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Abstract: With the rapid development of urban rail transit systems and the consequent sharp
increase of energy consumption, the energy-saving train operation problem has been attracting
much attention. Extensive studies have been devoted to optimal control of a single metro train
in an inter-station run to minimize the energy consumption. However, most of the existing work
focuses on offline optimization of the energy-saving driving strategy, which still needs to be tracked
in real train operation. In order to attain better performance in the presence of disturbances,
this paper studies the online optimization problem of the energy-saving driving strategy for a single
metro train, by employing the model predictive control (MPC) approach. Firstly, a switched-mode
dynamical system model is introduced to describe the dynamics of a metro train. Based on this
model, an MPC-based online optimization problem is formulated for obtaining the optimal mode
switching times with minimal energy consumption for a single train in an inter-station run. Then we
propose an algorithm to solve the constrained optimization problem at each time step by utilizing the
exterior point penalty function method. The proposed online optimal train control algorithm which
determines the mode switching times can not only improve the computational efficiency but also
enhances the robustness to disturbances in real scenarios. Finally, the effectiveness and advantages of
this online optimal train control algorithm are illustrated through case studies of a single train in an
inter-station run.

Keywords: metro train; energy saving; model predictive control; switched-mode dynamical
systems; online

1. Introduction

1.1. Background and Motivation

Urban rail transit, which can effectively alleviate traffic pressure in large modern cities, is widely
recognized as an attractive mode of transportation due to its features of large capacity, high speed,
safety, punctuality and energy-efficiency [1]. Many large cities in the world are committed to
developing and expanding their metro train projects. As of 2016, the global light rail market value is
estimated to be $180.78 billion, which is expected to increase 2.3% by 2020. With the expansion of the
metro line scale and the quick growth of passenger traffic demand, the total energy consumption of
train operations is increasing rapidly. Therefore, energy-efficient train operation for urban rail transit,
which needs to reduce the energy consumption while ensuring safety and punctuality, is becoming an
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urgent problem, and researchers have been continually striving to address the energy-efficient train
operation problem.

So far, extensive studies have been devoted to searching for the optimal driving strategy, which is
considered to be a commonly used, effective way to reduce the energy consumption of metro train
operation [2]. Most of the existing studies only focus on the offline optimization of the driving strategy,
which will be taken as the reference trajectory by the automatic train operation (ATO) system for
ensuring the train tracks the reference trajectory. Due to the fact that offline optimized trajectory
does not consider the disturbance factors encountered in the actual operation, it is hard to ensure
the optimality of online operation. In addition, the complex operation environment and uncertain
operational delays can deteriorate the tracking accuracy. Online adjustment of the reference trajectory
is particularly urgent because it can quickly respond to various changes during a train’s operation to
enhance intelligence. An alternative solution is converting it to a conventional optimization problem
by formulating the problem in the discrete domain and solving it online with a numerical method [3].
Therefore, it is of greater significance to address the online optimization problem of the driving strategy.

In the studies concerning the online trajectory optimization, the speed or force during the
whole operation segment is taken as the optimization variable. Although high dimensions of the
optimization variable can increase the degree of freedom, that will degrade the computational efficiency.
According to the existing studies, the optimal train control strategy usually follows the sequential
operation modes: maximum traction (MT), speed holding (SH), coasting (CS) and maximum braking
(MB), in which the control of each mode is known. In this regard, it is practically efficient to optimize the
mode switching times instead of the speed/force trajectory by modeling the train as a switched-mode
dynamical system. In this paper, we will address the online optimization of energy-saving driving
strategy with switching times as the optimization variables, so as to improve the computation efficiency
and the robustness to disturbances.

1.2. Literature Review

Research on optimal driving strategy is actually done to solve the typical optimal control problem.
The first work on optimal train control was carried out by Ishikawa in 1968 [4], in which the Pontryagin
maximum principle was used to find optimal driving strategy for trains. He gave a result that the
optimal train control strategy on level tracks with constant speed limit follows the fixed mode sequence
of MT–SH–CS–MB. Since then, there have been many outstanding works on optimal train control
based on optimal control theory and solved by the Pontryagin maximum principle [5–7], the method of
which belongs to the category of analytic method. More recently, Albrecht et al. [8,9] made a detailed
summary on the problem of finding an optimal driving strategy on an undulating track with variable
speed restrictions. By using Pontryagin maximum principle, they gave the necessary conditions on an
optimal strategy and pointed out that an optimal strategy always exists. However, for more complex
actual train operation conditions, e.g., local constraints of state variables, nonlinear resistance and
variable grade profiles, the analytic method cannot work well. In contrast, the dynamic programming
(DP) method can cope with these complex issues [10–12]. In [10], the optimal train control problem
was reformulated into a multi-stage decision process, and the optimal control strategy was obtained
directly through the numerical DP. Similarly, when the optimal train control problem is discretized by
numerical methods, many mathematical programming techniques can be used to solve the optimal
train control problem, such as linear programming [13] and nonlinear programming [14]. As long
as the computational time is enough, a near-optimal solution can be obtained by these numerical
methods. In recent years, with the rise of various evolutionary algorithms, many scholars tried to use
genetic algorithm (GA) [15], and ant colony optimization (ACO) [16] to solve the optimal train control
problem, in which the optimality and convergence of the solutions cannot be guaranteed. In addition,
because the operation of the train under actual running environment is very complex, the train cannot
know many situations in advance. As you cannot calculate all the possible cases offline, evolutionary
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algorithms have some drawbacks. Furthermore, detailed reviews of the classical single-train control
problem can be found in [1,17,18].

It is worth noting that the studies mentioned above only focused on the offline optimization of the
driving strategy. In order to acquire better performance in the presence of disturbances, scholars have
been paying more attention to the online optimization problem of the driving strategy. Considering
the uncertain disturbances on resistance coefficients and the possible delay time, Yan et al. [19]
proposed a moving horizon train optimization approach for dynamic train trajectory planning
problem, which can be solved by immune differential evolution algorithm. Yan et al. [20] presented
a cooperative energy-efficient trajectory planning scheme for multiple high-speed train movements
using distributed model predictive control, under which each train can get the optimal speed trajectory
online. Xun et al. [21] discussed an online train speed profile optimization problem solved by sequential
quadratic programming. He et al. [22] developed a shrinking horizon MPC algorithm combined with
the Radau pseudo-spectral method to obtain the optimal speed-time trajectory online based on the
real-time information. We can easily see that in all these studies, the online optimization variable is the
speed or force during the whole operation segment, which is high dimensional, and it will bring heavy
computation cost so as to hinder online implementation.

Motivated by the fact that the optimal train control strategy usually follows the fixed mode
sequence of MT–SH–CS–MB, some researchers have introduced the switched-mode dynamical system
to describe the dynamics of a metro train [23,24], in which the optimization variable is the gear angle.
In [25], based on the switched-mode dynamical system, the optimal driving problem was converted to
a nonlinear optimization problem, and an exterior point method was proposed to calculate the driving
strategies, in which the optimization variables were switching gear sequence and switching locations.
However, these results cannot be applied to online optimization of reference trajectories.

1.3. The Focus of This Study

From the perspective of reducing the optimization variable’s dimensions to improve the
computation efficiency, we regard the train as a switched-mode dynamical system, and then convert
the online optimal train control problem to finding the optimal mode switching times online. A general
optimal control framework for such systems was established in [26], and an online algorithm to
calculate the optimal mode-switching times in switched-mode dynamical systems was investigated
in [27]. Nevertheless, the proposed algorithms cannot be directly applied to solving the optimal train
control problem due to the process and terminal state constraints in train operation.

In this paper, we address the online optimization of energy-saving driving strategy based on
MPC, in which the train model is an switched-mode dynamical system and the optimization variables
are switching times. An online algorithm is then presented to calculate the optimal switching times.

The main contributions of this paper are summarized as follows:

1. A switched-mode dynamical system is introduced to describe the dynamics of a metro train.
By using the switching times as the optimization variables, the defect of high dimension of
the optimization variable in [3,19–22,28] can be avoided such that the computation cost can
be reduced.

2. By employing MPC, an online algorithm is presented to obtain the optimal switching times at each
sampling instant, which partially extends the offline optimization in [25] to online optimization,
and can timely respond to disturbances during train operation.

The remainder of this paper is organized as follows. In Section 2, the basic optimal train control
problem is described, along with train traffic model and energy consumption model. In Section 3,
a switched-mode dynamical system model is presented to describe the dynamics of a metro train,
and the MPC-based online optimization problem is formulated for obtaining energy-saving switching
times. An algorithm to solve the proposed optimization problem is proposed in Section 4. Section 5
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of this paper presents case studies for metro trains to demonstrate the effectiveness of the proposed
algorithm. In Section 6, we conclude the whole paper.

To describe and understand the proposed method easily, we summarize the notation needed in
our formulation in Appendix A.

2. The Optimal Train Control Problem

In this section, the basic optimal train control problem is reviewed briefly, including the basic
notation and the main modeling concepts which will be used later in this paper. The movement of a
point-mass train with time as the independent variable is described as:

dp
dt

= v (1)

dv
dt

=
1
M

(u− R(v)− G(p)) (2)

where p = p(t) is the train position (m) and v = v(t) is the train speed (m/s); M is the total mass of
the train; u = u(t) is the instantaneous force applied to the train; R(v) is the resistance force which is
usually approximated in terms of a quadratic function of v by equation as

R(v) = a0 + a1v + a2v2 (3)

where the parameters a0, a1 and a2 are the rolling resistance coefficient, the mechanical resistance
coefficient and the external air resistance coefficient, respectively; G(p) is the gradient resistance along
the track; i.e.,

G(p) = Mg sin(arctan θ(p)) ≈ Mgθ(p) (4)

with g being the gravitational acceleration, and θ(p) being the track gradient at location p. The speed
of the running train is bounded as follow,

0 ≤ v(t) ≤ vlim (5)

where vlim is the upper speed limit at location p. Considering the performance of train power system,
the applied force should be limited within a proper range:

− Bmax(v) ≤ u ≤ Tmax(v) (6)

According to the characteristics of electric trains, the effort of a tractive motor is divided into
a “constant torque region” and a “constant power region” [29]. As shown in Figure 1, we suppose
that maximum traction and maximum braking are piecewise linear functions with respect to speed,
where vc is the critical speed at which the maximum tractive/braking force function switches from
one piece to the other. The piece with speed lower than vc is called Regime 1 and the piece with speed
higher than vc is called Regime 2. Suppose vc = va for Tmax, and vc = vb for Bmax.

Tmax(v) =

{
α1v + β1, 0 ≤ v ≤ va

α2v + β2, v > va
, α1 ≤ 0, α2 ≤ 0, β1 ≥ 0, β2 ≥ 0 (7)

and

Bmax(v) =

{
λ1v + ξ1, 0 ≤ v ≤ vb
λ2v + ξ2, v > vb

, λ1 ≤ 0, λ2 ≤ 0, ξ1 ≥ 0, ξ2 ≥ 0 (8)
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Figure 1. Example of the maximum tractive or maximum braking force.

Consider the problem of driving a train as described by Equations (1) and (2) from one station
to the next along a level track within a given allowable time T to minimize the energy consumption.
Then, the optimal train control problem can be formally described as follows:

min
T∫

0

max{u(t), 0}v(t)dt (9)

p(0) = 0, p(T) = P, v(0) = 0, v(T) = 0 (10)

where P is the length between two adjacent stations. Given the train dynamics (1) and (2) with initial
and terminal constraints (10), find a control law u such that the objective function (9) is minimized
subject to the constraints.

3. Online Energy-Saving Driving Strategy Based on MPC of Switched-Mode Systems

In this section, the dynamic model of a metro train is established as a switched-mode dynamical
system. Then, the MPC-based online optimization problem is formulated with mode-switching
times as the optimization variables to minimize the energy consumption for a single train in an
inter-station run.

3.1. Train Switched-Mode Dynamical Model

Firstly, a switched-mode dynamical system model is introduced to describe the characteristics of
a metro train. It is commonly recognized that the energy-saving strategy on level tracks with constant
speed limit for an individual train inter-station run under a given running time uses four modes of
movement, namely, MT, SH, CS and MB in sequence (see Figure 2). Given a fixed time horizon [0, T],
let τi, i = 1, 2, 3 be a finite sequence of mode-switching time instants such that 0 ≤ τ1 ≤ τ2 ≤ τ3 ≤ T.
τ1, τ2, τ3 are the time instants to start SH, CS and MB respectively, as shown in Figure 2.

1
0 2


3



v

t
MT SH CS MB

T

limv

Figure 2. Optimal driving regimes for energy-efficient driving on a level track as a function of time
with switching points.
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Considering the train running between two stations, its dynamic equation is:

ẋ = f (x, t), x = [p, v]T (11)

f (x, t) =

[
v

M−1(u− R(v)−Mgθ(p))

]
(12)

The variable x(t) is the state of the system, and the force applied in each stage is given as follows:

u =


Tmax

R(v) + Mgθ(p)
0
−Bmax

MT
SH
CS
MB

(13)

where R(v) is a quadratic function of v given in Equation (3). Considering the train runs on level track,
Mgθ(p) is equal to zero. Substituting Equation (13) into the speed dynamic (2), we have

dv
dt

=


M−1(Tmax − R(v))
0
−M−1R(v)
−M−1(Bmax + R(v))

MT
SH
CS
MB

(14)

Thus, the switched-mode dynamical system concerned can be written as

ẋ =


f1(x) = [v, M−1(Tmax(v)− R(v))]T , t ∈ [0, τ1)

f2(x) = [v, 0]T t ∈ [τ1, τ2)

f3(x) = [v, −M−1R(v)]T , t ∈ [τ2, τ3)

f4(x) = [v,−M−1(Bmax(v) + R(v))]T , t ∈ [τ3, T)

(15)

with a given initial condition x0 := x(0). The functions fi, i = 1, 2, 3, 4 are called the modal functions,
and the times τi, i = 1, 2, 3 are called the switching times.

3.2. Optimization of Switching Times via MPC

Considering the train switched-mode dynamical system (15), a train runs from one station to
the next along a level track within a given time T. Let us denote the vector of switching times by
τ̄ := [τ1, τ2, τ3]

T . Define the feasible set as Λ = {τ̄ = [τ1, τ2, τ3]
T} subject to the constraints:

0 ≤ τ1 ≤ τ2 ≤ τ3 ≤ T (16)

The sequence of modes (MT, SH, CS and MB) is fixed, which is commonly recognized as the
energy-saving sequence for an individual train in an inter-station run under a given run-time. Then we
have the power function for train at time t ∈ [0, T) denoted by L(x), which is a piecewise function, i.e.,

L(x) =


L1(x) = Tmax(v)v , t ∈ [0, τ1)

L2(x) = R(v)v , , t ∈ [τ1, τ2)

L3(x) = 0 , t ∈ [τ2, τ3)

L4(x) = −εBmax(v)v, t ∈ [τ3, T)

(17)

with ε ∈ (0, 1) representing the efficiency factor in converting kinetic to electrical energy during the
regenerative braking.

Then, we formulate the online optimization problem with respect to switching times. Assume
the metro train measures its current state at each sampling instant tk = k∆t with k = 0, 1, 2 . . . and
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∆t being the sampling period, and then solves an MPC-based optimization problem to determine its
switching times at the same time. Define the cost-to-go function for train at time tk ∈ [t, T) as

J(x(t|tk), τ̄(tk)) =
∫ T

tk

L(x(t|tk))dt (18)

where x(t|tk), t ∈ [tk, T] is the future state trajectory of the train predicted at tk with respect to τ̄(tk).
The τ̄(tk) = [τ1(tk), τ2(tk), τ3(tk)]

T is the vector of the switching times at time tk . We define the integer
i(tk, τ̄(tk)) as the index (n) of the last switching time that has taken place before or at time tk, which is
given as below:

i(tk, τ̄(tk)) = max{n = 0, 1, 2, 3|τn(tk) ≤ tk},

Obviously, τi(tk ,τ̄(tk))
≤ tk ≤ τi(tk ,τ̄(tk))+1. The cost-to-go function (18) is not affected by the

switching time that has taken place prior to time tk and is only related to the future switching times
τn(tk ,τ̄(tk))

, n = i(tk, τ̄(tk))+ 1, · · ·, 3. It should be noted that the actual variable τ̄(tk) is only a sub-vector
of τ̄ including the future switching times. Nonetheless, we use τ̄(tk) in (18) for notational brevity.
When tk ∈ [0, T), the train solves the following optimization problem:

τ̄∗(tk) = arg min
τ̄(tk)

J(x(t|tk), τ̄(tk)) (19)

s.t. 

x(tk|tk) = x(tk)

ẋ(t|tk) = f (x(t|tk)), t ∈ [tk, T)
x(T|tk) = [P, 0]T

0 ≤ v(t|tk) ≤ vlim, t ∈ [tk, T)
0 ≤ τ1(tk) ≤ τ2(tk) ≤ τ3(tk) ≤ T

With τ̄(tk) being the optimal control scheme τ̄∗(tk), the corresponding predicted state is also
optimal and denoted by x∗(t|tk) for t ∈ [tk, T).

The online control of the train is realized through the following process. At each sampling
instant tk, the current state information can be obtained by on-board equipment directly. By solving
optimization problem (19), we can obtain the optimal switching times τ̄∗(tk). As long as the current
time tk < τi(tk ,τ̄∗(tk))+1, the train continues to operate in the current mode. When the current time
tk ≥ τi(tk ,τ̄∗(tk))+1, the train switches to the next mode.

4. Solution Algorithm Development

In this section, we present an algorithm to solve the optimization problem (19). Concerning
the switching time optimization problem, a number of algorithms have been developed in [27,30].
However, these algorithms cannot be directly applied to solving the optimization problem (19) due to
the existence of a terminal state constraint.

As it is difficult to select the initial value which satisfies the terminal state constraints, the exterior
point penalty function method is a reasonable solution.

In addition, the optimal solution should satisfy constraint τ̄ ∈ Λ. One should observe that
this constraint can be viewed as a series of linear inequality constraints, and the projection method
can be applied. The projection can be easily and quickly obtained by using the algorithm given in
reference [31]. Using this method, we can ignore the constraint, unless the constraint is active and
the iteration point is on the boundary of the constraint, in which case the projection of the descent
direction onto the feasible set should be used as the feasible direction.

Combined with the online optimization algorithm given in reference [27], we proposed an online
algorithm based on the penalty function method.
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Firstly, we construct a new cost function as:

J(tk, x(t|tk), τ̄(tk), γ) =
∫ T

tk

L(x(t|tk)dt + γ(p(tk) +
∫ T

tk

v(t|tk)dt− P)2 + γv(T|tk)
2 (20)

Here, γ is a penalty factor; the first penalty item is to satisfy the constraint of running distance at
the terminal time step, and the second penalty item is to satisfy the zero speed constraint when the
train arrives at the station.

Then, the detailed algorithm to solve the optimization problem (19) is described as follows.
The Algorithm 1 mainly includes three loops. The outermost loop is to control the solving of

the optimization problem at each sampling time step k to get the optimal switching times until the
train stops at the next station. The loop in the middle layer is to control the iterative updating of
the penalty factor γ , where the minimization of (20) with each value of γ is solved until the total
value of penalty terms decreases below a pre-set threshold ς. The innermost loop is used to control
the iterative updating of the switching times until the gradient of the current cost function decreases
below a pre-set threshold ϑ. Note that at the beginning of the Algorithm 1, the related parameters τ̄(0),
γPR, ρ, ς and ϑ need to be initialized. At each time step k, the train needs to collect the current state
information, including speed and position, and then calculate the optimal switching time following
the iterative updating of γj and τ̄

j
q until both judging conditions with respect to ς and ϑ are satisfied.

Algorithm 1 Online computation of τ̄∗(tk).

Require: track length P, running time T, current state x(tk)

Ensure: τ̄∗(tk),γPR

1: Set k = 0, choose an initial point τ̄(0) ∈ Λ, set τ̄∗(t−1) = τ̄(0).

2: Set j = 1, initialize γPR, ρ > 1, ς, ϑ, γ1 = γPR.

3: Set q = 1, initialize τ̄
j
q(tk) = τ̄∗(tk−1).

4: Construct the cost-to-go function J(tk, x(t|tk), τ̄
j
q(tk), γj).

5: Define ∇g(τ̄ j
q(tk)) =

∂J
∂τ̄(tk)

(tk, x(t|tk), τ̄
j
q(tk), γj).

6: if ||∇g(τ̄ j
q(tk))|| < ϑ, go to step 8, else go to step 7.

7: Compute h̃j
q(tk) as the projection of −H j

q(tk)
−1 ∂J

∂τ̄(tk)
(tk, x(t|tk), τ̄

j
q(tk), γj) onto the feasible set Λ

at τ̄(tk), where H j
q(tk) = ∂2 J

∂2τ̄(tk)
(tk, x(t|tk), τ̄

j
q(tk), γj). Let τ̄

j
q+1(tk) = τ̄

j
q(tk) + κ

j
q(tk)h̃

j
q(tk) with

κ
j
q(tk) := max{d ≤ 1|τ̄ j

q(tk) + dh̃j
q(tk) is f easible}. Set q = q + 1 and go to step 4.

8: If γj((p(tk) +
∫ T

0 v(t|tk)dt− P)2 + v(T|tk)
2) < ς, go to step 9. Otherwise, set j = j + 1, γj = ργj−1,

and go to step 3.

9: Return: τ̄∗(tk) = τ̄
j
q(tk), γPR = γj.

10: Set k = k + 1, and go to step 2.

5. Case Studies

In this section, in order to verify the efficiency of the proposed online optimal switching time-based
driving strategy, the proposed Algorithm 1 was applied to a metro train to implement the numerical
experiments. The scenario of an inter-station run for a single train is shown in Figure 3, which indicates
that the operation mode sequence is MT–SH–CS–MB and an inter-station run with the fixed operation
mode sequence has many different driving trajectories with different switching times. Our objective
was to find the one with minimum energy consumption. In Section 5.1, the main train parameters
are given. In Section 5.2, case studies of two different inter-station runs with fixed running times
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are presented. In Section 5.3, we analyze the changes of switching times and energy consumption
with different running times. In Section 5.4, the train’s operation with a disturbance is analyzed.
All computations throughout the following numerical experiments were performed by MATLAB
R2016b on a PC (3.30 GHz processor speed and 8-GB RAM) with Microsoft Windows 7 platform.

v

tT0

Trajectory1
Trajectory2
Trajectory3

Track length=P

Figure 3. The scenario of an inter-station run for a single train.

5.1. Parameter Setting

Here, the online optimal switching time driving strategy for the metro train DKZ32 is studied,
which is used in Beijing Yizhuang metro line of China. Each train consists of three motor cars and
three trailer cars; the train is powered by DC 750 V supply via third-rail. The main train parameters
are listed as follows.

• M = 2.78× 105 kg.
• The maximum traction force is given as follows.

Tmax =

{
310 kN v ≤ 10 m/s
310− 18(v− 10) kN 10 < v ≤ 22.2 m/s.

• The maximum electrical braking force is calculated by:

Bmax =

{
260 kN v ≤ 15 m/s
260− 18(v− 15) kN v > 15 m/s.

• The running resistance can be calculated by:

R(v) = 2.2294× 10−3v2 + 3.9476 kN.

• The efficiency factor ε = 0.4.

5.2. Inter-Station Run with Fixed Running Time

In this subsection, we chose two different intervals of Beijing Yizhuang metro line as examples,
the line parameters of which are shown in Table 1.
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Table 1. The line parameters.

Inter-Station P (m) T (s) vlim (m/s)

Jiugong–Yizhuangqiao 1982 130 22.2
Yizhuangqiao-Wenhuayuan 993 90 22.2

The optimal speed trajectories obtained by the Algorithm 1 for Jiugong–Yizhuangqiao and
Yizhuangqiao–Wenhuayuan intervals are shown in Figures 4 and 5 respectively, where (a) corresponds
to the speed trajectories with respect to the position and (b) corresponds to those with respect
to the time. The optimal switching times and the corresponding energy consumption values for
Jiugong–Yizhuangqiao and Yizhuangqiao–Wenhuayuan intervals are given in Table 2.
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Figure 4. Optimal speed trajectory of Jiugong–Yizhuangqiao. (a) The speed trajectory w.r.t. the position;
(b) The speed trajectory w.r.t. the time.
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Figure 5. Optimal speed trajectory of Yizhuangqiao–Wenhuayuan. (a) The speed trajectory w.r.t. the
position; (b) The speed trajectory w.r.t. the time.

Table 2. The optimal τ̄ and energy consumption.

Inter-Station τ1 τ2 τ3 E (kw · h)

Jiugong–Yizhuangqiao 14.4 14.4 122.9 11.27
Yizhuangqiao–Wenhuayuan 11 11 84.5 7.4

5.3. Analysis of Different Running Times

In this subsection, we analyze the changes of switching times and energy consumption with
different running times. We take the interval from Jiugong Station to Yizhuangqiao Station of Beijing
Yizhuang metro line as an example. We take 105, 110, 115 and 120 s as the given running times,
respectively, and let the train operate following the Algorithm 1. Then the optimal speed trajectories
with these different running times are shown in Figure 6, where (a) corresponds to the speed trajectories
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with respect to the position and (b) corresponds to those with respect to the time. The switching times
and energy consumption with different running times are shown in Table 3. We can easily observe
that with the increase of running time, the proportion of coasting in the optimal speed trajectories is
increased, and the energy consumption is reduced.
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Figure 6. Optimal speed trajectories under different running times. (a) The speed trajectories w.r.t. the
position; (b) The speed trajectories w.r.t. the time.

Table 3. The optimal τ̄ values and energy consumption of different running times T.

T (s) 105 110 115 120

τ1 16.1 16.1 16.1 15.4
τ2 74.5 35.6 16.1 15.4
τ3 94.8 101 106.6 112.1

E (kw · h) 19.1 16.1 14.5 13.2

5.4. Analysis with Disturbance

In this case, we simulate the train operation with a disturbance under the Algorithm 1. The line
parameters are the same as those in Section 5.3, and the given running time is 105 s. We assume that
the train runs to a certain point under disturbance at tk = 9.1 s with p(tk) = 45 m and v(tk) = 9.3 m/s.
The pre-optimized trajectory without disturbance is shown by Tra1 in Figure 6, in which the train
speed at tk = 9.1 s should be 10 m/s. If the disturbance is exerted, the train will eventually fail to
meet the terminal constraints under the pre-optimized switching time, which is illustrated by Tra2 in
Figure 6. The trajectory Tra3 in Figure 7 represents the updated result under the Algorithm 1. As the
train fails to reach the predetermined speed under disturbance, the cruising time is increased after
the train reaches the speed limit. Under the updated switching times, the train will operate with the
energy optimization manner and meet the terminal constraints simultaneously.

5.5. Discussion

Firstly, through the above case studies, the feasibility of the proposed algorithm is verified, and the
results obtained are consistent with the previous conclusions on optimal train control. Secondly,
because the number of decision variables in the optimal train control problem is only three, the scale of
the optimization problem is greatly reduced so as to improve the computation efficiency, which makes
online computation possible. In addition, when the train deviates from the original optimal trajectory
due to disturbances, the Algorithm 1 can recalculate the optimal strategy of the remaining journey
according to the latest state of the train, so we can say the online driving strategy proposed in this
paper is robust to disturbances.
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Figure 7. Train trajectories for an inter-station run with a disturbance. (a) The speed trajectories w.r.t.
the position; (b) The speed trajectories w.r.t. the time.

6. Conclusions

This paper has studied the online energy-saving driving strategy for a single metro train.
A switched-mode dynamical system model has been established with the consideration of regenerative
braking energy, which can accurately describe the metro train operation mode and punctuality
constraint. According to the previous conclusions on optimal train control, the optimal train operation
strategy has a fixed operation sequence(MT–SH–CS–MB). Therefore, the switching system model
established in this paper has four modes, and the optimal control of each mode is known, which can be
regarded as the speed feedback control. Therefore, as long as the current state of the train is obtained,
the optimal control under the current mode can be obtained. The critical problem is to determine the
optimal mode switching times. On this basis, an online optimization problem with switching times as
the optimization variables has been formulated to minimize the energy consumption by employing the
MPC approach, and an online algorithm to solve the optimization problem has also been introduced by
utilizing the exterior point penalty function method. The proposed online algorithm with the switching
times as the optimization variables cannot only respond in a timely way to disturbances during train
operation, but also improve the computational efficiency which can realize online real-time application.
Case studies have been presented to verify the feasibility and advantages of the proposed algorithm.
We may further consider the online multi-train energy-saving operation based on the switched-mode
dynamical systems as our future work.
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Appendix A

In this appendix, we list the notation in this paper, as shown in Table A1.
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Table A1. Notation.

Notation Meaning

v speed of the train
p position of the train
M the total mass of the train
u the instantaneous force applied to the train
R the resistance force

a0, a1, a2 the coefficients of basic running resistance
G the gradient resistance along the track
g the gravitational acceleration

vlim the upper speed limit
Tmax the maximum tractive force
Bmax the maximum braking force

P the length between two adjacent stations
T the given running time
τi the switching time
x the state of the system
L the power function for train
ε the efficiency factor
tk the sampling instant
∆t the sampling period
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