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Abstract: Power-to-methane technology (P2M) deployment at wastewater treatment plants (WWTPs)
for seasonal energy storage might land on the agenda of decision-makers across EU countries, since
large WWTPs produce a notable volume of biogas that could be injected into the natural gas grid
with remarkable storage capacities. Because of the recent rapid increase of local photovoltaics (PV),
it is essential to explore the role of WWTPs in energy storage and the conditions under which this
potential can be realized. This study integrates a techno-economic assessment of P2M technology with
commercial/investment attractiveness of seasonal energy storage at large WWTPs. Findings show
that a standardized 1 MWel P2M technology would fit with most potential sites. This is in line with
the current technology readiness level of P2M, but increasing electricity prices and limited financial
resources of WWTPs would decrease the commercial attractiveness of P2M technology deployment.
Based on a Hungarian case study, public funding, biomethane feed-in tariff and minimized or
compensated surplus electricity sourcing costs are essential to realize the energy storage potential
at WWTPs.

Keywords: seasonal energy storage; power-to-methane; wastewater treatment plants; techno-
economic assessment

1. Introduction

There is broad consensus within the power-to-gas (P2G) literature, especially in the power-to-
methane (P2M) literature, as well as among industry actors that wastewater treatment plants (WWTPs)
could play a significant role in scaling up P2G technology by ensuring key input factors, mainly
efficiently useable carbon-dioxide sources in the produced biogas [1]. Meanwhile, a notable volume
of previous research has shown several technical, and techno-economic challenges of the P2M
technology [2], and recent research has also pointed out that a supportive regulatory environment
is essential to further develop and scale up the P2M technology [3]. As the EU must significantly
increase the PV installation rate to reach a carbon-neutral electricity supply by 2050 [4], and considering
the integration challenges of the renewable energy to the grid [5], it is becoming a key priority for
decision-makers to also focus on concrete opportunities and limitations of seasonal energy storage that
could be realized with P2M technology deployment at WWTPs.

While the promising role of the P2G technology in the energy sector has been argued
comprehensively in recent years (e.g., from the aspect of long-term energy storage [2], system
analysis [6] or technological and economic factors [7]), researchers have also started to focus on the role
of WWTPs with respect to different aspects of renewable energy transition and power-to-X technologies.
Schäfer et al. [8] pointed out that WWTPs have notable synergy potential in sector coupling, for example,
hydrogen and methane can be produced at WWTPs (with P2G technologies), and the oxygen (as the
byproduct of the electrolysis) can be used to enhance purification processes. Gretzschel et al. [9]
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focused on power-to-hydrogen (P2H) technology and the elimination of organic micropollutants at
WWTPs, considering the possibility of offering system service, as well: automatic frequency restoration
reserve (aFRR), which can provide short-term flexibility for network operators. Ceballos-Escalera
et al. [10] examined the energy storage attributes of a prototype with a bioelectrochemical system
for electromethanogenesis (EMG-BES) at a WWTP, which is an emerging technology in the P2M
segment besides chemical and biological methanation. They also showed the future potential of the
interconnectedness of renewable energy overproduction, biomethane production, and wastewater
treatment. WWTP functions regarding sustainability are, however, researched in terms of other aspects,
as well, considering that they also play a significant role in nutrient recovery, where new practices
have been suggested [11], and have also been designed [12] for environmentally and economically
more viable clarification and treatment technologies.

In this paper, the authors make a step forward on the route outlined by these previous researchers,
using Hungary as a case study and focusing on biological methanation technology. Its technology
readiness level makes it possible to plan grid-scale implementations, even in the short term [13]. These
opportunities are paved by the theoretical synergies between biological methanation and WWTPs
mentioned above, as well as empirical data of:

(1) the innovative lab-scale P2G prototype with biological methanation developed by Power-to-Gas
Hungary Kft. in cooperation with Electrochaea GmbH (the developer of the 1 MWel P2G facility with
biomethanation, located in Avedøre, Denmark).

(2) large Hungarian WWTPs, from which the authors collected technical data to evaluate the
implementation opportunities and limitations. The senior executives of these WWTPs provided
valuable insights regarding the economic and technology incentives of commitment for grid-scale
technology implementation projects.

Techno-economic assessments have already been conducted regarding P2G technologies with
different methods and scopes in recent years. In terms of the return of the investment, for example,
Ameli et al. [14] analyzed the role of different capacities of battery storage and P2G systems in Great
Britain with the Combined Gas and Electricity Networks (CGEN) model. Addressing electricity
balancing challenges, they concluded that the capital costs must reach £0.5 m/MW for P2G to justify
the investment. As a comparative approach, Collet et al. [15] analyzed five different scenarios of
biogas upgrading and P2G, pointing out that P2G technologies “are competitive with upgrading ones
for an average electricity price equal to 38 EUR MW h−1 for direct methanation and separation by
membranes” [p. 293]. In the case of production costs, Peters et al. [16] can be mentioned among others,
who evaluated eight scenarios based on different combinations of H2 and CO2 sources and found
methane costs in the range of 3.51–3.88 EUR/kg for P2G. Collet et al. and Peters et al. complemented
their techno-economic analyses with ecological and environmental aspects, focusing on greenhouse gas
(GHG) emissions, as well. P2M is important, but is not the only means of decarbonization in the case
of waste management; for example, the latest techno-economic analyses show increasing economic
and ecological viability regarding biochar farming [17], agricultural waste management [18] and solid
biofuels [19], as well.

As detailed above, there are several approaches to perform a techno-economic assessment of the
P2G and waste management technology [20]. Inspired by these studies, the authors also emphasize
the economic aspects besides the technical parameters, based on which the seasonal energy storage
potential can be calculated at large Hungarian WWTPs. The novelty of this paper is that it aims to
open up new perspectives in the techno-economic assessment of P2M technology by:

(1) narrowing its focus to individual WWTPs in the first step and carrying out in-depth analysis
regarding not only techno-economic, but also commercial/investment questions as complementary
viewpoints (in addition to the important and frequently assessed environmental impacts). Economic
and commercial aspects are differentiated, as the former considers general interrelations of technical
data, costs, revenues, return on investment; while the latter incorporates WWTP-specific infrastructure,
strategic management and investment related viewpoints of WWTPs as organizations, as well.
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(2) extending the focus to a national-level assessment, based on specific empirical data, as well as
evaluating the seasonal energy storage and practical implementation opportunities and limitations of
the P2M technology with integrated commercial/investment expectations of stakeholders.

Consequently, the research questions are the following:
(1) What is total seasonal energy storage potential with P2M at large WWTPs in Hungary?
(2) What are the economic conditions under which WWTPs are financially incited to participate in

a grid-scale implementation of the biological methanation?
The research questions indicate that the authors aim to connect theory and practice, to explore the

seasonal energy storage potential and also the practical key success factors under which this potential
can be realized. The focus of this paper makes meaningful contributions to P2M research and industry
that are beyond the specific geographical area:

(1) First, while numerous studies have drawn important conclusions about the “hard” factors of
P2G technology development and implementation (such as levelized cost of energy, process design, cost
optimization, life-cycle assessment) based on quantitative data [2], the authors combine quantitative
and qualitative data collection to contribute to an overall understanding of P2M technology deployment
opportunities and limitations at concrete future operators of P2M.

(2) Second, the techno-economic assessment with the complementary commercial/investment
viewpoint (based on interviews and financial modeling) shows how WWTPs senior executives could
be incited by changes of the regulatory environment to take the innovation-related and upscaling risks,
as well. Figure 1 summarizes the research framework.
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Figure 1. Research framework. The scope of the research incorporates the assessment of opportunities
and limitations of P2M technology deployment at WWTPs in Hungary in terms of technical, economic,
and commercial/investment aspects. The current WWTP infrastructure and P2M technology parameters
determine the seasonal energy storage potential. Commercial and investment challenges of WWTPs
and P2M business models determine motivations and incentives for such projects. Based on these
findings, recommendations can be outlined for changes of the regulatory environment. The expected
contribution of these recommendations is that new incentives could increase the attractiveness of P2M
investments for WWTPs and allow them to realize the energy storage potential.
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As the research framework suggests, based on a previous Hungarian P2G study [3], the specific
research hypothesis is the following:

Economic, commercial, and investment aspects of P2M seasonal energy storage do not motivate
WWTPs to act as future P2M operators, consequently, there is a need for change in the regulatory
environment to incite them to realize their seasonal energy storage potential with P2M deployment.

There is a rapidly growing need for seasonal energy storage in the EU, especially in Hungary
(where the national energy strategy also forecasts rapid growth of national PV capacities [21]), for
which P2M would be a promising technology, but its grid-scale implementation has not happened
yet. The objective of the research is to examine the P2M deployment opportunities and limitations
at large WWTPs in Hungary and explore possible ways of realizing the seasonal energy storage
potential of P2M technology. The main contribution of this techno-economic assessment is that it
incorporates complementary commercial and investment attractiveness of seasonal energy storage by
collecting and analyzing both quantitative and qualitative data as well. It shows the challenges of P2M
technology deployment also from the aspect of future operators highlighting their motivation and
strategic interests.

2. Materials and Methods

2.1. Technology Description

P2G is often called a “disruptive” technology, since it brings a new techno-socio-economic
approach into the energy sector and redefines the scope of duties of each stakeholder (Ferrero, 2016).
This disruptive process started in Hungary with the foundation of Power-to-Gas Hungary Kft., in
2016. The startup developed a lab-scale P2M prototype and has been operating it since April 2018.
The prototype is a scaled-down operational unit with mass and energy flows in proportion to the
commercial process of P2G, and also contains the complete basic unit operations to carry out research
and development (R&D) in the field of P2G.

The planned P2M plants can produce a gas mixture that meets the requirements of natural gas
standards. The applied process consists of three main steps.

(1) In the power-to-hydrogen (electrolysis) step, the plant would use surplus electricity from
the electric grid [22] and produce hydrogen (with oxygen as a byproduct), in line with the chemical
reaction below:

4 H2O (l) + e− → 4H2 (g) + 2O2 (g), ∆H0
r = 285.5 kJ/mol (1)

In this research, polymer electrolyte membranes (PEMEC) electrolysis is applied, which is preferred
for seasonal energy storage (as it is applied also by Power-to-Gas Hungary Kft), mainly because of its
high flexibility, fit to volatile renewable energy generation, and high technology-readiness level [23].
While hydrogen is going to be used in the next P2G step (methanation), oxygen generation can also be
exploited at WWTPs; the efficiency of the aeration system can be increased by injection of oxygen into
it [8].

(2) In the methanation step, the CO2 content of the biogas (typically 30–50%) is converted to
methane, carried out by basic reactions and mediated by the biocatalyst employing a unique set of
enzymes [24]:

CO2 + 4H2→CH4 + 2H2O (2)

In this research, a flexible biomethanation process is applied that is provided by an optimized
strain of Archaea (Methanothermobacter thermautotrophicus), a proprietary biocatalyst, a robust,
highly selective and efficient strain [25]. Unlike biogas upgrading [26], methane and carbon dioxide gas
components are not separated in this process, and the biogas is injected to the continuous stirred-tank
reactor along with hydrogen. Mass-flow rates are set to maintain the stoichiometric ratio of hydrogen
and carbon dioxide (increased, 4.1:1 in practice because of the 23 times lower dissolution of hydrogen
than carbon dioxide in water).
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(3) In the injection step, the product gas in which the guaranteed purity of methane is more
than 97% is injected into the natural gas grid after a polishing process (segregation of hydrogen gas
compound, removal of water vapor, cooling).

The evaluated total efficiency of the P2M plant (ηP2G) is calculated as follows:

ηP2G = ηel· ηmeth =


.

VH2·HHVH2

3.6 · Pel
·

..
Vwpg·HHVwpg

.
VH2·HHVH2

 · 100 = 27.7·

..
Vwpg·HHVwpg

Pel
[%] (3)

where:
.

VH2 −Hydrogen gas volumetric flow
(

Nm3

h

)
HHVH2 −Hydrogen gas higher heating value

(
MJ

Nm3

)
Pel − power output of electrolyzer units [kWel].
Vwpg −wet product (effluent) gas volumetric flow

(
Nm3

h

)
HHVwpg −wet product (effluent) gas higher heating value

(
MJ

Nm3

)
After substituting the correspondent values into the equation, the total P2M plant efficiency is in

the range of 55–60%.

2.2. WWTPs in Hungary

WWTPs in Hungary are units of regional or municipal waterworks, typically owned by municipals
responsible for water supply, wastewater drainage, and treatment. There were 826 WWTPs in Hungary
in 2016, ca. 96% of which were under 100,000 PE (Population Equivalent). Considering the goal of
grid-scale P2M technology implementation and its complex infrastructural and input conditions [3],
the 28 WWTPs above 100,000 PE could be relevant for this research. Not every WWTP with large PE
produces biogas, however (for example, the authors found that only 13 WWTPs have biogas plants
from the 19 WWTPs of Hungary’s county seats), but there are other WWTPs at non-county seats which
also have biogas. In sum, there are around 20 WWTPs with favorable infrastructure that produce
biogas in Hungary. In 2016, the calorific value of biogas was 897,066,000 MJ/year on the national
level [27].

2.3. Data Collection

The authors analyzed the implementation potential of the innovative and efficient biomethanation
technology of Power-to-Gas Hungary Kft. At different sites, technical data was collected from large
Hungarian WWTPs, and several interviews were carried out at the level of experts and senior executives,
as well. The authors were able to collect data from seven WWTPs from four different regions of
Hungary, which is in line with the decentralization trends of the energy sector [28]. As all of the
analyzed WWTPs were above 100,000 PE, this research represents the biggest cities of Hungary.

The data collection process contained at least four steps in every case:
(1) Pre-evaluation of the P2M technology relevancy with the Chief Technology Officer or the

Technical Director (semi-structured interviews);
(2) In-depth presentation of the technology and exploration of the commercial opportunities

with the Chief Executive Officer or the executive team (semi-structured interviews or focus group
interviews);

(3) Collection of existing techno-economic data and documentation;
(4) On-site techno-economic data collection and consultation.
Table 1 shows the structure of the data collection. Because of confidentiality, specific financial

data were provided only in terms of trends, or highlighting opportunities and challenges.
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Table 1. Structure of data collection.

Data Technical, Technological, Infrastructural Economic, Commercial, Investment
Related

General
(Senior executive and

director level)

• Power supply from grid, current or
planned PV capacity

• Water supply
• CO2 input: % in the biogas, produced

volume per h
• The geographical area for the P2M plant

and its local infrastructural connections
(for example to the biogas plant or
the WWTP)

• Connection to the natural gas grid
• Byproduct use potential (waste

heat, oxygen)

• Openness for technological
innovations and collaborations

• Financial situation
• Current biogas use
• Current or planned infrastructural

developments, potential synergies
with P2M

Specific
(Director and
expert!level)

• Fermentation (e.g., temperature)
• Raw biogas composition (e.g., sulfur)
• Gas characteristics (e.g., gas

flow, pressure)
• Gas engines (e.g., type, electric and

thermal power)
• Power grid connection (e.g., voltage)
• Natural gas grid connection (e.g.,

distance from the plant)
• Water and wastewater (e.g.,

treatment technology)
• Technological and infrastructural

connections (e.g., current or possible use
of waste heat)

• Expansion potential (e.g., transport
connections, geographical area).

• Mobilizable capital for
the investment

• Current contracts defining
energy costs

• Current revenues produced or
costs saved on biogas use

Moreover, the authors conducted interviews with technology suppliers, researchers, strategic and
financial investors, and other stakeholders in the P2G inter-organizational innovation networks [3]
as well, which helped to contextualize the former techno-economic analyses and the new data from
WWTPs in Hungary.

2.4. Data Analyses

2.4.1. Applied Model for the Calculation of Seasonal Energy Storage Potential

The seasonal energy storage potential can be calculated on the basis of HHV of the total generated
injected gas. The parameters of the injected gas mixture must meet the gas requirements set in
Hungarian Standards [29] and Annex 13 of Implementing Regulation of Natural Gas Supply [30].
The most significant specifications to meet are

- Wobbe index: 45.66–54.76 MJ/m3

- HHV: 31.00–45.28 MJ/m3 (8.61–12.58 kWh/ m3)
- Hydrogen sulfide content: max. 20 mg/m3

- Water vapor content: 0.17 g/m3

Since the polished wet gas carbon dioxide concentration exceeds 97%, the higher heating value of
the injected gas (HHVP2G) is calculated as follows:

HHVP2G = 0.97 · HHVCH4 = 0.97 · 36.3
MJ

Nm3 = 35.21
MJ

Nm3 = 9.78
kWh

Nm3 (4)
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2.4.2. Applied Model for the Economic Analysis

The economic analysis is based on a single “average” WWTP case in the first step and extends
the scope to the national level in the second. The authors built their financial calculations largely on
the data and the analyses of the EU-funded STORE&GO project. This project was focused on three
variations of P2G implementation since 2016, one of them with biological methanation [31].

The background driver of this economic analysis was the National Energy Strategy 2030 of
Hungary, which aims towards the rapid growth of electricity generating units from photovoltaic
sources (the planned installed capacity will exceed 6000 MW by 2030) [21]. This is indeed a favorable
trend for the renewable transition. The literature has also pointed out, though, the challenges of surplus
energy generation and the need for energy storage [32]. In this respect, the Hungarian natural gas grid
would be appropriate for seasonal energy storage, with its 6,330,000,000 m3 storage capacity [21].

The fundamental assumption of this economic analysis is that during the rapid growth of PV
capacities in Hungary, the Hungarian feed-in tariff (FiT) system and its green premium [33], which
provides higher electricity prices for renewable energy producers to incite more PV investments,
negatively affects the P2M business model and its attractiveness for investors. As P2M technologies are
key in energy storage [34], further regulatory changes and incentives are needed to avoid energy loss
and network imbalance. There is a clear need for a system in which seasonal energy storage can be
incited and realized but without impeding the further growth of PV capacity in the country. Figure 2
illustrates the background and the focus of the economic analysis of the study.
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As previous studies have shown that electricity sourcing is the most determining factor of
operating expenditures (OPEX) and the most economic benefit can be realized when the P2X plant
is directly connected with PVs or wind turbines [35], one possible way to incite P2M investments
could be to provide a framework in which P2G plants can use this surplus energy at well below
market price, or if this sourcing were compensated as an acknowledged system service for flexibility or
energy storage. This optimization of the price difference between the input (electricity) and the output
(biomethane) on the cost side is relevant practically in ca. 1200 h per year [36] with respect to seasonal
energy storage. Seasonal energy storage can be supported further on the revenue side, as biomethane
FiT has been implemented in a few countries in Europe [37].

On the capital expenditures (CAPEX) side, EU-funded and state-funded projects can foster P2M
investment, mostly with dominant research, development and innovation (R&D&I) focus, like in
the case of the STORE&GO project [31]. These concepts are not far away from the approach of the
National Energy Strategy 2030 of Hungary, because it plans to build a pilot, then a grid-scale P2G plant,
a regulatory sandbox model, and a mandatory national purchasing system for biomethane [21].

Based on the technical parameters, the economic and business analysis explores whether current
market conditions are attractive for WWTPs to invest in P2M technology or not. If not, the analysis
identifies scenarios combining the incentive opportunities of the cost, the revenue, and the investment
dimensions to meet the criteria of WWTP executives (identified during the interviews).

2.4.3. Qualitative Data Analysis

As mentioned before, the techno-economic assessment has a complementary commercial/
investment viewpoint. Consequently, 21 interviews were conducted with senior executives and
directors and analyzed using the coding technique of the grounded theory [38]. The approach of this
data analysis method fits the functionalist research, as it provides a structured process (open coding,
axial coding, selective coding) to build or fine-tune a theory (a general conclusion) [39] opposed to
other (mostly interpretative) qualitative methods (e.g., qualitative content analysis [40]).

(a) To improve the validity, the authors continued the research even after the fourth and fifth
cases, even though they did not obtain significantly new information compared to the previous ones
(reached theoretical saturation [38]).

(b) To improve the reliability, validation of the pre-conclusions was asked about during the
on-site consultations.

(c) To improve the generalizability, the interview questions were modified according to the
conclusions of the previous case, testing whether these conclusions were valid in other contexts or not.

3. Results

3.1. Seasonal Energy Storage Potential

In this section, the authors present the theoretical seasonal energy storage potential at large
Hungarian WWTPs; then they point out the difference between this theoretical potential and the
practical potential, which is calculated based on their empirical data collection.

3.1.1. Storage Potential of an “Average” WWTP Case

As previously described, storage potential is evaluated by taking WWTPs exceeding 100,000 PE
into consideration. Based on previous research, the biogas yield of an average sewage anaerobic
digestion (AD) facility in Hungary reaches 0.04 m3/day/PE [41]. The 20 WWTPs which are relevant
in this study and exceeding 100,000 PE, have a combined PE value of 5,901,866. Based on the
data above, the average size of Hungarian WWTPs that are relevant for P2G technology (CP2G):
CP2G = 5,901,866 PE

20 = 295, 093 PE
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The average biogas yield of an average WWTP:

PP2G = 0.04
Nm3

day · PE
· CP2G = 0.04

Nm3

day · PE
· 295, 093 PE = 11, 804

Nm3

day
(5)

Presuming the methane ratio of the biogas yield is 0.55, the hourly volumetric carbon dioxide
flow of an average WWTP is calculated by the equation below:

.
VCO2 = (1− 0.55) ·

PP2G

24
= 0.45 ·

11, 804
24

= 221.2
Nm3

h
(6)

The electrolyzer capacity of a P2G facility using biogas of an average WWTP is calculated with
the presumption of the 4.7 kWh electrical energy demand for the yield of 1 Nm3 of biomethane is
4.7 kWh/Nm3:

PP2G =
.

VH2 · 4.7 kWh
Nm3 =

.
VCO2 · 4.1 · 4.7 kWh

Nm3 = 221.2 Nm3

h · 4.1 · 4.7 kWh
Nm3

= 4263 kW = 4.26 MWel
(7)

The other way of calculating P2G capacity for an average WWTP is by using the biogas volumetric
flow rates burned in combined heat and power (CHP) units at WWTP sites. Kisari [42] defined regional
WWTPs’ onsite CHP capacity by analyzing 10 relevant biogas plants using biogas generated from
anaerobic degradation of sewage slurry. In accordance with his research, the average built-in CHP
capacity was 730 kWel (PCHP). Sinoros [43] calculated the theoretical P2G potential with the focus
on available regional bioethanol and biogas yield in Hungary. That research carried out conclusions
on total biogas annual yield and considered no difference in the sources, particularly on WWTP
biogas streams.

The calculation of P2G plant capacity on the basis of built-in CHP capacity of WWTPs:

P′P2G = (
.

V′CO2) · 4.1 · 4.7 kWh
Nm3 =

(
PCHP · (1−0.55)

ηCHP
100 ·

(
100−rs

100

)
· HHVCH4

)
· 4.1 · 4.7 kWh

Nm3

= , where
(8)

rs-AD plant electric self-consumption percentage—15%
ηCHP-CHP electric efficiency—35%
HHVCH4–Higher heating value of methane—10.3 kWh/Nm3

After executing the substitution, the calculated capacity is:

P′P2G =

730 kW·(1− 0.55)
35

100 ·
(

100−15
100

)
·10.3

· 4.1·4.7
kWh
Nm3 = 107.2

Nm3

h
·4.1·4.7

kWh
Nm3 = 2065 kWel = 2065 MWel (9)

Although PP2G is more than two times higher than P′P2G, due to the constraints of site conditions
the authors justified P2G potential at a lower value than P′P2G. In accordance with the information
collected onsite and all the datasets provided by WWTP site managers, a P2G plant with 1 MWel

electrolyzer capacity could be fit to the WWTPs with the load exceeding 100,000 PE in general, because
(1) the methane content is usually higher (around 60–65%) than expected based on the literature,

which is beneficial for biogas production but not for P2M, because there is less CO2 (around 35–40%)
to convert to biomethane;

(2) the raw biogas flow is around 130 Nm3/h on average at the empirically examined WWTPs,
which slightly exceed 100,000 PE, but there are 9 WWTPs that are above even 250,000 PE (obviously
they are still within the necessary scope for P2M deployment);
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(3) there is some seasonality in the case of several WWTPs (e.g., at Lake Balaton) that affects
biogas production, but the higher values are typically in the summer, which fits the seasonal energy
storage concept.

3.1.2. Energy Storage Potential

According to Section 2.4.1, total seasonal energy storage potential can be calculated on the basis of
the higher heating value of the injected gas. Based on the stoichiometry, the values of E and E’ are
calculated as follows:

E =
.

VCO2 · 9.78 kWh
Nm3 ·tOP = 221.2 Nm3

h · 9.78 kWh
Nm3 ·1200 h

year
= 2, 596, 004 kWh ≈ 2596 MWh

(10)

E′ =
.

V′CO2 · 9.78 kWh
Nm3 ·tOP = 107.2 Nm3

h · 9.78 kWh
Nm3 ·1200 h

year
= 1, 258, 099 kWh ≈ 1258 MWh

(11)

Total theoretical seasonal energy storage potential of 20 WWTPs exceeding 100,000 PE is

Etotal = E· 20 = 2596 MWh· 20 = 51, 920 MWh ≈ 51.9 GWh (12)

E′total = E′· 20 = 1258 MWh· 20 = 25 , 160 MWh ≈ 25.2 GWh (13)

Considering all the information collected in site visits, the practical seasonal energy storage
potential of an average WWTP is

Ep =
.

VpCO2 · 9.78 kWh
Nm3 ·tOP = 50 Nm3

h · 9.78 kWh
Nm3 ·1200 h

year
= 586, 800 kWh ≈ 587 MWh

(14)

Total practical seasonal energy storage potential of 20 WWTPs exceeding 100,000 PE is

Eptotal = 20·Ep = 20·587 MWh = 11, 740 MWh ≈ 11.7 GWh (15)

3.2. Commercial and Investment Perspectives

3.2.1. Investment Volume, Operating Expenses, and Revenues

An important statement of the financial analyses of the STORE&GO project is that a high range of
possible investment costs of electrolyzers and methanation systems can be seen in the literature [44].
The economies of scale are a determining factor of CAPEX [44]. The investment costs in this study are
based on the calculations of van Leeuwen and Zauner [45] with minor modifications according to the
technical infrastructure of the analyzed WWTPs and additional costs of a public-funded technology
development projects. Interviewees also pointed out that one must take into account the costs of public
grant/public financing-specific R&D and maintenance tasks, and furthermore, the needed software
background supporting the P2M technology operations (not only the hardware and the physical
infrastructure). Appendix A shows the basis of the CAPEX calculations.

(1) The specific investment cost of the PEM electrolyzer system is 1640 EUR/kW, which is the base
case according to van Leeuwen and Zauner.

(2) In the case of the methanation system, a slightly higher CAPEX than the base case, 0.5 EUR/kWel

is taken into account because of some high specific investment costs for biomethanation presented by
Böhm et al. [44].

(3) There is an integrated “infrastructure” cost item, as well, because different kinds of infrastructure
development are needed at the analyzed WWTPs (e.g., there is gas storage at a few WWTPs, or the
new infrastructure for the use of the oxygen as a byproduct can be also relevant in this cost item).
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(4) An additional 28% investment is needed for project development, planning, expert services,
quality management, according to van Leeuwen and Zauner, and an additional 50% for public
grant/public financing-specific R&D, software development, and maintenance tasks.

Based on the above, the CAPEX of a 1 MWel P2M plant at an “average” WWTP is 5,696,000 EUR
if the investment would be realized this year.

The deployment of even one P2M plant, however, could require even more than a year-long project
planning, and 20 P2M plants cannot be deployed in one year. Consequently, the time horizon must be
extended for the investment. Previous P2G research has shown that there is a significant cost reduction
potential regarding investment costs because of experience curves and learning rates. Böhm et al. [44]
calculated that PEMEC CAPEX will decrease from 1200 EUR/kWel (2017) to 530 EUR/kWel (2030), and
biological methanation CAPEX will decrease from 600 EUR/kWSNG (2017) to 360 EUR/kWSNG. This
means that CAPEX of these components will decrease by 55% and 45% in 13 years. As the authors in
this research assume that P2M plants in question will be deployed between 2020 and 2030, in parallel
with the planned growth of PV capacities in Hungary, some CAPEX reduction is needed based on the
quoted estimation. Assuming even distribution of P2M deployment for the next 10 years, the year
2025 can be taken as the basis of the calculation, so the 1 MWel P2M CAPEX for 2025 with PEMEC
CAPEX can be decreased by 25% and the CAPEX of biomethanation system can be decreased by 20%.
Consequently, the model calculates on the basis of the reduced, 4,806,000 EUR CAPEX.

In the economic analysis, this CAPEX was considered as a fixed component, while operating
expenses and revenues were influenced by the costs of electricity sourcing (power grid fees) or its
compensation, and biomethane price was considered as a variable contingent on potential regulatory
changes. Appendix B shows the assumptions of the OPEX and revenue calculations. It is worth mention
that besides biomethane, waste-heat could generate an important revenue stream at 55 EUR/MWh [46];
however, this low-temperature heat source from electrolysis and methanation (ca. 60–75 ◦C), which
is usually challenging to use with high efficiency [47], could be used to an extent of only 50% in the
summer (when P2M operates focusing on energy storage) based on the infrastructure and the expert
interviews regarding WWTPs.

3.2.2. Commercial Challenges

Based on the financial analysis results, it can be seen that a 1 MWel P2M plant could operate
with minor profitability with an operation time of 1200 h/year at a WWTP, even if it did not pay for
the electricity (or it were compensated), and only for system usage. For example, this means only
ca. 73,000 EUR profit/year at a biomethane price of 150 EUR/MWh, which is the highest in Europe
according to Koonaphapdeelert et al. [37]. Consequently, as the interviews outlined, this business
model was not attractive enough for WWTP executives, if they would have to finance the investment
costs. According to them, a 7–15 year-long payback period would be favorable. However, even if
it were possible, the specific financing questions outlined that WWTPs do not have the financial
resources to realize such an investment. For example, the 4,806,000 EUR CAPEX is rather high for a
WWTP, if its annual revenue is around 20,000,000 EUR (illustrative data). Moreover, some large rural
WWTPs operated unprofitably in previous years, some operated with almost zero balance, and even
the profitable ones, which could generate over 500,000 EUR per year, argued that this profit must be
handled as retained earnings for unexpected maintenance tasks, not for R&D&I investments.

Even though increasing the number of operating hours could enhance profitability at first glance,
other problems would arise:

(1) If a P2M plant—as van Leeuwen and Zauner suggested [45]—were to source electricity from the
day-ahead market without any discounts or compensation, one could see that the growing electricity
prices in Hungary in recent years do not enhance profitability (the Hungarian Power Exchange
Day-Ahead Market Base Average Price was 40 EUR/MWh in 2015 and 5036 EUR/MWh in 2019) [48].

(2) There is some uncertainty as to whether the “bio” prefix, and therefore the premium price,
is applicable in the market (outside a national mandatory system) for the output methane gas if only one
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input factor comes from renewable sources. There is no consensus in the literature, or in the industry,
regarding this question. For example, biomethane is often described as a biogas, the CO2 content of
which is mostly eliminated or separated [49], while green gases are also characterized as a renewable
gas [50] that is virtually carbon-neutral [51], made from biomass or with P2G technology [52], but only
preferably (and not always) from renewable electricity sources [50]. In one STORE&GO study, “a green
gas is defined as a gaseous energy carrier offered to the market without a serious GHG footprint” ([53],
p. 12). Even though Jempa et al. [53] pointed out that not only renewable but the nuclear energy can
be considered to be carbon-neutral, the concrete business opportunities of such a product gas remain
uncertain, mainly because of the currently underdeveloped certificate markets [54] and the missing
harmonized and detailed rules on guarantees of origin at the EU level [55].

In sum, neither the characteristics of the seasonal energy storage-focused business model, nor their
financial opportunities allow WWTPs to commit to P2M deployment.

3.2.3. Scenarios to Incite WWTPs to Participate in Seasonal Energy Storage

Based on the above, the authors generated scenarios with specific variables including not only
electricity sourcing and biomethane price, but public funding for the investment. The goal was to
identify the conditions under which the P2M investment could be considered attractive (7–15-year-long
payback period) for seasonal energy storage at WWTPs. Specific variables are presented in Table 2.
The variables for electricity sourcing are based on the formerly introduced assumption that Transmission
System Operators (TSOs) will be forced to avoid energy loss and network imbalance with a framework
in which P2M plants can use surplus energy at a favorable or compensated price. The lowest biomethane
FiT was generated as a more or less competitive price compared to natural gas, while the highest was
based on the highest European FiT (Italy) [37]. The percentage of the public funding of CAPEX was
adjusted to the established institutional routines at similar development projects.

Table 2. Specific variables for financially attractive scenario generation for WWTPs.

Financial Factors Variable 1 Variable 2 Variable 3

Electricity sourcing
costs (ESC)

Partly disregarded or
compensated:

P2M plants do not have to pay for
the energy or it is compensated

with flexibility/energy storage fees
but has to pay the grid power fees

for system usage.

Fully disregarded or
compensated:

P2M plants do not have to pay
for the energy, nor for system

usage or these are compensated
with flexibility/energy

storage fees.
Biomethane FiT

(EUR/MWh) 50 100 150

CAPEX support
(% of public funding) 50 70 90

Configurations in which the payback period was 7 years and 15 years were explored based on
the variable biomethane price. Figure 3 shows that a 7-year-long payback period with 1200 operating
hours could be achievable with a reasonable biomethane price (based on international benchmarks [37])
if there were 90% public funding, and even electricity sourcing costs (ESC) were not only partly but
fully (including system usage fees) disregarded or compensated (e.g., there was a fee for providing
flexibility services or energy storage).
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P2M plant focusing only on seasonal energy storage with 1200 operating h/year.

As the executive interviews outlined that Hungarian WWTPs do not have financial resources for a
P2M investment, and core activities of WWTPs require stability, prudent risk-management, and efficient
operation, they cannot take the innovation-related up-scaling risks and the uncertainties of the business
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model (currently as potential “first movers” in Hungary) under the current market and regulatory
environment. Consequently, public funding is needed to incite WWTPs towards P2M deployment.

For seasonal energy storage with biomethane production, which could be considered an
economically beneficial activity in a country that imports ca. 80% of its natural gas [21], dominant public
funding for P2M deployment could be justified. Based on the calculations above, the public funding of
the CAPEX for 20 × 1 MWel P2M plant would require 66,000,000–93,000,000 EUR, depending on the
biomethane FiT, and a framework is also needed within the costs of surplus electricity consumption
are minimized or compensated on the revenue side.

4. Discussion

This study focused on techno-economic assessment of the P2M technology deployment in Hungary
with a complementary business viewpoint to highlight the concrete opportunities and limitations of
seasonal energy storage at WWTPs with biological methanation. The research aimed to answer the
following two questions:

(1) What is the total seasonal energy storage potential with P2M at large WWTPs in Hungary?
(2) What are the economic conditions under which WWTPs are financially incited to start the

grid-scale implementation of the biological methanation?
Regarding the first research question, the empirical research pointed out that the practical potential

of a P2M plant (1 MWel) is half of the theoretical potential because of higher methane content and
smaller gas flow than expected based on official data and previous research. The 1 MWel P2M size,
however, meets the current state of the technology, demonstrated by Electrochaea in Avedøre, Denmark,
where the largest P2G plant with biological methanation has been built. As there are around 20 relevant
WWTPs exceeding 100,000 PE with biogas production, the total P2M potential at them is around
20 MWel, meaning 11.7 GWh seasonal energy storage potential on national level. It could be argued
that this volume could be considered part of the decentralized seasonal energy storage system of the
country, as the research was focusing on the WWTPs of larger rural cities of Hungary. Considering
this potential in a broader context, the national energy strategy plans to reduce the overall natural gas
consumption to 8,700,000,000 m3 (ca. 2550 GWh) to 2030 [21]. With 20 MWel P2M deployments for
seasonal energy storage at WWTPs, the 11.7 GWh stored energy could mean ca. 0.5% of the reduced
natural gas consumption and equal to the annual energy consumption of ca. 5400 households currently
(as the average consumption was 2168 kWh/year/household in 2019 [56]) Though it is not much,
at first sight, savings on natural gas import and additional positive externalities (higher integration
of renewables, carbon reuse, sector coupling, prevented electricity network imbalances, and related
maintenance costs) must be also taken into account. Further research could extend the scope of the
financial analyses for these externalities as well.

Regarding the second research question, this energy storage potential can be realized if WWTPs
are incited by public funding for P2M deployment and operation, because the current market and
regulatory conditions do not meet the criteria of WWTPs for the payback period, and the WWTPs do
not have financial resources either to realize a P2M deployment, or to take risks with the still uncertain
grid-scale operation and business environment of P2M. This operational uncertainty is derived mainly
from the skepticism of WWTP executives, as they have not seen such a plant operating anywhere
before, especially not in Hungary. As the National Energy Strategy 2030 plans to support a pilot P2G
plant within a few years [21], hopefully, this problem will be solved.

Based on the financial calculations of an “average” WWTP case, the planned mandatory national
purchasing system for biomethane by the national energy strategy and the public funding of CAPEX
seem not to be enough to incite WWTPs to participate in seasonal energy storage. In other words,
while P2M energy storage fits the technological infrastructure of WWTPs, it does not meet their
business opportunities and requirements. Currently high and growing electricity prices, through
which further PV capacity investment is incited, fundamentally limits the viability of the P2M business
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model if there are no discounts on the cost side for the consumption of surplus energy or new revenue
streams (e.g., aFRR supporting P2G) through which electricity sourcing costs can be compensated.

Nevertheless, one could argue that growing PV capacities (as supply) will suppress
electricity market prices, as negative electricity prices have been seen in other European countries
(e.g., in Germany) [57]. This could be true in a perfect (in practice: never existing) market and in the
long-term, but Hungary’s electricity generation from PVs is still low (for example, the annual volume
of electricity produced from solar photovoltaic was only 0.02% compared to Germany’s production in
2019 [58]). In the short term, with former state intervention to incite PV investment by a FiT system,
there is a need for intervention regarding energy storage as well.

Obviously, there is a trade-off between support mechanisms, for example, a larger percentage of
public funding of CAPEX can be combined with a lower FiT for biomethane. Based on the generated
scenarios and missing financial resources of the WWTPs, there is a clear need for public funding of
over 90%. Considering a reasonable FiT for biomethane, other European prices could be referred to in
order to contextualize this question: 1.03 EUR/Nm3 in The Netherlands, 129.7 EUR/MWh in France,
70 EUR/MWh in the UK, 150 EUR/MWh in Italy [37]. Based on these prices, around 75 million EUR
CAPEX support and 100 EUR/MWh FiT seem to be the preconditions for realizing the energy storage
potential at WWTPs if surplus electricity sourcing costs were also minimized or compensated within a
new framework.

The presented results show a significant contribution to the latest literature, as well. For example,
while Guerra et al. [59] filled the research gap of the overlooked potential grid benefits of seasonal
storage (the literature mainly focused on costs, previously) with their new model for pumped hydro,
compressed air, and hydrogen seasonal storage and showed that “for more than 2 days of discharge
duration, the only cost-effective technology is hydrogen” [p. 23], this paper emphasized the promising
role of methane-based seasonal energy storage if a connection to the natural gas grid is given. Moreover,
this research extended the scope of the analysis even more by integrating the motivation and strategic
interests of future seasonal energy storage operators and building the financial model on the empirical
data of individual sites. Other findings of this paper are in line with the conclusions of latest studies
related to global carbon mitigation initiatives [60]. To mitigate environmental damage, Doğan et al. [61]
suggest that “OECD governments should directly invest in technological innovation to enhance
sustainable economic growth” [p. 9] and Shahzad et al. [62] conclude that “the policymakers of the
United States should adopt policies to encourage investors to invest in cleaner energy infrastructure
and advanced technologies” [p. 12]. These statements are in line with the conclusion that public
funding for P2M seasonal energy storage is essential not only because of the missing capital of WWTPs,
but for decreasing GHG emissions, as well. According to Doğan et al., these technological innovations
include, however, much more than energy technologies: artificial intelligence and ICT developments
could also be mentioned here. These technologies could indicate further possible development projects
that would affect the overall WWTP efficiency, and thus, the P2M CAPEX or OPEX in the long term.
For example, industrial big data analytics and machine learning [63], which could forecast weather
conditions for renewable energy generation (and storage) [64], could become a key success factor
(or following Osterwalder and Pigneur’s terminology [65], a key resource) in the business model for
cost-efficient operation. Furthermore, combining this with the trend towards smart energy systems [32]
and technology-driven shared economy [66] could subsequently redefine the role of WWTPs within the
rising smart energy communities [67]. These future directions could generate further R&D&I projects
which could be also valid for public funding.

5. Conclusions

The hypothesis of this study was the following:

Economic, commercial and investment aspects of P2M seasonal energy storage do not motivate
WWTPs to act as future P2M operators, consequently, there is a need for change in the regulatory
environment to incite them to realize their seasonal energy storage potential with P2M deployment.
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The hypothesis can be accepted, as the results showed that the main criterion of WWTPs for P2M
technology investment was the 7–15-year-long payback period. This cannot be achieved in the current
market and regulatory environment; possible regulatory changes could affect, however, some of their
key motivating factors. To address WWTP stakeholders’ expectations, a total of ca. 75 million EUR
public funding of CAPEX and 100 EUR/MWh biomethane feed-in tariff is needed to realize their energy
storage potential in Hungary if surplus electricity sourcing costs are also minimized or compensated
under a new national regulatory framework. The research hypothesis indirectly also suggested that
technical aspects would not be hampering factors of P2M technology deployment at large Hungarian
WWTPs, which was also proven in this study. The findings show that a standardized 1 MWel P2M
technology would fit with most potential sites, and this is in line with the current technology readiness
level of P2M.

This study opened new perspectives on techno-economic assessments of P2M technology by
integrating not only techno-economic, but also complementary commercial/investment attractiveness
of seasonal energy storage at large WWTPs, as well. Due to this approach, the authors could reveal
three lessons using Hungary as a case study. First, regarding other economies at similar levels, it is
important to highlight that former state interventions inciting new renewable energy generation
investments induce a need for intervention on the energy storage side, as well, to avoid loss of surplus
energy generation and network imbalance. Second, the research highlighted the 7–15-year-long
payback period expectations of future P2M technology operators. Without fulfilling their commercial
and investment motivations, any seasonal energy storage initiative will fail. Third, it was shown for
the first time (by concrete numbers and proportions) that a three-element regulatory configuration
(public funding, FiT, ESC) could have an impact on the attractiveness of P2M seasonal energy storage
for WWTPs.

Even though WWTPs could be key for sector coupling and seasonal energy storage, this is only
one possible segment of P2M deployment. For example, agricultural biogas plants are also promising
because of their on-site CO2, where the impacts of recent advances in nutrient management to accelerate
biogas production [68] could be researched with the P2M process, as well. Further development of
carbon capture technologies will bring more flexibility for locating P2M plants. Furthermore, even the
lack of a nearby natural gas grid could be bypassed with liquid methane (LNG) and re-gasification [69].
Consequently, examining other or all of the possible P2M deployment segments could be the scope of
further research to support policymakers with a more comprehensive analysis.

There are possibilities for further research regarding the method of economic analysis, as well.
For example, with respect to a single WWTP or another future P2M technology operator, a complex
valuation of the business is needed, by analyzing the business opportunity of the public-funded R&D&I
project phase with a limited lifespan [70] and the phase after the mandatory maintenance period of the
project with operations on own financial risks. Besides the new tangible assets and perhaps a more
favorable market environment, evaluating the acquired intangible assets during an R&D&I project
(which could generate premium revenues [71]) could also be a determining factor on whether a WWTP
would integrate P2M and seasonal energy storage into their core activities. In line with Machová and
Vochozka [72], artificial neural networks could be used not only for the analysis of business companies,
but business opportunities to handle these technical, market, and asset valuation complexities of the
P2M business case, as well. If site-specific technological complexities would arise because of parallel
development projects (e.g., P2M deployment, a capacity increase of a biogas plant, new infrastructure
to use oxygen by-product), simulation software like ASPEN PLUS [73] could be applied.

As a concluding remark, the authors hope that their WWTP-focused, in-depth analysis was able
to illustrate that there are important commercial and investment viewpoints of future P2M technology
operators which should be taken into account to make a step forward with seasonal energy storage
towards a more carbon-neutral energy sector.
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Appendix A

Table A1. Base case for CAPEX calculation at a single WWTP.

Category Item Thousand EUR Unit Source

Components,
physical

infrastructure

Electrolyzer system (PEM) 1.6 /kWel

STORE&GO:
D8.3. p. 14, 25, 34, 35

D7.5. p. 48

Methanation system (biological) 0.5 /kWel

Infrastructure, installation, storage
for gas puffer (H2, CO2), injection 1.1 /kWel

Other

Project development, planning,
expert services,

quality management
+28% on costs of total

components
Tender-specific R&D, software

and maintenance tasks +50% Own estimation based
on interviews

Appendix B

Table A2. Base case for operative expenses and revenues at a single WWTP.

Category Item EUR Unit Source

Input materials-
unit prices

Electricity price None -
Disregard based on the

fundamental assumption of
the study

Water 0.6 /kWel Hungarian waterworks

Power grid fees/
System usage

Variables:
None or 1,1 /kWel

Based on Hungarian Energy
and Public Utility

Regulatory Authority [74]

Operation and
maintenance costs

Electrolysis system 4.0%

% of CAPEX at 8000
operating hours

Own estimation based on
STORE&GO D8.3. p. 35

Methanation system 5.0%

Infrastructure,
installation, storage for

gas puffer
(H2, CO2), injection

3.5%

Revenues

Biomethane Variables:
50–150 /MWh Based on Koonaphapdeelert,

et al. [37]

Waste heat 55 /MWh STORE&GO D7.7 p. 65

CO2 quota 25 /tons [75]

Oxygen 0.07 /Nm3 STORE&GO D7.7 p. 65

Operation data

Operating hours 1200 /year -

Directly connected
PV capacity 0% -

Based on WWTP interviewsSold/injected biomethane 100% /total produced

Used or sold waste-heat 50% /total produced

Used or sold oxygen 50% /total produced
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Abbreviations

AD Anaerobic digestion
AFFR Automatic frequency restoration reserve
CAPEX Capital expenditures
CGEN Combined Gas and Electricity Networks
CHP unit Combined heat and power unit
EMG-BES Bioelectrochemical system for electromethanogenesis
ESC Electricity sourcing costs
FiT Feed-in tariff
GHG Greenhouse gas
HHV Higher heating value
LNG Liquefied natural gas
OPEX Operating expenditures
P2G Power-to-gas
P2H Power-to-hydrogen
PM Power-to-methane
PE Population Equivalent
PEMEC Polymer electrolyte membranes electrolysis
PV Photovoltaics
R&D&I Research, development, and innovation
SNG Synthetic Natural Gas
TSO Transmission System Operator
WWTP Wastewater treatment plant
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43. Sinóros-Szabó, B. Evaluation of Biogenic Carbon Dioxide Market and Synergy Potential for Commercial-Scale

Power-to-Gas Facilities in Hungary. In Proceedings of Innovációs Kihívások a XXI. Században (Innovation
Challenges in the XXI. Century), LXI. Georgikon Days Conference, 3–4 October 2019; Pintér, G., Csányi, S.,
Zsiborács, H., Eds.; University of Pannonia–Georgikon Faculty: Keszthely, Hungary, 2019; pp. 371–380. ISBN
9789633961308.

44. Böhm, H.; Zauner, A.; Goers, S.; Tichler, R.; Pieter, K. D7.5. Report on Experience Curves and Economies of Scale;
STORE&GO: Karlsruhe, Germany, 2018.

45. Van Leeuwen, C.; Zauner, A.D. 8.3. Report on the Costs Involved with PtG Technologies and Their Potentials
Across the EU; STORE&GO: Karlsruhe, Germany, 2018.

46. Zauner, A.; Böhm, H.; Rosenfeld, D.C.; Tichler, R. D7.7. Analysis on Future Technology Options and on
Techno-Economic Optimization; STORE&GO: Karlsruhe, Germany, 2019.

47. Györke, G.; Groniewsky, A.; Imre, A. A Simple Method of Finding New Dry and Isentropic Working Fluids
for Organic Rankine Cycle. Energies 2019, 12, 480. [CrossRef]

48. Hungarian Power Exchange. Annual and Monthly Reports. Available online: https://hupx.hu/hu/piaci-
adatok/dam/rendszeres-riportok (accessed on 18 August 2020).

49. European Biogas Association. About Biogas and Biomethane. Available online: https://www.europeanbiogas.
eu/about-biogas-and-biomethane/ (accessed on 18 June 2020).

50. Murphy, J.D. Green Gas Facilitating a Future Green Gas Grid through the Production of Renewable Gas; (eBook
electronic edition); IEA Bioenergy: Paris, France, 2018; ISBN 978-1-910154-38-0.

51. Ecotricity. What is Green Gas? Available online: https://www.ecotricity.co.uk/our-green-energy/our-green-
gas/what-is-green-gas (accessed on 18 June 2020).

52. Junginger, M.; Baxter, D. Biomethane—Status and Factors Affecting Market Development and Trade, electronic
version; IEA Bioenergy: Paris, France, 2014; ISBN 978-1-910154-10-6.

53. Jepma, C.; van Leeuwen, C.; Hulshof, D. D8.1. Exploring the Future for Green Gases; STORE&GO: Karlsruhe,
Germany, 2017.

54. Hulshof, D.; Jempa, C.; Mulder, M. D8.2. Report on the Acceptance and Future Acceptability of Certificate-Based
Green Gases; STORE&GO: Karlsruhe, Germany, 2018.

55. Kreeft, G.J. D7.2. European Legislative and Regulatory Framework on Power-to-Gas; STORE&GO: Karlsruhe,
Germany, 2017.

56. NKM National Utilities. Átlagos Éves Fogyasztás (Average Annual Consumption). Available online:
https://www.nkmenergia.hu/aram/pages/aloldal.jsp?id=550565 (accessed on 15 September 2020).

57. Vos, K.D. Negative Wholesale Electricity Prices in the German, French and Belgian Day-Ahead, Intra-Day
and Real-Time Markets. Electr. J. 2015, 28, 36–50. [CrossRef]

58. Statista. Annual Volume of Electricity Produced from Solar Photovoltaic in the European Union (EU-28) in
2019, by Country. Available online: https://www.statista.com/statistics/863238/solar-photovoltaic-power-
electricity-production-volume-european-union-eu-28/ (accessed on 15 August 2020).

59. Guerra, O.; Zhang, J.; Eichman, J.; Denholm, P.; Kurtz, J.; Hodge, B. The Value of Seasonal Energy Storage
Technologies for The Integration of Wind and Solar Power. Energy Environ. Sci. 2020, 13, 1909–1922.
[CrossRef]

https://solargis.com/maps-and-gis-data/download/hungary
https://solargis.com/maps-and-gis-data/download/hungary
http://dx.doi.org/10.3390/en12030480
https://hupx.hu/hu/piaci-adatok/dam/rendszeres-riportok
https://hupx.hu/hu/piaci-adatok/dam/rendszeres-riportok
https://www.europeanbiogas.eu/about-biogas-and-biomethane/
https://www.europeanbiogas.eu/about-biogas-and-biomethane/
https://www.ecotricity.co.uk/our-green-energy/our-green-gas/what-is-green-gas
https://www.ecotricity.co.uk/our-green-energy/our-green-gas/what-is-green-gas
https://www.nkmenergia.hu/aram/pages/aloldal.jsp?id=550565
http://dx.doi.org/10.1016/j.tej.2015.04.001
https://www.statista.com/statistics/863238/solar-photovoltaic-power-electricity-production-volume-european-union-eu-28/
https://www.statista.com/statistics/863238/solar-photovoltaic-power-electricity-production-volume-european-union-eu-28/
http://dx.doi.org/10.1039/D0EE00771D


Energies 2020, 13, 4973 21 of 21

60. Sarwar, S.; Shahzad, U.; Chang, D.; Tang, B. Economic and Non-Economic Sector Reforms in Carbon
Mitigation: Empirical Evidence from Chinese Provinces. Struct. Chang. Econ. Dyn. 2019, 49, 146–154.
[CrossRef]
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