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Abstract: During recent decades, the equilibrium manifold expansion (EME) model has been
considered as a powerful identification tool for complex industrial systems with the aim of
system control and simulation. Based on a two-step “dynamic and static” identification method,
an approximate nonlinear state-space model is built by using multiple polynomials. However, the
existing identification method is only suitable for single-input (SI) systems, but not for multi-input (MI)
systems, where EME models cannot guarantee global calculation stability. For solving such a problem,
this paper proposes a corrected equilibrium manifold expansion (CEME) model based on gas turbine
prior knowledge. The equilibrium manifold is extended in dimension by introducing similarity
equations instead of the high dimensional polynomial fitting. The dynamic similarity criterion
of similarity theory guarantees the global stability of the CEME model. Finally, the comparative
test between the CEME model and the existing MI-EME model is carried out through case studies
involving data that are generated by a general turbofan engine simulation. Simulations show superior
precision and calculation stability of the proposed model in capturing nonlinear behaviors of the gas
turbine engine.

Keywords: gas turbine; system identification; corrected equilibrium manifold expansion model;
multiple input multiple output; similarity theory

1. Introduction

Gas turbine (GT) engines provide power for airplanes, ships, and industrial equipment, and
reliable and efficient operation is crucial to their safety and performance. Unexpected faults and
improper control lead to unplanned maintenance of equipment [1]. Since the cost of unplanned service
interruption is usually significantly higher than the cost of performing preventative maintenance and
returning [2], sensitive fault detection, and isolation systems and robust control systems are essential,
in both of which an accurate model describing engine behaviors is very important [3].

The demand for enhanced and reliable performance of models is ever increasing while an urgent
demand for shorting design cycles, minimizing inspection and reducing costs is required. With
significant interest to expand the performance of models, there is also the need for designing smaller
and more flexible nonlinear models. Therefore, the need to use simple and nonlinear structural models
is increasing in engineering applications.

Equilibrium manifold expansion (EME) model has gained more and more attention because of its
simplicity and clear structure. The EME model is an approximate nonlinear model developed from the
Jacobian Linearization model [4], which has been widely used in the field of system simulation [5,6],
system control [7,8], and fault diagnosis [9]. It is generally known that the Jacobian linearization model
is only valid near its equilibrium point, but the EME model is a global nonlinear model, which can deal
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with the entire range of operation conditions [10]. Based on the implicit function rule and a two-step
“dynamic and static” identification method, it is easy to build an EME model by using a small amount
of data. Moreover, the EME model has a clear analytical form and a simple model structure to ensure
simulation requirements and real-time computing. Thus far, the research on the EME model mainly
focuses on the theoretical research [4], identification method [11], the role of scheduling variables [7],
and engineering application [12,13]. However, all of the above studies center on single input (SI)
EME models. Although an EME model can be theoretically extended to a multiple-input (MI) model,
due to the shortcomings of the identification of equilibrium manifold (EM) fitting, it is difficult to
build an MI-EME model with the global computational stability for GTs. Firstly, enough equilibrium
points are needed to obtain a large enough range of EM. Additionally, the EM dimension increases
with the increase of the input variable dimension. This means that the number of steady-state points
will increase exponentially. However, in the actual operation of an aero-engine, it is not easy to find
enough steady-state points to meet the needs of modeling. Secondly, the condition of the least square
identification of dynamic parameters with constraints is that the input variables must step at the same
time, which results in the MI-EME model only capturing nonlinear behaviors of the aero-engine in the
given trajectory, and cannot ensure the global computational stability of the model. Furthermore, the
condition of the synchronous step is too strict to be realized in practice. For example, it is not easy to
realize the step change of engine inlet conditions (including engine inlet total temperature and engine
inlet total pressure, called EIC for short) no matter whether in the actual operation of the engine or the
ground test.

For solving the above problems, this paper proposes a corrected equilibrium manifold expansion
(CEME) model by integrating the prior knowledge of gas turbines into the existing identification
method. The CEME model is an MI-EME model with three inputs including fuel flow, engine inlet
total temperature, and engine inlet total pressure (the latter two can be collectively referred to as
engine inlet conditions, namely, EIC). Based on the similarity theory, a one-dimensional EM with
similarity equations is transformed into a corrected equilibrium manifold (CEM) that is equivalent
to a high-dimensional EM. Benefitting from such a transformation, the requirements of modeling
data are reduced while the introduction of nonlinear equations reduces the fitting error caused by
the polynomial fitting. Further, the CEME model can ensure the global stability of calculation by
adjusting the dynamic matrixes and CEM in real-time. For verifying the effectiveness of the proposed
method, some studies are conducted for a general aircraft engine prototype. Simulations show superior
precision and computational stability of the proposed model in capturing nonlinear behaviors of a
turbofan engine than the MI-EME model identified by the existing identification method.

The rest of this paper is organized as follows: Section 2 presents the EME model as well as its
benefits and drawbacks in detail. In Section 3, the conception of the CEME model is proposed. Section 4
presents the CEME modeling experiment and simulation analysis. In Section 5, the comparative
experiment indicates the superior performance of the proposed methodology with regards to calculation
stability and estimation accuracy. Finally, Section 6 provides some concluding remarks.

2. EME Model Description and Discussions

2.1. EME Model Structure

In general, a nonlinear system can be simply described as follows: .
X = f (X, U)

Y = g(X, U)
(1)

where X is the state vector, U is the input vector, Y is the output vector, X ∈ Rn, U ∈ Rm, Y ∈ Rk. f and
g are smooth nonlinear functions.
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In general, there are many equilibrium points for the nonlinear dynamical system (1).
All equilibrium points of the nonlinear system constitute the equilibrium family:{

(Xe, Ue, Ye)
∣∣∣ f (Xe, Ue) = 0, Ye = g(Xe, Ue)

}
(2)

where the subscript ‘e’ means the equilibrium point.
According to the theorem of implicit function [14], there must be a continuous mapping relationship

between steady states of state variables of the nonlinear system (1). Additionally, equilibrium points of
the nonlinear system (1) are generally continuous under the concept of the manifold [15]. Thus, the set
of such equilibrium points can be considered as the equilibrium family of the nonlinear system (1).
If there are n equations with n + m variables for the steady state equations of the equilibrium family
(2), n + m variables can be represented by arbitrary m variables. In other words, an m-dimension
vector α, called the scheduling variable in this paper, can represent the whole equilibrium family (2) as
shown below. After the mapping relation is found, EM can be established and parameterized by the
scheduling variable α. 

Xe = Xe(α)

Ue = Ue(α)

Ye = Ye(α)
(3)

The EME model, similar to the linearized model, derived from EM of the nonlinear system can be
regarded as a real-time Taylor expansion model, as described below:

.
X = A(α)(X −Xe(α)) + B(α)(U −Ue(α))

Y = Ye(α) + C(α)(X −Xe(α)) + D(α)(U −Ue(α))

α = p(X, U)

(4)

where A(α), B(α), C(α), and D(α) are parameterized Jacobian linearization system matrices, p is a
mapping relationship between α and system variables X and U.

2.2. Model Identification Method and Analysis of Simulation Results

In this part, the identification method and the superiority of the EME model will be introduced
with a two-spool turbofan engine. A detailed description of the engine is given in Section 4.1. The
engine runs under standard atmospheric conditions. Under the premise that the inlet guide vane
(IGV) and nozzle area remains constant, the engine can be regarded as an SI nonlinear system. The
unique input is fuel flow, qm f . The state variables are high pressure turbine rotor speed nh and fan
rotor speed nl. To obtain an accurate EME model, the fuel flow needs to be composed of several step
signals, as shown in Figure 1a. The corresponding signals of nh and nl are shown in Figure 1b. The
data have been standardized.
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Figure 1. (a) Command signal of qm f ; (b) signals of nh and nl.
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Then, a two-step method of “dynamic and static” type is carried out for the EME model parameter
identification. And the identification process is made up of three parts:

1. Define the scheduling variable α

For the equilibrium family (2), there are n equations with n + 1 variables so that the scheduling
variable α is defined as a one-dimension vector. According to [4], the scheduling variable α can be
specified as the input, the state variable of the nonlinear system or be derived from the orthogonal
expansion, for which the modeling accuracy is the only difference. In this section, for the convenience
of modeling, the fuel flow qm f is selected as the scheduling variable.

2. Identify parameters of EM

EM (3) is obtained by fitting steady state points of the nonlinear system, as shown in Figure 2.
In general, EM can be expressed as polynomials by the scheduling variable α.

Ze =
n∑

i=0

kiα
i (5)

where Ze represents the input vector, the state vector, or the output vector, ki is the polynomial
coefficient, n is the polynomial order, which is of order four in this paper.
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3. Identify parameters of parameterized Jacobian linearization system matrices

The parameterized Jacobian linearization system matrices are also expressed as polynomials like
the Equation (5), as shown below:

.
X =

nA∑
j=0

a jα
j(X −Xe(α)) +

nB∑
k=0

bkα
k(U −Ue(α)) (6)

The polynomial order is determined by the degree of nonlinearity of the system, which is two
orders in this part.
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After calculating derivatives of the state vector, namely,
.

X, the parameters of parameterized
Jacobian linearization system matrices are identified using the data in the red box of Figure 3 by the
linear regression.Energies 2020, 13, x FOR PEER REVIEW 5 of 18 
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Thus far, parameters of EMs and parameters of parameterized Jacobian linearization system
matrices have been obtained. Figure 4 indicates the superior capability of the EME model to represent
the engine’s behaviors no matter in steady state and transient. The maximum errors of nh and nl are just
0.096%and 0.097%, respectively, which fully meets the requirements of system simulation or control.
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2.3. Discussion on the EME Model Deficiency

For an SI system, the scheduling variable α1 and state variable x1 form an EM of AB′ in
two-dimensional space. And the corresponding EME model can guarantee the stability of calculation
on AB′ , as shown in Figure 5. When the input variable of the system becomes two-dimensional, there
is another scheduling variable α2 for the construction of EM that is a surface in the three-dimensional
space. Although the parameter identification of the EM can be completed under the condition that
there are enough stable points, the method of least square identification of dynamic matrices with
constraints can only ensure the calculation stability of the EME model on a single trajectory AC′ . When
the running point of the system deviates too far from the given trajectory or the motion direction is
inconsistent with the given trajectory, the divergence of the model calculation results may occur.
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The success of SI EME models urges us to consider whether it is possible to use the prior knowledge
of gas turbine to compress the high-dimensional EM into one-dimensional EM to ensure the accuracy
and stability of an MI-EME model for the special object of a gas turbine.

3. The Conception of the CEME Model

The range of aero-engine flight altitude and flight speed varies widely, which results in a large
change in the total inlet temperature and pressure of the engine. An SI-EME model cannot meet the
needs of practical applications. In this section, a corrected equilibrium manifold expansion (CEME)
model, a novel MI-EME model, is proposed by integrating the prior knowledge of the gas turbine.

3.1. Corrected Equilibrium Manifold

According to the common working principle of the gas turbine components, there is only
one determinate component performance and overall engine performance in a steady state of the
aero-engine. A line is made up of all these points, which is called the operating line. The operating line
is generally measured by experiments and then marked on the characteristic diagram of the engine
compressor and turbine [16], as shown in Figure 6 where A, B, C, and D are operating points. However,
different operating lines are obtained under different EICs. It is impossible to obtain all the operating
lines by experiments alone. The similarity theory is carried out to nondimensionalize engine variables,
like gas flow, rotor speed, temperature, and pressure, to make the engine in a similar state to solve
such a problem. It is concluded that nondimensionalized engine variables in a similar state, also called
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a similar parameter, remain constant no matter how flight conditions, ambient conditions, and engine
rotor speed change, like Equation (7) that is the reduced fuel flow:

qm f ,1

p∗a,1

√
T∗a,1

=
qm f ,2

p∗a,2

√
T∗a,2

= constant (7)

where subscript “1” and “2” represent the different EICs, p∗a is the engine inlet total pressure and T∗a is
the engine inlet total temperature.
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In other words, obtaining the engine state at one EIC is equivalent to obtaining the engine
state at all EICs. Moreover, according to the reference [17], when an engine works in a similar state,
both its steady-state characteristics and its dynamic characteristics are similar. Such an important
conclusion has allowed similarity theory to become a general theory in the field of engine design [18]
and modeling [19]. It is also an important theoretical basis for the CEME model.

For an SI-EME model, the input is usually specified as engine fuel flow due to its leading role.
Thus, p∗a and T∗a need to be forced to remain constant to not affect the match between the EME model
and the engine. For the SI-EME model, compared with Equation (3) the complete EM should be
described as: 

Xe = Xe(α)

Ue = Ue(α)

Ye = Ye(α)

subject to
p∗a = constant
T∗a = constant

(8)

Once p∗a and T∗a change, the aero-engine will form an unknown EM. It assumes that there is
arbitrary equilibrium point A (Xe,A, Ue,A, Ye,A,αe,A) on the unknown EM under the EIC

(
p∗a,A, T∗a,A

)
,

as shown in Figure 7. The following equations must be similar to Equation (7) for equilibrium point A
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and a certain equilibrium point B (xe,B, ue,B, ye,B,αe,B) on the known EM under the fixed EIC
(
p∗a,B, T∗a,B

)
based on the similarity theory:

f1
(
xe,A, p∗a,A, T∗a,A

)
= f1

(
xe,B, p∗a,B, T∗a,B

)
= constant

f2
(
ue,A, p∗a,A, T∗a,A

)
= f2

(
ue,B, p∗a,B, T∗a,B

)
= constant

f3
(
ye,A, p∗a,A, T∗a,A

)
= f3

(
ye,B, p∗a,B, T∗a,B

)
= constant

f4
(
αe,A, p∗a,A, T∗a,A

)
= f4

(
αe,B, p∗a,B, T∗a,B

)
= constant

(9)

where f1, f2, f3, and f4 are similarity equations.
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Transform Equation (9) to: 
xe,B = F1

(
xe,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

)
ue,B = F2

(
ue,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

)
ye,B = F3

(
ye,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

)
αe,B = F4

(
αe,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

) (10)

Then substitute them into Equation (8):
F1

(
xe,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

)
= xe

(
F4

(
αe,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

))
F2

(
ue,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

)
= ue

(
F4

(
αe,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

))
F3

(
ye,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

)
= ye

(
F4

(
αe,A, p∗a,A, T∗a,A, p∗a,B, T∗a,B

))
subject to

p∗a,B = constant
T∗a,B = constant

(11)

Although the equilibrium point A is on the unknown EM, it can also be transferred to the known
EM by similarity transformation under the condition that the EIC corresponding to the unknown
EM is known. In other words, the known and unknown EMs can transform into each other based
on the similarity theory. From this, we can conclude that in the process of multi-input expansion
of EM, a one-dimensional EM can be combined with similar equations to integrate the EIC into the
EM to obtain a high-dimensional EM. Since similarity equations are the essential property of the gas
turbine, the new equilibrium manifold, called corrected equilibrium manifold (CEM), formed by the
combination of the one-dimensional EM and similarity equations are more in line with the general
law of gas turbine performance change. Compared with the high-dimensional EM by polynomial
fitting, the CEM reduces the influence of fitting error on the MI EME model due to the introduction of
nonlinear equations. Furthermore, the modeling data for one-dimensional EM is enough to identify
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the high-dimensional EM, and even it is not necessary to keep the EIC constant when establishing
one-dimensional EM.

3.2. CEME Model Structure and Computation Process

The above section mainly focuses on the definition of CEM and proves that the unknown EMs
under different EICs can transform into the known EM under the fixed EIC based on the similarity
theory. In this section, the structure of the CEME model, computational process and requirements for
CEME modeling are discussed.

According to the similarity theory, when an engine works in a similar state, both its steady-state
characteristics and its dynamic characteristics are similar. It means that the dynamic process on the
unknown EM is in the same similar state as that on the known EM. Thus, according to the inlet
condition of the engine, the working point on the unknown EM is transferred to the known EM in
the accordance with EIC, and then its dynamic process can be calculated by using the known EME
model. The above process can be regarded as a “forward process” of similar transformation like
the process from A to B shown in Figure 7. Since the calculation result of the known EME model
is a representation of the dynamic process on the known EM, the final result also needs a similar
transformation to transfer it back to the unknown EM. Such a process can be regarded as a “backward
process” of similar transformation like the process from C to D. Through the above process, the EIC
can be incorporated into the EME model as inputs. Since the SI-EME model can guarantee global
computational stability, the new model can still guarantee global computational stability. The new
EME model is called a corrected equilibrium manifold expansion (CEME) model in this paper. The
model structure is described as below:

.
xceme = A(α)(xceme − xe(α)) + B(α)(uceme − ue(α))

yceme = ye(α) + C(α)(xceme − xe(α)) + D(α)(uceme − ue(α))

α = pFSC

(
x, u, p∗a, f ixed, T∗a, f ixed, p∗a,input, T∗a,inpout

)
xceme = fFSC,1

(
x, p∗a, f ixed, T∗a, f ixed, p∗a,input, T∗a,input

)
uceme = fFSC,2

(
u, p∗a, f ixed, T∗a, f ixed, p∗a,input, T∗a,input

)
y = fBSC

(
yceme, p∗a, f ixed, T∗a, f ixed, p∗a,input, T∗a,input

)
subject to

p∗a, f ixed = constant

T∗a, f ixed = constant

(12)

where p∗a, f ixed and T∗a, f ixed represent the EIC corresponding to the known EM, p∗a,input and T∗a,input are
inputs of the CEME model, pFSC is a mapping including forward similarity calculation, fFSC,1 and fFSC,2

are forward similarity calculation functions and fBSC is a backward similarity calculation function.
By observing the structure of the CEME model, we can know that the introduction of similarity

equations does not change the polynomial coefficients in the model like parameterized Jacobian
linearization system matrices and EM. It means that the existing SI-EME model identification method
is also effective for the CEME model. Moreover, the requirements for modeling data is reduced.
Steady-state operating points of the engine are required to be under the same EIC in the existing
SI-EME model identification method. However, in our proposed method steady-state operating points
under different EICs can be used for modeling. Hence, the CEME model can be built using engine
historical data rather than additional experiments.
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4. CEME Modeling Experiment

4.1. Turbofan Engine Model

The identification procedure of the CEME model is conducted by a two-spool turbofan engine
with a low bypass ratio and a 4 kN gross thrust that is a nonlinear component level (NCL) model
built based on modular modeling method with reference of the paper [10]. The turbofan engine
included an atmospheric module, fan, compressor, combustor module, and high pressure and low
pressure turbines connected to two spools and developed dynamic modules for each part of the
turbofan engine, as shown in Figure 8. The dynamic behavior of each module is represented by a
series of equations including the thermodynamic relations, mass, momentum, and energy balance.
The mass and momentum balance equations are used in a one-dimensional differential form based on
the hypothesis that the section duct of each module is constant and the efficiency coefficient and flow
coefficient are described in the form of general characteristic maps and look-up tables.
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Figure 8. Schematic of a turbofan engine.

According to a mechanical viewpoint, the fluid within components is considered an ideal gas
and the specific heat in each module is the mean value at constant pressure and volume calculated by
the fluid composition and the temperature between modules input and output, by which the model
accuracy is not significantly affected, but both the model complexity and the calculation time are
considerably reduced. Additionally, equations representing the dynamic balance of shafts and rotating
masses of the components connected to them are also used. It should be noted that thermodynamic
transformation equations are calculated in stationary form because the shaft inertia is so great that
the fluid thermal inertia can be neglected. The simulation of the turbofan engine was conducted
by integrating the differential equations and solving the static equations with the variable values
calculated at each time instant.

4.2. Structure of CEME Model

The fan rotor speed nl and high pressure turbine rotor speed nh are determined as states of the
CEME model. Inputs fuel flow qm f , inlet total temperature T∗a and inlet total pressure p∗a are inputs of
the CEME model. All measurements corresponding to the engine gas path including temperature,
pressure, and rotor speed, can be considered as outputs of the CEME model. This paper selects the
high pressure turbine outlet total temperature T∗35 and the low pressure turbine outlet total pressure p∗4
are selected as outputs for the CEME model validation. qm f , T∗a, and p∗a are selected as the scheduling
variables. Then, a complete CEME model can be described as:
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

.
nh = a11(α)(

√
T∗a, f ixed
√

T∗a
nh − nhe(α) ) + a12(α)(

√
T∗a, f ixed
√

T∗a
nl − nle(α))

.
nl = a21(α)(

√
T∗a, f ixed
√

T∗a
nh − nhe(α)) + a22(α)(

√
T∗a, f ixed
√

T∗a
nl − nle(α))

T∗35 =
T∗a

T∗a, f ixed
(c11(α)(

√
T∗a, f ixed
√

T∗a
nh − nhe(α)) + c12(α)(

√
T∗a, f ixed
√

T∗a
nl − nle(α)))

p∗4 =
p∗a

p∗a, f ixed
(c21(α)(

√
T∗a, f ixed
√

T∗a
nh − nhe(α)) + c22(α)(

√
T∗a, f ixed
√

T∗a
nl − nle(α)))

α =
p∗a, f ixed

√
T∗a, f ixed

p∗a
√

T∗a
qm f

subject to
p∗a, f ixed = 101.3kPa

T∗a, f ixed = 288.15K

(13)

where p∗a, f ixed and T∗a, f ixed are the given EIC corresponding to the known EM.

4.3. CEME Modeling and Verification

4.3.1. Generation of the I/O Data

From Equation (13), we can know that if the inputs of p∗a and T∗a are equal to p∗a, f ixed and T∗a, f ixed
the CEME model is equivalent to an SI-EME model. This means that the existing EME identification
method is still suitable to the CEME identification. Furthermore, because of similarity theory, the data
under any EIC can be used for CEME modeling as long as converted data, namely, the converted
fuel flow, is still a multiple-step signal, which is equivalent to relaxing the requirements for modeling
data. Compared with the fixed EIC, more general experimental data are given. Thus, engine inlet total
temperature and total pressure command signals are shown in Figure 9a, which are normalized by the
reference value of 288.15 K and 101.325 kPa. The fuel flow command signal is shown in Figure 9b,
where the fuel flow is normalized by the reference value of 160 L/h. Other system variables, like
temperature and pressure, are normalized by reference values corresponding to engine conditions at
160 L/h fuel flow as well.
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Figure 9. (a) Signal of EIC; (b) command signal of fuel flow.

4.3.2. CEME Modeling Procedure

Before modeling, it is necessary to convert all the data to the state corresponding to p∗a, f ixed and
T∗a, f ixed to ensure that an accurate EM can be obtained. Then, all modeling steps are the same as
that described in Section 2.2. Polynomials of EMs and parameterized Jacobian linearization system
matrices are still 4 orders and 2 orders, respectively. In addition, this paper enumerates “percentage of
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compliance (PC)” index, “mean error percentage (MeanEP)” index and “maximum error percentage
(MaxEP)” index to evaluate the CEME model performance. The PC, MeanEP and MaxEP indices are
defined as Equations (14)–(16), respectively:

PC =

(
1−
‖Y − Ŷ‖

‖Y −Y‖

)
× 100 (14)

MeanEP =
D∑

i=1

(∣∣∣∣∣∣Y(i) − Ŷ(i)
Y(i)

∣∣∣∣∣∣× 100
)
/D (15)

MaxEP = max
D

(∣∣∣∣∣∣Y(i) − Ŷ(i)
Y(i)

∣∣∣∣∣∣× 100
)

(16)

where Y and Ŷ represent the vectors of the desired and estimated engine outputs, respectively, and Y
represents the mean value of Y. ‖·‖ represents the Euclidean norm and Y denotes the dimension of Y.

The final simulation result displayed in Figure 10 indicates the superior capability of the CEME
model to represent behaviors of the NCL model. More detailed information has been shown in Table 1,
which shows that PC exceeds 98 and MaxEP does not exceed 0.4%.
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Table 1. Simulation results on training data set.

Variables nh nl p*
4 T*

35

PC (%) 98.91 99.49 98.91 99.73
MaxEP (%) 0.171 0.130 0.388 0.353

MeanEP (%) 0.037 0.030 0.057 0.028
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4.3.3. CEME Model Verification

It should be noted that in the process of building the CEME model, the EIC is not involved in
determining the structure parameters of the CEME model, but only incorporated into the CEME model
in the form of similar parameters. Therefore, it is necessary to demonstrate whether the CEME model
is in very good accordance with the NCL model in both steady and dynamic aspects when the EIC
changes independently. A test uses a combination of gradient signal and step signal as the EIC signal
meanwhile the fuel flow is kept at 160 L/h, as shown in Figure 11. The simulation results displayed in
Figure 12 indicate its capability to represent the engine’s behaviors. Compared with Tables 1 and 2,
three indices are unchanged, which further proves the effectiveness of the proposed method. The
computing time of the CEME model is 40.86 s and that of the NCL model is 67.29 s, which indicates
the CEME model with simpler model structure gets faster computing speed than the physical-based
NCL model.
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5. Comparative Experiment

In this section, the performance of the CEME model built in the above section in predicting the
dynamic and static behaviors of the aero-engine is evaluated against two MI-EME models identified
by the existing identification method. The MI-EME model has two inputs, namely, qm f and T∗a. EMs of
two MI-EME models are both fourth-order polynomials. Parameterized Jacobian linearization system
matrices of them are one order and two order polynomials, respectively. All steady state points, shown
in Figure 13, are used for identifying the EM, and the dash-dot line shown in Figure 13 is used for
identifying the parameterized Jacobian linearization system matrices. The scheduling variables of
MI-EME models are determined as qm f and T∗a. We will demonstrate the superiority of the CEME
model than MI-EME models from three aspects including the implementability of modeling, model
accuracy, and model calculation stability.

5.1. Analysis of Implementability

From the perspective of data volume, the proposed method effectively reduces the workload
of modeling. Taking the two input EME model built in this section as an example, the EM is a
two-dimensional surface. It needs enough steady state points like Figure 13 which has 64 steady state
points to get a relatively large EM by using the existing identification method. Additionally, if the
engine inlet total pressure is also determined as the EME model input, the number of the steady state
points will increase exponentially. However, based on the proposed method, only one step curve in
Figure 13, that is, eight steady state points are needed, and the others are obtained by using similarity
equations. Hence, the proposed method effectively reduces the workload of modeling.
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From the perspective of identifying parameters of parameterized Jacobian linearization system
matrices, it is easier to implement the proposed method. The purpose of using step signals is to fully
excite the dynamic characteristics of the system. For an MI-EME model, the parameterized Jacobian
linearization system matrices are polynomials composed of multiple scheduling variables. Due to the
nature of the MI-EME model being a nonlinear model, the superposition principle of a linear system is
not suitable for the EME model. Thus, it is necessary to ensure the synchronization of step signals to
obtain accurate model parameters. In the CEME modeling process, the CEME model degenerates to an
SI model so it avoids the above harsh modeling requirements.

Finally, from the perspective of practical application, it is very difficult to control the EIC for a real
gas turbine, let alone force the EIC to be a step signal. On the contrary, such a restriction on EIC has
been relaxed by using the proposed method, which has been fully discussed in Section 4.

5.2. Performance Analysis of Examined Models

Figure 14a–d illustrate the performances of three models in estimating the dynamic and static
behaviors of the aero-engine against the training data. More details are outlined in Table 3. This
indicates that although the amount of modeling data of the CEME model is just one eighth of that
of the MI-EME models, the CEME model has almost the same good performance in estimating the
dynamic and static behaviors of the aero-engine as two MI-EME models, except for MaxEPs of T∗35 and
p∗4. However, they are both less than 1%, which meets the needs of control or fault diagnosis.
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Figure 14. (a) nh variations in training set; (b) nl variations in training set; (c) T∗35 variations in training
set; (d) p∗4 variations in training set.

Table 3. Performance comparison of the examined models.

Variables Model PC (%) MaxEP (%) MeanEP (%)

nh

CEME 99.30 0.235 0.036

1-order MI-EME 99.42 0.105 0.029

2-order MI-EME 99.43 0.097 0.029

nl

CEME 99.43 0.097 0.029

1-order MI-EME 99.59 0.194 0.032

2-order MI-EME 99.56 0.196 0.033

p ∗4
CEME 99.57 0.190 0.033

1-order MI-EME 99.56 0.752 0.040

2-order MI-EME 99.49 0.681 0.045

T ∗35

CEME 99.52 0.335 0.042

1-order MI-EME 99.56 0.784 0.041

2-order MI-EME 99.63 0.358 0.033

For studying the computational stability of the examined models, another test is carried out.
The inputs of models are shown in Figure 15a, where there are different signal types to reflect the
running state of the engine under different operating conditions. The simulation results are shown in
Figure 15b, from which we can see that the calculation results in two MI-EME models diverging at
80–90 s. Comparatively, the CEME model runs stably throughout the whole process. The calculation
instability of two MI-EME models is mainly caused by the improper dynamic parameter fitting of
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the model. Restricted by the existing identification method, an MI-EME model theoretically only
guarantees the model stability in one direction, but not the global model stability, which is summarized
as the insufficient generalization ability of the model, or called overfitting. The overfitting will be
worse and worse with the increase of the order of parameterized Jacobian linearization system matrices.
This is why the two-order MI-EME model diverges earlier than the one-order MI-EME model. For the
CEME model, on the premise of ensuring the model stability along one direction, the calculation along
other directions is completed by similar transformation, thus ensuring the global stability.
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6. Conclusions

The EME modeling procedure for aero-engines is rational and time-saving. However, the
multiple-input EME model built by the existing identification method has problems of calculation
instability and difficulties in engineering applications. For solving problems, this paper proposed
a corrected EME model. According to the theoretical analysis and derivation, it can be seen that
one-dimensional EM can be considered as a special engine operating line under the fixed engine
inlet condition. Based on similarity theory, one-dimensional EM with similarity equations, called
CEM in this paper, can form a high-dimensional EM. The introduction of similarity equations can
not only effectively reduce the requirements of modeling data, but also be more flexible in data
selection for modeling. According to the fact that both the steady-state characteristics and the dynamic
characteristics are similar when the engine works in a similar state, the CEME model can guarantee
global stability by compressing the high-dimensional EM into the one-dimensional EM and using the
dynamic characteristics on one-dimensional EM to reflect that on the high-dimensional EM.

Throughout this paper, a series of experiments are carried out to verify the proposed CEME model.
The results indicate that the CEME model has a superior precision and calculation stability in capturing
dynamic and static behaviors of the aero-engine. Meanwhile, the CEME model is also competent in
coping with real-time aero-engine monitoring due to its simple model structure and computer power.
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