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Abstract: Partial shading conditions of photovoltaic (PV) modules often occurs in urban areas leading
to losses in electricity power generation of the PV power plant. The purpose of this study is to
present how the PV power plant with high value of inverter power sizing factor (Kinv) can achieve
high performance and power production under partial shading conditions with high shading losses.
In this paper the results of long-term monitoring, performance analysis and experimental results are
presented, while the results are compared to the estimated values calculated using PVsyst software.
The study focused on the PV power plant at the Faculty of Technical Sciences (FTS) in Novi Sad,
Republic of Serbia, for the period between the years 2012 and 2019. It has been shown that the values
of PV power plant performance parameters are better than expected (very high), and resemble the
power plants operating without shading. The high value of the inverter power sizing factor may lead
to occasional saturation of the inverter when certain conditions are met, but most of the times it allows
the inverter to operate at a more optimal power level. PV module soiling and power degradation is
within the limits mentioned in the literature. The increase in Kinv in the partial shading conditions
favorably affects the performance, does not degrade the efficiency of the inverter at saturation, reduces
the effect of soiling and aging of PV modules, leading to higher power production.

Keywords: partial shading condition; inverter power sizing factor; performance analysis; soiling;
power degradation

1. Introduction

The beginning of 21st century is characterized by a significant increase in the amount of energy
generated from renewable energy sources. Further increase in the generation from these types of
energy is imperative for achieving the sustainable development goals (SDGs) formulated by the United
Nations and contain 14 goals, with seven directly tied with affordable and clean energy (SDG 7).
The most important achievement offered by the SDG 7 should be the reduction of harmful gasses
emission and the development of sustainable industry [1]. A significant contribution to achieving
SDG 7 in developing countries are hybrid renewable energy microgrids [2]. Renewable energy sources,
in particular electrical energy sources, can significantly benefit the proposed cause, justifying the
numerous studies aiming to improve their performance [3]. Currently, the most important renewable
energy sources are hydro, wind and solar energy. Developed countries have the highest installed
capacities of renewable energy sources (RES), followed by several developing countries. The most
important countries where the RES energy utilization is crucial are Iceland, Sweden, USA, China and
India [4].
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The fastest increase in installed RES capacity in the world corresponds to PV power plants.
The countries with the highest installed PV capacity are China, Japan, Germany, the United States, Italy,
United Kingdom, India, France, Australia and Spain. The cumulative installed capacity worldwide in
2019 has reached the 580.16 GW mark, with the annual energy generation of 720 TWh [5]. The estimates
show that the new solar PV installed capacity forecast is at 105 GW in 2020 [6]. It is projected that by
2030 the total installed capacity will be 2.84 TW [7]. The majority of the PV systems are utility scale PV
power plants, however distributed PV power plants make up about 40% of the total installed capacity
and should not be disregarded. In the Republic of Serbia, the beginning of the most recent century
saw the legislations and decrees have been passed that better support the integration of RES in the
Serbian power system. However, currently the maximum installed capacity that could receive the
feed-in tariff is limited to only 10 MW of total installed power (for PV power plants in the Republic of
Serbia). From 2011 to 2015, there were 9 MW of installed power in PV power plants that applied for the
incentive (5.4 MW in ground PV systems, 2 MW in roof-top less than 30 kW and 1.5 MW in roof-top
30 kW to 500 kW). In the presented period, the total annual installed capacities were as follows: 20 kW,
250 kW, 2306 kW, 5391 kW and 798 kW [8]. After this period, the interest in PV power plants decreased
significantly, since no increase in the total limit for feed-in has not been increased. From the year 2020,
some changes are expected, such as introduction of net metering for distributed and auctions for utility
PV power plants. In comparison to the most European countries, Republic of Serbia has a very good
solar potential. The only European countries with higher potential are southern European countries
such as: Portugal, Spain, Italy, Greece, etc. The total global irradiance for Serbia at the horizontal plane
is between 1200 kWh/m2 and 1500 kWh/m2. For the optimally inclined surfaces the values can range
from 1300 kWh/m2 in the north to 1700 kWh/m2 in the south [9].

Improvements can be noticed almost daily in every area of RES technology. Due to new materials
and improved manufacturing technology the power, efficiency and robustness is constantly improving
for wind generators, PV modules and inverters [4]. In the last several years, significant advancements
have been made in the characteristics of monocrystalline and polycrystalline PV modules. Currently
several advanced technologies are available on the market such as passivated emitter rear contact
cells (PERCs), tunnel oxide passivated contact cells (TOPcons), half-cut cells, 1/3 cells technology,
bifacial PV cells, N-type cell technology, dual-glass technology, multi-busbar technology, high-density
encapsulation technology, etc. These type of cell technologies and their various combinations have led
to enhanced performances of PV modules, especially in regards to power, power losses due to aging,
temperature coefficient, efficiency, potential induced degradation (PID), light induced degradation
(LID), shading effect, robustness and other. These parameters are very important since they lead to
increased installed power and generation per square meter of surface, resulting in further decreases in
harmful gas emissions.

Research papers presenting analyses of grid-connected PV system performance usually describe
low power, residential and commercial systems with installed powers of up to 200 kW. In most cases,
these are roof-top PV plants located in highly dense urban areas, with frequent operation under partial
shading conditions is typical. The literature usually does not consider the influence of partial shading
conditions and inverter power sizing factor on the PV power plant operation. It is a well-known fact
that partial shading conditions can significantly decrease the system performance, i.e., significantly
decrease the energy production. Additionally, the inverter power sizing factor can influence the
performance, operating conditions, energy production, return of investment and levelized cost of
electricity [10]. Table 1 presents references that have analyzed PV power plant performance sorted
by the chronology of the development, [11–24]. Table 1 presents the year when the operation began,
inverter power (Pinv), Kinv, shading conditions, and the analysis period. As observed from the table,
most analyses had been performed for one year. In contrast, this paper will present an analysis of
system operation during an 8-year period.
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Table 1. The PV power plants analyzed by the literature.

Reference/Country Beginning
of Work

Pinv
(kW) Kinv

Shading
Condition

Analysis
Period (Years)

[11] Spain 1997 2 0.91 not stated 1

[12] Poland 2000 1.2 0.83 possible 3

[13] Crete 2002 2.5 1.15 not stated 1

[14] Algeria 2006 1.6 1.00 not stated 1

[15] Spain 2008
100 0.99

not stated 1100 1.01

[16] Ireland 2008 1.7 1.01 not stated 1

[17] Egypt 2010 3.8 0.95 not stated 1

[18] Serbia 2012 2 1.00 not stated 1

[19] Sardinia −
12.5 1.05

not stated 1300 1.07

[20] India − 11.2 1.02 no 1

[21] Thailand − 3 × 2.2 0.74 not stated 5 day

[22] India − 190 0.97 not stated 3

[23] Nepal − 4 × 30 0.96 possible 1

[24] Malaysia − 2 × 3 1.23 possible 3/4

This paper Serbia 2011 8 1.20 yes 8

By observing the value of the Kinv, it is evident that the oldest PV power plants have values that
are less than one (0.8–0.9), which was acceptable according to the available knowledge at the time.
Other papers have Kinv values around one, even if according to [25] this value can go up to 1.25 for
optimally inclined PV modules. Apart from the PV plant in Sardinia, where the Kinv approaches 1.1
(1.07), only two other PV power plants have a factor larger than 1.1 (Crete—1.15 and Malaysia—1.23).

This paper analysis the performance of the PV power plant with high inverter power sizing
factor (Kinv = 1.2) under partial shading conditions due to local surrounding buildings. The analysis
period covers the operation from the start-up to the end of the year 2019, i.e., 8 years of operation.
As noted, the most specific feature of the PV power plant is the high value of Kinv, which was very
uncharacteristic at the time of the construction (in 2011).

2. Location and PV Power Plant Description

The PV power plant is installed at the University of Novi Sad campus, at the Faculty of Technical
Sciences (FTS). This power plant was the first in Vojvodina, the autonomous province of the Republic
of Serbia, to acquire the permission to be connected to the distribution system (DS). Considering just
the technical aspect, the selected location is less than optimal, since there are two high buildings in the
near vicinity from the east side (educational building—15 m and FTS tower—23 m) shading the PV
modules. The Figure 1 shows the PV module micro-location on the flat roof.

In regard to the unfavorable micro-location, prior to the installation, the most suited part of the
roof and PV module inclination was selected using PVsyst software (PVsyst SA, Satigny, Switzerland),
in order to maximize the energy generation. PV modules are facing south with the inclination of 30◦.
Using the sun path diagram, acquired from PVsyst, the total shading losses are estimated at 8.2%.
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Figure 1. The overview of the PV power plant arrays from the FTS tower.

The main system components are PV modules, inverter, switching equipment, protective
equipment and monitoring system. A STP8000TL-10 (SMA Solar Tehnology AG, Niestetal, Germany)
inverter with two maximum power point tracking (MPPT) inputs has the rated power of 8 kW. At every
MPPT input there is one connected array of 20 PV modules, where each module (JKM240P-60, Jinko
Solar, Shanghai, China) has the rated power of 240 Wp. The total installed power of the PV modules is
9.6 kWp, making the inverter power sizing factor 1.2. The PV power plant has a Sunny Sensorbox
(SMA Solar Tehnology AG, Niestetal, Germany) meteorological data station, with a calibrated solar
irradiation sensor for in-plane irradiance measurement and PT100 sensors for measurement of ambient
and PV module temperatures. Sunny Sensorbox is connected to the power plant monitoring system
Sunny Webbox (SMA Solar Tehnology AG, Niestetal, Germany) that collects the values of ambient
conditions, input and output values of the inverter.

3. PV Module and Partial Shading Model

The model of the PV module begins with the single-diode model where photo generated currents
IPH, diode current Id, parallel resistance current Ip and the module output current I are defined. Based
on the Kirchhoff’s current law we can conclude the following [26,27]:

IPH − Id − Ip − I = 0 (1)

When adequate equations are substituted in the Equation (1) for parallel resistance current and
diode current, and the equation is rearranged to represent the PV module current, the following
equation is true [27]:

I = IPH − I0·

[
exp

(
q·(V + I·Rs)

γI·k·T

)
− 1

]
−

V + I·Rs

Rp
(2)

where I0 is the diode inverse saturation current, q = 1.602176 × 10−19 C is the charge value of an
electron, V represents PV module voltage, RS is the PV module series resistance, Rp stands for parallel
resistance, γI is the ideality factor, k = 1.380648 × 10−23 J/K is Boltzmann’s constant and T is the PV
module temperature.

It has been shown in Ref. [27], that using Equation (2) it is possible to derive the PV module model
dependent on the catalogue parameters (nameplate parameters). The equation to calculate PV module
current based on the given parameters is presented in the following equation:

I = ISC·

[
1−X·

(
exp

(
V

Y·VOC

)
− 1

)]
(3)
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where X and Y are functionally dependent on the following parameters of the PV modules IM, VM, ISC
and VOC [27].

In order to model the influence of partial shading concept the theoretical background used in
Ref. [28] can be used. If A and As define the PV module surface and sunny part of PV modules
respectively, then the ratio of total and sunny surface of PV module can be defined as:

AS
A

=
1 + d

b· cos β

1 + tan β
tanα

(4)

where d is the distance of the obstacle to the PV module, β is PV module inclination angle, α is the solar
angle and b is the PV module length.

If 15-min values of solar irradiation G, total PV array surface At in respect to the shading factor ηS
and efficiency of the PV module ηS is known, the production of the PV array can be expressed as [28]:

WARY =
365∑

i

np∑
j

0.25·Ati j·Gi j·ηPV (5)

where np is the number of 15 min periods in a day when inverter is operational and i is the ordinal
number of the day in a year.

Using the Equations (4) and (5), as in [28], and by adjusting the values of the obstacle distance and
PV modules to the respective case, the final equation for the energy calculation for PV power plant can
be expressed as:

WARY =
365∑

i

np∑
j

0.25
1000

·A·Gi j·ηSYS(T, SR)·r·
1 + d

b· cos β

1 + tan β
tanα

·ηS (6)

where ηSYS dependent on the PV module temperature T and soiling ration SR, r is the number of PV
arrays in the PV power plant and ηS is defined as in Ref. [28].

4. Analysis Methodology

In the following paragraphs the most important parameters of PV power plant that were measured
or calculated within this paper will be presented. These parameters can be used for comparison of
operational characteristics, verification of operation and the calculation of efficiency in PV power plants.

The inverter and PV array need to be matched according to the voltage, current and the power,
which is done in the system planning phase, when the inverter power sizing factor is defined.
The inverter power sizing factor Kinv that has significant influence on financial and technical parameters
of the PV system is defined as:

Kinv =
PARYN
PINVAC

(7)

PINVAC is the rated inverter output power, while PARYN is the total power of the PV array that is
defined as rated power at the standard test conditions (STC), when the PV cell temperature is 25 ◦C,
the irradiance is 1000 W/m2 and air mass spectrum AM = 1.5. The value of the Kinv can be selected
(projected) in the design phase of the PV power system, when several factors need to be considered
such as: PV module position, ambient conditions at the location, inverter efficiency, electrical and
non-electrical losses, etc. [29]. However, more often than not, this parameter is influence by the
available surface for the PV modules installation and the wishes (usually cost cutting) of the investors,
when the value of the Kinv can be lower than recommended.

The ideally expected PV array yield EARYID, at STC, can be calculated as a product of effective
in-plane irradiation HARY, the surface of PV array SARY and the efficiency of the PV modules ηPV at
STC as:

EARYID = HARY·SARY·ηPV (8)



Energies 2020, 13, 4810 6 of 19

The real electrical energy production for the PV power plant will depend on many different factors,
that can be included in the calculation as specific system parameters. The total yearly energy yield EAC
can be calculated as the sum of the product of system efficiency ηSYS and the ideally PV array yield for
each day:

EAC =
N∑

i=1

ηSYS,i·EARYID,i (9)

The final system yield Yf represents the average generated electrical energy per PV array installed
power. This value can be expressed as a daily, monthly or yearly value. The final system yield is
calculated according to the following equation:

Y f =
EAC

PARYN
=

∑
i

PAC,i·τi/PARYn (10)

where τi is the i-th interval when the inverter output power PACi is measured or calculated.
The denominator of Equation (4) is the rated PV array power and is considered to be constant
for the PV system. Electrical energy generation of the PV system is variable during the year and has a
very well-known tendency to drop from one year to another. Therefore, the value of the final system
yield is constantly changing and also has a decreasing trend.

The reference yield Yr is a ration between the total amount of the global solar irradiation at PV
surface and the reference irradiance GR:

Yr =
HARY

GR
=

∑
i

Gi·τi/GR (11)

The value Yr can be considered as the equivalent number of h in the interval, during which the
irradiance is equal to the reference, i.e., 1000 W/m2. If the Yr is expressed as [kWh/m2/day] then it
has the following meaning—each incident kWh should ideally produce the array nominal power
during one h. The reference yield is dependent on the meteorological conditions and the PV module
configuration at the PV system location. Considering that Yr is related to HARY that is measured at
the PV power plant location, with the PV power plants that operate under partial shading conditions,
the irradiation sensor position needs to be carefully considered.

According to the Standard IEC EN 61724 performance ratio PR for grid connected PV systems is
defined as the ration between final system yield and reference yield [30]:

PR =
Y f

Yr
=

∑
i

PAC,i·τi/PARYn

/
∑

i

Gi·τi/1000W/m2

 (12)

The power of the PV array is defined at the STC and, in that regard, the PR can be considered
as the ration between the generated electrical energy of the grid connected PV system and the ideal
yield that would be achieved if the STC would apply constantly. The PR represents the value of the
influence of all losses (light refraction losses, shading, soiling, aging, misalignment of components,
PV conversion, wiring in the DC and AC subsystem, inverter efficiency and saturation) at the system
output [13].

When analyzing PR in the time span shorter than one year, there can be a significant variation of
the value. In this specific case, the temperature corrected performance ration factor (PRT) is calculated.
This factor assumes the correction of the PV array power as a function of the ambient temperature,
consequently mitigating the influence of the seasonal variation of the PR.
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The PRT with the temperature correction for Tref = 25 ◦C is calculated as:

PRT =

∑
i

PAC,i·τi/(1 + γ·(TPV,i − 25))·PARY

/
∑

i

Gi·τi/1000 W/m2

 (13)

where γ is the temperature power coefficient for PV modules, TPV is the actual temperature and Tref is
the referent temperature of PV modules. The average value of the PRT is closer to 1 then standard
PR [31,32].

The yearly capacity factor CFYEAR presents the ratio of the yearly generated electrical energy and
the yearly expected energy generation for 24 h operation under STC:

CFYEAR =
Y f

24·365
=

EAC
PARYN·8760

(14)

PV modules exposed to the influence of environmental conditions. One of the more significant
influences comes from soiling at the surface of PV modules. Depending on the level of soiling, the
power of the PV modules will drop, leading to the reduction of production. The value and the influence
of the PV module soiling is defined with the soiling ratio (SR). SR is the ration of the power between
the soiled PV module PPVD and the clean PV module PPVC [33]:

SR =
PPVD

PPVC
(15)

During the exploitation, due to aging, the power of the PV modules also decreases. The module
manufacturers declare the power reduction in the 25 year or 30-year period. The value of the power
decrease during the PV system life-span operation can be described using degradation rate (DR), that is
defined as follows:

DR = 1−
PPVT

PPVN
(16)

The power PPVT is the PV module power at the STC in a defined measurement point during the
PV module life-span (after a period of operation) and the PPVN is the rated PV module power at the
STC defined by the manufacturer [34].

5. The Results of Measurements

Following is the analysis of the eight-year measurement results for the PV power plant with
the power of 8 kW that was officially commissioned on 25th of October 2011. The measurements,
analyzed here are from the beginning of 2012 to the end of 2019. The calculated parameters, i.e., energy
generation, Yf, Yr, PR and CF are calculated using logged data (Webbox and SensorBox) over the
mentioned period with the data acquired once every 5 min. The irradiation sensor is a calibrated PV
cell that can register irradiation between 0 W/m2 and 1500 W/m2 with the resolution of 1 W/m2 and
the accuracy of ±8%. The PT100 sensor is used for the air and PV module temperature measurement
ranging between −20 ◦C and +110 ◦C, with the resolution of 0.1 ◦C and the accuracy of ±0.5%.

5.1. On Site Meteorological Conditions

It is a well-known fact that the most influential factors on PV power plant generation are irradiation
and ambient temperature. In Novi Sad, where the respective power plant is located, the climate is
moderate-continental with more and more often occurrences of extreme weather conditions.

During the previous operation these sever conditions occurred during two years. During the
first year of operation (2012) the PV power plant felt the most severe weather conditions up to date.
The yearly value of insolation hours was 2462 h, while the average value for the analyzed period was
2249 h. The winter of 2012 had the lowest air temperature ever with −28.7 ◦C, while the maximum air
temperature was at the beginning of august with 39.9 ◦C [35]. The average monthly temperature for
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the analyzed period according to the data from the Republic Hydrometeorological Service of Serbia
was 12.6 ◦C. The average monthly temperatures used by the PVsyst software are usually lower than
the actual values, with yearly average at 12.2 ◦C. The average value of rainfall in the analyzed period
was 672 L/m2. In 2012 there was the least amount of rainfall, with the yearly average at 485 L/m2, while
the most rainfall happened during 2014 with the value of 816 L/m2.

Figure 2 shows the sum of solar irradiation for every individual year in the respective period,
acquired with the measurements from sensor box. The average value of the measured and the estimated
solar irradiation at the PV array surface is 1490 kWh/m2 and 1377 kWh/m2 respectively. Measured
values of irradiation are higher than the estimated for every year of the operation so far. Important
thing to note is that the irradiation sensor position is chosen so that it is in the shade until all the
modules exited the shade.
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Figure 2. Sum of solar irradiation for every individual year, measured and estimated averages value in
analysis period.

5.2. Estimated and Measured Performance

Using the PVsyst software, the ideal PV array yearly production is estimated according to
Equation (8), considering that H = 1377 kWh/m2/year, the surface of 40 PV modules is S = 65 m2 and
the efficiency of the PV modules is 14.7%. The ideal PV array production calculated value is 13157 kWh
annually. When all losses in the PV power plant are considered, the estimated energy to be supplied
to the grid is 11,362 kWh annually. Energy generation, estimated using PVsyst software, when no
shading is considered is 12,260 kWh, which is an increase of 7.9%.

The generated energy from the data acquisition system is calculated using the measurement from
the inverter integrated sensors. The generated electrical energy per year is presented in Figure 3.
The same Figure shows the average yearly production at 11,275 kWh. This value is 0.78% lower than
the estimated average production for the same period. It is easy to note that the highest production
was during 2012, 2017 and 2019, when unusually high number of insolation hours occurred.

The PV power plant had no production for 21 days due to PV modules being covered by snow
(the longest period was 7 days in February of 2012.) and due to system protection or supply outage for
total of 34 days during the analyzed period of operation. It is estimated that the total loss of production
is around 1000 kWh. The PV plant operation had never been down due to an element malfunction to
this date. Total energy production during the 8 years of operation is 90.835 MWh.



Energies 2020, 13, 4810 9 of 19

1 

 

 

Figure 3. The FTS PV power plant generated electrical energy, measured and estimated average value.

The average value of Yf in the respective period was 1174.4 kWh/kWp/year (1183.6 kWh/kWp/year
expected according to PVsyst). The maximum value of 1265.3 kWh/kWp/year was reached in the
first year of operation, while slightly lower value was achieved in 2017 and 2019. The minimum
was reached in the second year and had the value of 1073.4 kWh/kWp/year. According to the daily
measurements the average value of the Yf was 3.21 kWh/kWp/day, while the estimated value was
3.24 kWh/kWp/day. The Figure 4 shows the achieved value of the daily average of the final and
reference yield for the 8 years of operation.
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Figure 4. The final and reference yield daily average for the 8 years of operation.

In the analyzed period the average value of Yr was 4.09 kWh/m2/day, while PVsyst estimation
was 4.20 kWh/m2/day. The lowest value was in 2013 with 3.90 kWh/m2/day, when the total yearly
production was also the lowest. The highest value of the yearly average was reached in 2017 with
4.27 kWh/m2/day, when the total energy production almost reached the maximum value from 2012.
During the year, the lowest values are reached in winter months, when most cloudy and foggy days
can be expected. The minimum values for the winter period was 1.23 kWh/m2/day. On the contrary,
the highest values were registered during summer months. The peak value was achieved in the year
2017 with 7.28 kWh/m2/day.

The yearly average value of the PR in the period of analysis was at 0.816, while the PVsyst estimate
was 0.782. The maximum yearly value of the PR was achieved in 2106 at 0.844 and the minimum
yearly value was 0.769 in 2018. The average monthly values of the PR can be seen in Figure 5, where
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the calculated values (based on the data from the logger unit) and the estimated values are shown.
The values differ significantly in the winter months with approximately 12% difference between the
estimated and the calculated value of PR. By the relevant daily measurement data in the PV power
plant, when there are no shading of the PV modules and the irradiation level is above 200 W/m2 the PR
are between 0.83–0.88. During the shading period (before the modules leave the shadow), that can
last between 1 h and 2 h depending of the season, there is a significant deviation of this parameters.
The higher differences between measured and estimated values in winter months, and lower values of
PR during shading conditions are the consequence of specific behavior of the shaded PV module, but
also the position of the irradiation sensor. Influence of the irradiation sensor position is especially high
in the winter when shading conditions last longer and the days are shorter.
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In the Table 2 the values of CFYEAR are presented for every year in the respective time interval.
The average value of CFYEAR is 0.1337.

Table 2. The FTS PV power plant capacity factor.

Years 2012 2013 2014 2015 2016 2017 2018 2019

CFYEAR 0.1440 0.1225 0.1290 0.1367 0.1346 0.1425 0.1284 0.1315

6. Experiments at the PV Power Plant

In the PV power plant, during 8 years of operation, several experiments were conducted where the
daily change in inverter performance was monitored, inverter saturation operation was analyzed, the
influence of the PV module soiling, ageing and soil ration (SR) were determined. The measurements
were performed using a device for measuring PV array characteristics, the SOLAR IV (HT Italia Srl,
Faenza, Italy) and remote unit SOLAR-02 (HT Italia Srl, Faenza, Italy). In addition, using MPP300
(HT Italia Srl, Faenza, Italy) with the previous devices the complete yield test of the three-phase inverter
can be performed.

6.1. Daily Inverter Operation Analysis

In this section, the daily measurements that were conducted on 7th of July 2015 are presented.
The power plant started generating electrical energy at 5:20 and continued the operation until 20:10,
having operated for 14.16 h in total that day. Due to logger memory, limitation the sampling period
could be no lower than 2 min. The following values have been logged: minimum, maximum and
average values for voltage, current and the power at the DC and AC subsystem, irradiation and the
PV module temperature. Using the measurement data, the inverter efficiency, PV array utilization in
regard to the STC and inverter PR were calculated and logged.
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Figure 6 shows the variation of irradiation, inverter input and output power. The spike in
inverter power at the beginning of the graph indicates that there is partial shading on the PV array.
The irradiation in the shade is increasing linearly, and at the end of the shaded operation period has
the value of 69 W/m2. At the same time, the temperature of the PV panel is 27.8 ◦C, output power
of the inverter is 437.9 W, while the power of the PV array is 566.4 W. At 7:13 there is an irradiance
increase from 69 W/m2 to 159 W/m2 because the SOLAR-02 irradiation sensor was set up to measure
the irradiation of the first module to leave the shade. Due to this and the PV module behavior under
partial shading conditions the increase of the PV inverter power occurs much later and not at the
same instance as irradiance increase. In the interval from 8:21 to 8:25 the last PV module leaves the
shadows and both PV arrays are fully irradiated. Then the PV array power increases rapidly from
960 W to 3379 W. The last measurement for the Sensorbox, the PV power plant irradiation sensor,
before leaving the shade was at 97 W/m2, while the irradiation was 377 W/m2 when the last PV module
exists the shadow.
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Figure 6. Irradiation G, input P DC and output power P AC variation during 7th of July 2015.

The difference between input and output power of the inverter is clear, especially during the
highest irradiation periods (G > 500 W/m2). The PV module temperature in that varied from 46.1 ◦C
(air temperature 30.6 ◦C) up to maximum of 70.7 ◦C (air temperature 40.6 ◦C) in 13:37. For the same
irradiation levels the temperature of the PV modules are higher in the afternoon hours.

Figure 7 shows the variation of inverter output power in regard to ambient conditions. In Figure 7a
the dependency on irradiation is presented, while Figure 7b shows the output power dependent on
the temperature. The characteristic in Figure 7a has a very distinct outlook (with dual values for
certain irradiation levels). This occurs due to shading of the PV modules, when PV arrays for the same
irradiation have lower power output (lower dual values). The linear characteristic is acquired when no
shading occurs at the PV modules. In Figure 7b, four distinct parts can be noted (linear parts with
different slopes). Two lines with the smallest slope represent the variation of the inverter power (less
than 1 kW) for the morning and evening period when the temperatures are also low (less than 40 ◦C).
The other two lines differ in power due to temperature difference in the different parts of the day. For
the same irradiation and different temperatures (pre-non and afternoon) we can have different inverter
output power.

Daily inverter efficiency variation, PV array efficiency variation and PR are presented in Figure 8.
Inverter efficiency has an increasing tendency until both PV arrays leave the shade. After this spike in
the efficiency it remains constant until a decrease in efficiency occurs late in the afternoon. Maximum
inverter efficiency was 96%. Average efficiency was 86% in before noon and 94% in the afternoon, with
the daily average of 90%. PV array efficiency in the early morning hours is increasing, however at
7:13 there is a quick decrease followed by a continuous slight decrease. This can easily be explained
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by the fact the irradiation sensor of the Solar-02 has left the shade and the irradiation is continuously
increasing. Sharp increase in efficiency occurs when both PV arrays have left the shadow. Consequently,
when the PV array efficiency is lower, the PR value also decreases as evident from Figure 8. The average
values of PR before noon, in the afternoon and daily are respectively 0.77, 0.85 and 0.81.
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Figure 7. The variation of inverter output power in regard to ambient conditions: (a) dependency of
irradiation; (b) dependency on the temperature.
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The measurement results from the PV power plant data loggers do not show the sharp decrease
in PV array efficiency and PR due to the position of the irradiation sensor of the acquisition system.
This irradiation sensor leaves the shade almost at the same time as both PV arrays, and therefore
the increase of the PV array power due to shading and the irradiation increase simultaneously
and proportionally.

Late in the afternoon, there is one more PV array efficiency and PR drop lasting for 35 min. This is
also due to the partial shading of the PV arrays and the characteristics return to expected path after all
the PV modules are shaded again. In this case the decrease is not due to the position of the sensor
but rather to the inverter operation and maximum power point tracking. When the shading occurs,
there is a slight change in the PV array current and a higher voltage variation. The current is decreased
by 13% for a short time (lasts about 6 min), while the PV array voltage drop for 100 V and 218 V, i.e.,
20% and 42% respectively. When the partial shading conditions pass (i.e., when all PV modules are in
the shade) the voltage variation returns to normal, voltage start decreasing and when it reaches the
minimum operational voltage the inverter shuts down.



Energies 2020, 13, 4810 13 of 19

6.2. Saturation

Due to high inverter power sizing factor when there are high irradiation conditions, especially
when there are lower ambient temperatures the inverter operates in saturated conditions. Considering
the climate in Republic of Serbia, the inverter saturation can occur in March, April and September.
During the eight-year period, the ambient conditions for saturation occurred during 14 days, which
makes 0.55% of the operating days. In the spring of 2013, the inverter was in saturation the most times,
with five occurrences whereby the inverter output power reached 8 kW. The saturation is reached at
noon when the irradiation is between 1000–1050 W/m2. The PV module temperature was in range
from 35 ◦C to 40 ◦C.

The analysis of the inverter saturation influence on the power plant performance was done for the
25th of March 2016. For this particular date, the inverter was saturated from 11:10 to 12:25. During
the inverter saturation, the PV module temperature was between 36.9 ◦C and 37.3 ◦C. According
to ambient conditions, PV module temperature coefficient (−0.45 %/◦C) and an average PRT the PV
array module can be estimated at 8630 W. The inverter output power during saturation was 8008 W.
The variation of the inverter efficiency, PV array efficiency and the PRT are presented in the Figure 9.
The efficiency of the PV array, in comparison to STC, slightly decreases before the saturation. During
and after saturation it ranges between 12.1% and 12.6%. The average value of PRT during saturation is
0.834. According to the analyzed data it is easy to conclude that there is no deterioration of the power
plant parameters during saturation. In a rare occasion when the inverter is saturated there are no
visible change in power plant performance.

Energies 2020, 13, x FOR PEER REVIEW 13 of 20 

The measurement results from the PV power plant data loggers do not show the sharp decrease in PV 
array efficiency and PR due to the position of the irradiation sensor of the acquisition system. This 
irradiation sensor leaves the shade almost at the same time as both PV arrays, and therefore the increase of 
the PV array power due to shading and the irradiation increase simultaneously and proportionally. 

Late in the afternoon, there is one more PV array efficiency and PR drop lasting for 35 min. This is also 
due to the partial shading of the PV arrays and the characteristics return to expected path after all the PV 
modules are shaded again. In this case the decrease is not due to the position of the sensor but rather to the 
inverter operation and maximum power point tracking. When the shading occurs, there is a slight change 
in the PV array current and a higher voltage variation. The current is decreased by 13% for a short time 
(lasts about 6 min), while the PV array voltage drop for 100 V and 218 V, i.e., 20% and 42% respectively. 
When the partial shading conditions pass (i.e., when all PV modules are in the shade) the voltage variation 
returns to normal, voltage start decreasing and when it reaches the minimum operational voltage the 
inverter shuts down. 

6.2. Saturation 

Due to high inverter power sizing factor when there are high irradiation conditions, especially when 
there are lower ambient temperatures the inverter operates in saturated conditions. Considering the climate 
in Republic of Serbia, the inverter saturation can occur in March, April and September. During the eight-
year period, the ambient conditions for saturation occurred during 14 days, which makes 0.55% of the 
operating days. In the spring of 2013, the inverter was in saturation the most times, with five occurrences 
whereby the inverter output power reached 8 kW. The saturation is reached at noon when the irradiation 
is between 1000–1050 W/m2. The PV module temperature was in range from 35 °C to 40 °C. 

The analysis of the inverter saturation influence on the power plant performance was done for the 25th 
of March 2016. For this particular date, the inverter was saturated from 11:10 to 12:25. During the inverter 
saturation, the PV module temperature was between 36.9 °C and 37.3 °C. According to ambient conditions, 
PV module temperature coefficient (−0.45 %/°C) and an average PRT the PV array module can be estimated 
at 8630 W. The inverter output power during saturation was 8008 W. The variation of the inverter efficiency, 
PV array efficiency and the PRT are presented in the Figure 9. The efficiency of the PV array, in comparison 
to STC, slightly decreases before the saturation. During and after saturation it ranges between 12.1% and 
12.6%. The average value of PRT during saturation is 0.834. According to the analyzed data it is easy to 
conclude that there is no deterioration of the power plant parameters during saturation. In a rare occasion 
when the inverter is saturated there are no visible change in power plant performance. 

 
Figure 9. Change of the PRT, the inverter and PV array efficiency during inverter saturation. Figure 9. Change of the PRT, the inverter and PV array efficiency during inverter saturation.

6.3. Soiling and Power Decrease of PV Modules

After four years of PV plant operation a random four PV modules were selected PVP1, PVP2,
PVP3 and PVP4 (two in each array) in order to determine the influence of soiling on the power decrease.
The measurement device logs instantaneous power and the power normalized to the STC. Table 3
presents the power normalized to the STC for soiled and clean PV modules and soiling levels according
the Equation (15). The average soiling levels of the PV modules is determined at 5%, which is higher
than a standard default value of 3% used by the PV software to determine the estimated PV power
plant production. It is important to note that the PV modules were first cleaned (considering the
beginning of operation time) when the experiments to determine the SR were carried out.

After seven years and five months of the power plant operation PV module power was measured
in order to determine the aging effect. The DR parameter was calculated in regard to the rated PV
module power and blitz test power. According to the specification the rated PV module power is in
the range of ±3 %Pn. PV module power according to blitz test are in range of ±1.5 %Pn.
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Table 3. The influence of soiling on the PV modules power.

PV Module State P (W) ∆P (%) SR

PVP1
Soil STC 219.07

4.5 0.955Clean STC 229.35

PVP2
Soil STC 215.29

5.7 0.943Clean STC 228.31

PVP3
Soil STC 217.26

5.3 0.947Clean STC 229.32

PVP4
Soil STC 218.74

4.4 0.956Clean STC 228.77

Average: 5.0 0.950

Table 4 shows the blitz test PV module power, PV module power measurement results and DR
value for seven tested PV modules (PV1 to PV7). Average value of DR in regard to the rated power was
7.95%, while in regard to the blitz test it was 7.75%. The manufacture states limited power warranty for
the rated power. According to this parameter in the first year the maximum allowed power decrease is
2.5% and 0.7% for every consequent year until 25th year. When calculated at the moment of testing the
DR should be at 6.98%.

Table 4. PV module blitz test and measurement power and degradation rate level.

PV Module Blitz Test P (W) Measurement P (W) DR Blitz Test (%) DR Rated (%)

PV1 239.73 221.96 7.41 7.52
PV2 238.77 219.74 7.97 8.44
PV3 238.49 220.67 7.47 8.05
PV4 240.99 221.85 7.94 7.56
PV5 239.47 220.54 7.90 8.11
PV6 239.,2 221.38 7.45 7.76
PV7 239.62 220.22 8.10 8.24

average: 239.47 220.91 7.75 7.95

Power decrease estimation in the expected life span of the power plant (25 years), according to
the specifications and the measurements can be observed in Figure 10. After 25 years the PV module
power will be 197.7 Wp according to the specifications and 190.6 Wp according to the measured DR.
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Inverter coefficient, at the power plant design stage, is defined according to the PV module rated
value. However, since there is a decrease in the PV module power during exploitation, value of the
Kinv also decreases. According to the measurements of current values for the inverter coefficient is
estimated at 1.11. If the PV modules are not replaced in the 25-year life span, the expected value of the
Kinv will be 0.95.

7. Discussion

This paper analyses the operational parameters of a PV power plant over an 8-year period of
operation, which allows for a unique perspective of PV system operation to be considered related to
the existing literature where mostly one-year operation is considered. The one-year period, while
being most common, may lead to some inaccurate assessment of the most important operational
parameters. There is only a handful of papers that analyze longer period of PV plant operation, such
as [36]. From the perspective of the power plant analyzed in this paper, for example, if the year 2011
was selected the highest value of Yf is 1265.3 kWh/kWp/year, while for the year 2012 the parameter
Yf would be 1073.4 kWh/kWp/year. This makes the difference of 15.2% and the average value for
the analyzed period was 1174.4 kWh/kWp/year. Other parameters behave very similarly, hence the
importance of the longer analysis period offered by this paper.

Reference [18] also analyzes the operation of a PV power plant in Serbia, but the analyzed period
is one year and the location of the power plant is in Nis, the city 300 km to the south of Novi Sad and
the respective PV plant analyzed in this paper. Both power plants have a similar design, with south
orientation and almost the same elevation angle (Novi Sad 30◦, Nis 32◦). The analyzed FTS PV power
plant in Novi Sad has Kinv = 1.2 and operates under partial shading conditions in the morning hours,
while in the PV power plant analyzed in [18] there is no shading conditions and the corresponding
Kinv = 1.0. The eight-year average value of Yf for the respective location is 3.21 kWh/kWp/day, while
the estimated value was only 0.93% higher. Measured and estimated value of Yr, are 4.09 kWh/m2/day
and 4.20 kWh/m2/day respectively, which makes a difference of 2.69%. The level of correlation between
the estimated and the measured value with the certainty interval of 95% for Yf and Yr can be concluded
to be very high with the values of 0.988 and 0.994 respectively. This is significantly higher than the
0.576, which is a limit value for the certainty limit for 12 samples (12 months). The accurate correlation
between estimated and achieved values of PV power plant parameters can be achieved only after
longer period of analysis (5–6 years). For the analyzed year (2013), PV power plant from Ref. [18] has
Yf = 3.18 kWh/kWp/day and Yr = 3.81 kWh/m2/day, while for the same year PV power plant in Novi
Sad achieves the values of Yf = 2.93 kWh/kWp/day and Yr = 3.90 kWh/m2/day.

When the value of the PR is considered for the good performance PV power plant, they should
usually range between 0.75 and 0.85. Below these value performances are considered as poor, while
over the 0.85 the performance can be considered excellent. According to the measurements the
calculated value of the average yearly PR is 0.818, which is 4.6% higher than the PVsyst estimated value.

The PV power plant in Nis achieved the value of PR at 0.936 for the year 2013, while in Novi
Sad it was at 0.793 for the same year. The value of Yf is higher and the value of Yr is lower for the
PV power plant in Nis, which leads to the higher PR value. However, the higher value of Kinv means
higher energy generation per kW of installed inverter power, which leads to the increase in energy
generated by the PV power plant. This can easily be explained by the longer inverter operation period
(earlier turn on and later turn off times), higher power during the operation and partial compensation
of shading losses. In that regard, the average energy generation per kW of inverter installed power
for the FTS power plant in the analyzed period was 1409.3 kWh/kW, while for the Kinv = 1 it would
have been at 1174.4 kWh/kW. Therefore, the increase of 20% in inverter power sizing factor leads to the
increase of 16.7% in the generated energy.

As an added benefit, every increase in energy generated from renewable energy sources leads to
the reduction of fossil fuel emission. By the relevant daily measurement data in the PV power plant,
when there are no shading of the PV modules and the irradiation level is above 200 W/m2 inverter
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efficiency and PR are between 90.4–96.0% and 0.83–0.88, respectively. During the shading period
(before the PV modules exit the shadow), that can last between 1 h and 2 h, depending of the season,
there is a significant deviation of these parameters. This is mostly due to specific behavior of the shaded
PV panel, but also due to the position of the irradiation sensor that significantly influences the PR.
Influence of the irradiation sensor position is especially high in the winter when shading conditions
last longer and the days are shorter.

In a rare occasion when the inverter is saturated there are no visible change in power plant
performance, (which is significant considering high Kinv). According to the PV module power at the
STC, the saturation of the inverter can be expected when the irradiation is around 1000 W/m2 and the
temperature of the PV modules is lower than 45 ◦C, i.e., air temperature is lower than 20 ◦C.

The soiling levels of the PV modules is determined at 5%, which is higher than a standard default
value of 3% used by the PV software’s to determine the estimated PV power plant production. It is
important to note that the PV modules were first cleaned (considering the beginning of operation
time) when the experiments to determine the SR were carried out. The parameter Kinv can also
compensate for the losses attributed to the soiling of PV modules, same as in case of electrical and
non-electrical losses.

When the measurements results are considered, the power deterioration (regarding the panel
aging) is slightly higher than the manufacturer data states. The estimated PV panel power in the 25th
year of operation will be about 3.6% than the manufacturers guarantee. The PV panel power decrease
in 25 year will result in inverter power sizing factor dropping from 1.2 to 0.95 for the respective PV
power plant, if the inverter or the PV modules are not replaced. In that regard, the selection of high
value of inverter power sizing factor at the beginning can be fully justified, since towards the end-of-life
expectation influenced by PV module aging this value will drop close to 1, still having significant
influence on the increase in production and the reduction of the harmful gases emission.

8. Conclusions

The measurements results and the performance analysis of the FTS power plant in Novi Sad
showed its good performance, despite the high losses due to operation under partially shading
conditions and high inverter power sizing factor. By comparing the values of Yr from this paper to the
different papers with locations worldwide, a conclusion can be made that Republic of Serbia has very
significant solar energy potential. The values of Yf and PR for the respective PV power plant are higher
than for other power plants with similar potential. The estimated values of Yr and Yf, using PVsyst
software, can be considered accurate to the actual average values with high level of certainty.

The main conclusions of the paper are:

• In order to have the best representative results for analysis a long-term (multi-year) parameter
measurement is necessary.

• Some parameters, such as Yf and SP, are not influenced by the inverter power sizing factor
irrelevant to the system environment.

• The most important parameter (energy generation) is highly influenced by the inverter power
sizing factor value.

• The saturation effect due to high value of inverter power sizing factor does not influence the
inverter efficiency negatively.

• Due to PV module aging, higher value of inverter power sizing factor allows higher total PV
module power at the end of life point of PV system.

• The saturation effect is more pronounced at the beginning of operation, while with PV module
aging this situation occurs less often.

• PV module soiling reduces the energy output by 5% if the PV module are only treated by
natural rainfall.
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• Considering the relative immaturity of the technology (rapid development only in the last decade),
the concluded experiments give significant contribution to the knowledge accumulation in the
topic of inverter operation under partial shading conditions and inverter saturation, PV module
power degradation due to aging and soiling in the urban installations.

To summarize, the paper shows that the high inverter power sizing factor of a PV power plant that
operates in severe partial shading conditions can achieve the expected energy yield, high performance
and can operate without technical difficulties.

Building on the presented results, future research will include further investigation of the soiling
influence on the PV array power with special reference to mitigation possibilities. Additionally, PV
module aging was just briefly touched on by this paper, while future research will include extensive
testing of different parameters that can influence module aging using advanced software solutions
such as ComSol to verify the experimental (field) results. Most importantly, since the PV power
plant operates under partial shading conditions, the model for the PV array reconfiguration in order
to mitigate the shading effect has already been developed [27]. Future research will assume the
experimental verification of the proposed reconfiguration using automatic reconfiguration matrix, but
it will also propose a reconfiguration matrix in order to vary the value of the Kinv during the PV power
plant operation in order to maximize the inverter output power throughout the day.
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Nomenclature

List of symbols
A PV module surface
As Sunny part of PV module surface
At total PV array surface
b PV modules length
CFYEAR Yearly capacity factor
d Distance of the obstacle to the PV module
DR PV modules degradation rate
EARYID Ideally expected PV array yield
EAC Total yearly energy yield
GR Reference irradiance
IPH Photo generated current
Id Diode current
Ip Parallel resistance current
I Module output current
I0 Diode inverse saturation current
ISC PV module short-circuit current
IM PV module current at maximum power
K Boltzmann’s constant
Kinv Inverter power sizing factor
PR, PRT Performance ratio and temperature corrected performance ration
PINVAC, PARYN Rated inverter output power and total nominal power of the PV array respectively
PPVD, PPVC Power the soiled PV module and power the clean PV module

PPVT, PPVN
PV modules power at the STC in a defined measurement point and rated PV
module power at the STC defined by the manufacturer
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q Charge value of an electron
r Number of PV arrays
RS PV module series resistance
RP PV module parallel resistance
SR PV modules soiling ratio
SARY Surface of PV array
TPV, Tref PV module actual temperature and referent temperature of PV modules
T PV module temperature
V PV module voltage
VOC PV module open-circuit voltage
VM PV module voltage at maximum power
WARY Energy of PV power plant
Yf, Yr Final system yield and reference yield
α Solar angle
β PV module inclination angle
γ Temperature power coefficient for PV modules
γI PV cell ideality factor
ηPV, ηSYS Efficiency of the PV modules and PV system efficiency
ηS Shading factor
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