane number was referred to the upper Wobbe
Index as the main quality parameter of natural gas. Figure 9 shows the dependence of the Wobbe
Index on the molar fraction of methane for fifteen tested sets of natural gas compositions. The Wobbe
Index increases with a decrease in the molar fraction of methane and with an increase in the molar
fraction of heavier hydrocarbons. For composition sets containing pentane and butanes, the increase in
Wobbe Index is higher. It is clearly presented for the binary mixture methane-butanes (Set 14), where
the butanes content increase more rapidly.
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When linking the Wobbe Index to the methane number, a convergent relationship can be seen
for all LNG composition sets containing only hydrocarbons, so for LNG with a composition that
contains only hydrocarbons, you can link approximately a value of the methane number for a specific
Wobbe Index value. For the methane number equal to 80 the maximum value of the Wobbe Index is
approximately 55.2 MJ/mn

3 and for the minimum methane number 70 56.6 MJ/mn
3. This relationship

does not apply to LNG compositions containing components other than hydrocarbons, e.g., nitrogen,
which reduces the Wobbe Index, but does not cause changes in the methane number value for most
correlations (Figure 10).

Analysis of compositions of liquefied natural gas available from world exporters, showed that
LNG from most sources achieved the criterion of methane number higher than 70 (among the analyzed
sources, only LNG from Libya and Australia NWS had methane numbers lower than 70) [20]. In the
case of tightening the methane number criterion to 80, the number of LNG sources for which the
composition achieves this criterion decreases significantly (Figure 11).

The theoretical results obtained during the analysis were superimposed on the operational
conditions of the LNG unloading and storage terminal. The changes direction in content of components
of liquefied natural gas in storage tank as a function of time was examined. During the analyzed
period, LNG was delivered to the terminal from a source other than before. The new delivery was
characterized by a higher methane content (approx. 96 mol%) compared to the 93%mol in previously
stored LNG. The change in methane content resulted in a characteristic increase in methane number
(Figure 12).
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In analyzed operational data from the LNG storage terminal, a decrease in the methane value
was also observed, which was caused by the increased content of ethane in the LNG composition.
The increased molar fraction of ethane is reflected in the higher Wobbe Index value. Observing the
curves describing the the methane number and Wobbe Index values it should be noted that they are
approximately a mirror reflection of each other (Figure 13). The increase in methane content observed
during LNG delivery from other source reduces the Wobbe Index.
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4.4. Nitrogen Content Impact on Methane Number

Nitrogen as a component of natural gas is only a ballast without energy value. Similarly,
the presence of nitrogen in liquefied natural gas is undesirable because of its characteristic properties.
Nitrogen evaporates from LNG as first due to lower boiling point temperature than methane. For the
moment, the content of methane in the liquid phase increases, while in the gas phase at the beginning
of evaporation process nitrogen can reach up to 50% of the evaporated gas.

The increased content of nitrogen can lead to instability of the LNG storage process and in some
range contribute to the phenomenon referred to the stratification of stored liquefied natural gas into
two layers of different densities, which might lead to a dangerous roll-over phenomenon. Roll-over
should be understood as a very rapid evaporation of methane from the LNG storage tank. It is caused
by rapid mixing of the stored LNG which occurs after density equalization of both previously stable
layers inside the tank. For this reason, it is recommended that the nitrogen content should not exceed
1% in liquefied natural gas.

Impact of nitrogen on the natural gas quality parameters was analyzed for selected compositions
(set 3–0% nitrogen and set 15–1% nitrogen) and intermediate variants with the molar fraction of
nitrogen 0.3% and 0.6%, the contents of other hydrocarbons change analogously as for sets 3 and 15.
Nitrogen content increase in the LNG composition to 1% causes an increase in the methane number
value as a function of methane molar fraction (Figure 14). This change occurs due to the fact that
nitrogen as a part of the system does not reduce the ratio of hydrogen atoms to carbon atoms (H/C).
The Wobbe Index for the assumed value of methane number decreases by about 0.7 MJ/mn

3 due to
nitrogen content increase to 1 mol% (Figure 15).Energies 2020, 05 FOR PEER REVIEW  17 
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4.5. Composition Measurement Uncertainty Impact

Previous studies on LNG has indicated the uncertainty which results from the sampling
methodology (to be able to determine composition of LNG, sample need to be regasified and tested in
the laboratory), and the methodology to determine the content of individual components (most often
by gas chromatography), which are 0.3% and 0.2% respectively [35]. Considering the processes at the
LNG terminal and the methodology of the measurement (calibration gases in gas chromatography),
the total uncertainty for the methane content in LNG which contains approx. 90%mol of methane
is approx. 0.5–0.6 %mol. Using the same procedures and methodologies for other hydrocarbons
uncertainties are lower [35]. A possible uncertainty in the measurement of the LNG composition may
affect the value of the methane number, especially if the content of heavier components is lower than
the actual one. In the presented analysis, the methane number and Wobbe index were determined
for the assumed composition which did not include measurement uncertainties. The change of LNG
component content results from measurement uncertainties and automatically changes the value of
the methane number or the Wobbe index. Therefore, the measurement uncertainties do not burden
the method of methane number calculation with an error, but only the input data for the calculations,
so the methane number uncertainty results directly from the assumed uncertainties related to the
LNG composition.

5. Discussion

The results show that to determine the composition of liquefied natural gas for the assumed
methane number criteria require additional criteria to describe the exact limit content. The criterion of
methane number equal to 80 means that for various combinations of LNG compositions, the minimum
methane content may vary from 92.3% to 95.0%mol. The maximum content of other hydrocarbons are
in the following ranges: ethane 2.5–6.2%mol, propane 1.1–2.7% mol, butanes up to 0.7% mol, pentanes
up to 0.5% mol. The obtained ranges, despite their precise determination, are still quite wide, therefore
it is necessary to introduce the simultaneous application of the most popular quality criterion for
natural gas, which is the Wobbe Index. For a methane number equal to 80, the Wobbe Index should
not exceed 55.2 MJ/mn

3. A significant share of the liquefied natural gas available on the global market
does not meet this requirement (MN > 80). The obtained results from the analyzed exemplary and real
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compositions indicate that methane number criterion (MN > 80) may eliminate LNG supplies from
some regions. It should also be noted that a large part of the LNG available on the global gas market
has a methane number slightly lower than the proposed criterion MN > 80. In this case, three solutions
are possible: increasing the methane number of a given gas by removing heavier hydrocarbons from
its composition before liquefaction, changing operational characteristics of the liquefaction plant or
consider methane number lower value for this criterion.

For the criterion of methane number equal to 70, it is possible to specify wider ranges of the
maximum content of individual components and the minimum content of methane which may vary
from 86.4% to 91.0% mol. Maximum hydrocarbon contents are accepted in following ranges: ethane
4.3–10.8% mol, propane up to 2.0–4.8% mol, butanes up to 1.6% mol, pentanes up to 0.9% mol. Obtained
ranges are wider than for criterion of MN > 80. Therefore, it is necessary to describe a supplementary
criterion of the Wobbe Index, which in this case should have a maximum value of 56.6 MJ/mn

3.
LNG from most world exporters achieve the milder methane number criterion (MN > 70), however
it should be noted that engines designed for this criterion will not work with maximum efficiency
and will generate higher emissions. The discussion with the results presented in other publications is
difficult because the scope of the literature regarding the methane number as a quality parameter of
LNG is very limited.

6. Conclusions

Engines can use natural gas with wide range of quality as a fuel The methane number of liquefied
natural gas is a very important parameter in the power production process in gas engine which
describes the knocking characteristic of fuel. Generally, engines which use natural gas as a fuel to
produce maximum power need a minimum MN value of 80. Lower methane numbers should be
improved by reducing the molar contents of heavier hydrocarbons, especially butanes and pentanes.
Fluctuation of the fuel quality may have a significant impact on engine performance and produced
greenhouse gases emissions. Highly developed presently produced engines are designed for methane
number values above 80 (a criterion about to be introduced in the European Union) to achieve a high
power density, low greenhouse gases emission levels and excellent fuel efficiency. To ensure normal
operation conditions for gas engines the knocking characteristic (methane number value range) should
be given for natural gas. Specific criteria for the quality of natural gas as motor fuel should guarantee
the safe, reliable and cost-effective operation of the engine, which should also be environmentally
friendly through low greenhouse gas emissions.

A higher natural gas methane number means higher engine efficiency and lower emissions.
Unfortunately, for a significant part of the liquefied natural gas available on the global market,
the methane number criterion of 80 is impossible or difficult to achieve. The rules and methods for
calculating the methane number should be defined and they should be standardized for the entire
global natural gas market. Due to different combinations of individual natural gas components content,
it is impossible to indicate specific limit contents for each component for the criterion of methane
number of a given value. There are two possible solutions to this situation. Firstly, average limit
contents (Table 8) for all components can be accepted as a compromise. There is a possibility for some
combinations of LNG compositions for which accepted content limits may be imprecise. A second
solution involves the introduction of a complementary criterion. The most reasonable supplementary
criterion probably will be the Wobbe Index. The simultaneous application the Wobbe Index criterion in
addition to methane number allows to define specific limit values of individual LNG components for a
given case.



Energies 2020, 13, 5060 19 of 21

Table 8. Proposed compromise limit contents of LNG components for various methane number criteria.

Component
MN > 70 MN > 80

%mol %mol

Methane >88.7 >93.65
Ethane <7.55 <4.35

Propane <3.4 <1.9
Butanes <0.8 <0.4
Pentanes <0.45 <0.2
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Nomenclature

AVL
Anstalt für Verbrennungskraftmaschinen List, the world’s largest independent company for the
development, simulation and testing of engine systems

HHV gross heating value, MJ/mn
3,

LHV lower heating value, MJ/mn
3,

LNG liquefied natural gas
MON motor octane number
MN methane number
WI Wobbe Index
WIU upper Wobbe Index, MJ/mn

3,
WIU lower Wobbe Index, MJ/mn

3,
R ratio of hydrogen atoms to carbon atoms in molecule (H/C)
d specific density,
k number of components
Ni number of atoms of hydrogen or carbon in each component molecule,
xi mole content of each component

References

1. Tjojudo, D.H.; Kartohardjono, S. Methane number improvement of gas from LNG regasification unit. E3s Web
Conf. 2018, 67. [CrossRef]

2. Palmer, G. Methane number. J. Nat. Gas Eng. 2019, 2, 134. [CrossRef]
3. Gieseking, B.; Brown, A.S. Novel algorithm for calculating the methane number of liquefied natural gas with

defined uncertainty. Fuel 2016, 185, 932–940. [CrossRef]
4. Gupta, S.K.; Mittal, M. Predicting the methane number of gaseous fuels using an artificial neural network.

Biofuels 2019. [CrossRef]
5. Melenshek, M.; Olsen, D.B. Methane number testing of alternative gaseous fuels. Fuel 2009, 88, 650–656.

[CrossRef]
6. Ryan, T.W., III; Callahan, T.J.; King, S.R. Engine knock rating of natural gases—Methane number. J. Eng. Gas

Turbines Power. 1993, 115, 769–776. [CrossRef]
7. Heather, T.; James, J.C.; James, J.W. Natural gas as a marine fuel. Energy Policy 2015, 87, 153–167.
8. Flynn, P.C. Commercializing an alternate vehicle fuel: Lessons learned from natural gas for vehicles.

Energy Policy 2002, 30, 613–619. [CrossRef]
9. Nijboer, M. The Contribution of Natural Gas Vehicles to Sustainable Transport; International Energy Agency:

Paris, France, 2010.

http://dx.doi.org/10.1051/e3sconf/20186704033
http://dx.doi.org/10.7569/JNGE.2017.692506
http://dx.doi.org/10.1016/j.fuel.2016.07.105
http://dx.doi.org/10.1080/17597269.2019.1600455
http://dx.doi.org/10.1016/j.fuel.2008.08.020
http://dx.doi.org/10.1115/1.2906773
http://dx.doi.org/10.1016/S0301-4215(01)00122-7


Energies 2020, 13, 5060 20 of 21

10. De Carvalho, A.V., Jr. Natural gas and other alternative fuels for transportation purposes. Energy 1985, 10,
187–215. [CrossRef]

11. Pfoser, S.; Schauer, O.; Costa, Y. Acceptance of LNG as an alternative fuel: Determinants and policy
implications. Energy Policy 2018, 120, 259–267. [CrossRef]

12. Keith, D.R.; Struben, J.; Naumov, S. The diffusion of alternative fuel vehicles: A generalized model and
future research agenda. J. Simul. 2020. [CrossRef]

13. Khan, M.I. Policy options for the sustainable development of natural gas as transportation fuel. Energy Policy
2017, 110, 126–136. [CrossRef]

14. Lopez Alvarez, J.A.; Buijs, P.; Kilic, O.A.; Vis, I.F.A. An inventory control policy for liquefied natural gas as a
transportation fuel. Omega 2020, 90, 101985. [CrossRef]

15. Chen, Z.; Zhang, F.; Xu, B.; Zhang, Q.; Liu, J. Influence of methane content on a LNG heavy-duty engine with
high compression ratio. Energy 2017, 128, 329–336. [CrossRef]

16. Karavalakis, G.; Hajbabaei, A.; Jiang, Y.; Yang, J.; Johnson, K.C.; Cocker, D.R.; Durbin, T.D. Regulated,
greenhouse gas, and particulate emissions from lean-burn and stoichiometric natural gas heavy-duty vehicles
on different fuel compositions. Fuel 2016, 175, 146–156. [CrossRef]

17. Kakaee, A.-H.; Paykani, A.; Ghajar, M. The influence of fuel composition on the combustion and emission
characteristics of natural gas fueled. Renew. Sustain. Energy Rev. 2014, 38, 64–78. [CrossRef]

18. Vallabhunia, S.K.; Leleb, A.D.; Patela, V.; Lucassena, A.; Moshammera, K.; AlAbbadc, M.; Farooqc, A.;
Fernandesa, R.X. Autoignition studies of liquefied natural gas (LNG) in a shock tube and a rapid compression
machine. Fuel 2018, 232, 423–430. [CrossRef]

19. Hwang, S.-K. Methane number control of fuel gas supply system using combined cascade/feed-forward
control. J. Mar. Sci. Eng. 2020, 8, 307. [CrossRef]

20. International Group of LNG Exporters (GIIGNL), Annual Report 2018, International Group of LNG Exporters.
2018. Available online: https://giignl.org/sites/default/files/PUBLIC_AREA/Publications/rapportannuel-2018
pdf.pdf (accessed on 28 May 2020).

21. U.S. Energy Information Administration, EIA Report, Annual Energy Outlook 2020, U.S. Energy Information
Administration. 2020. Available online: https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report
.pdf (accessed on 29 May 2020).

22. International Energy Agency. World Energy Outlook: Are We Entering a Golden Age of Gas? International
Energy Agency: Paris, France, 2011.

23. BP. Statistical Review of World Energy; BP: London, UK, 2016.
24. International Gas Union: World LNG Report-2019 Edition, International Gas Union. 2019. Available online:

https://www.igu.org/app/uploads-wp/2019/06/IGU-Annual-Report-2019_23.pdf (accessed on 3 June 2020).
25. Liu, J.; Dumitresu, C.E. Numerical investigation of methane number and Wobbe index effects in lean-burn

natural gas spark-ignition combustion energy. Fuels 2019, 33, 4564–4574. [CrossRef]
26. Mozgovoy, A.; Burmeister, F.; Albus, R. Contribution of LNG use for the low calorific natural gas network’s

safe and sustainable operation. Energy Procedia 2015, 64, 83–90. [CrossRef]
27. Klinkenbijl, J.; Grootjans, H.; Rajani, J. Best practice for deep treating sour natural gases (to LNG and GTL).

In Proceedings of the GasTech 2005 Conference & Exhibition, Bilbao, Spain, 14–17 March 2005.
28. Mokhatab, S.; Mak, J.Y.; Valappil, J.V.; Wood, D.A. Handbook of Liquefied Natural Gas; Gulf Professional

Publishing (Elsevier Inc.): Houston, TX, USA, 2014.
29. GIE Position Paper on Impact of Including Methane Number in the European Standard for Natural Gas,

November 2012, Gas Infrastructure Europe. Available online: https://giignl.org/system/files/mn-position-p
aper-giignl.pdf (accessed on 3 June 2020).

30. ISO-TR-22302: 2014 Natural Gas-Calculation of Methane Number. Available online: https://www.iso.org/st
andard/63772.html (accessed on 24 April 2020).

31. Kubesh, J.; King, S.R.; Liss, W.E. Effect of Gas Composition on Octane Number of Natural Gas Fuels; 922359; SAE:
Troy, MI, USA, 1992.

32. Partho, S.R.; Christopher, R.; Sang Keun, D.; Chan Seung, P. Development of a natural gas methane number
prediction model. Fuel 2019, 246, 204–211.

33. Algorithm for Methane Number Determination for Natural Gasses; Dansk Gasteknisk Center: Hørsholm, Denmark,
1999.

http://dx.doi.org/10.1016/0360-5442(85)90083-0
http://dx.doi.org/10.1016/j.enpol.2018.05.046
http://dx.doi.org/10.1080/17477778.2019.1708219
http://dx.doi.org/10.1016/j.enpol.2017.08.017
http://dx.doi.org/10.1016/j.omega.2018.10.015
http://dx.doi.org/10.1016/j.energy.2017.04.039
http://dx.doi.org/10.1016/j.fuel.2016.02.034
http://dx.doi.org/10.1016/j.rser.2014.05.080
http://dx.doi.org/10.1016/j.fuel.2018.04.168
http://dx.doi.org/10.3390/jmse8050307
https://giignl.org/sites/default/files/PUBLIC_AREA/Publications/rapportannuel-2018pdf.pdf
https://giignl.org/sites/default/files/PUBLIC_AREA/Publications/rapportannuel-2018pdf.pdf
https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf
https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf
https://www.igu.org/app/uploads-wp/2019/06/IGU-Annual-Report-2019_23.pdf
http://dx.doi.org/10.1021/acs.energyfuels.8b04463
http://dx.doi.org/10.1016/j.egypro.2015.01.011
https://giignl.org/system/files/mn-position-paper-giignl.pdf
https://giignl.org/system/files/mn-position-paper-giignl.pdf
https://www.iso.org/standard/63772.html
https://www.iso.org/standard/63772.html


Energies 2020, 13, 5060 21 of 21

34. Euromot, Position Paper: Methane number as a Parameter for Gas Quality Specifications. 2012. Available
online: https://www.euromot.eu/wp-content/uploads/2017/03/GAS_QUALITY_methane_number_calcula
tion_2012-04-04.pdf (accessed on 8 May 2020).

35. Graham, E.; Kenbar, A. LNG energy transfer uncertainty-sensitivity to composition and temperature changes.
Flow Meas. Instrum. 2015, 44, 79–88. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://www.euromot.eu/wp-content/uploads/2017/03/GAS_QUALITY_methane_number_calculation_2012-04-04.pdf
https://www.euromot.eu/wp-content/uploads/2017/03/GAS_QUALITY_methane_number_calculation_2012-04-04.pdf
http://dx.doi.org/10.1016/j.flowmeasinst.2014.12.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Basics of Liquefied Natural Gas 
	Methane Number Criteria 
	Methane Number 
	Methane Number Calculation Methods 
	Hydrogen to Carbon (H/C) Ratio 
	Methane Number Criteria for Motor Engines 

	Methane Number Determination for Different LNG Compositions 
	Assumptions 
	Methane Number and Component Content 
	Wobbe Index and Methane Number 
	Nitrogen Content Impact on Methane Number 
	Composition Measurement Uncertainty Impact 

	Discussion 
	Conclusions 
	References

