
energies

Article

Fast Transactive Control for Frequency Regulation in
Smart Grids with Demand Response and
Energy Storage

Andrew Ly and Saeid Bashash *

Department of Mechanical Engineering, San Jose State University, San Jose, CA 95192, USA; andrew.ly@sjsu.edu
* Correspondence: saeid.bashash@sjsu.edu; Tel.: +1-408-924-8355

Received: 15 August 2020; Accepted: 9 September 2020; Published: 12 September 2020
����������
�������

Abstract: This paper proposes a framework for controlling grid frequency by engaging the
generation-side and demand-side resources simultaneously, via a fast transactive control approach.
First, we use a proportional frequency-price relation to build and analyze a transactive frequency
droop controller for a single-area power grid. Then, we develop a transactive demand response
system by incorporating a large population of thermostatically controlled air conditioning loads.
A proportional-integral controller is used to adjust the setpoint temperature of the air conditioners
based on price variations. A battery storage system is then developed and augmented to the system
to capture the energy arbitrage effects. A nonlinear price-responsive battery management system is
developed to enable effective charging and discharging operations within the battery’s state-of-charge
and power constraints. Simulation results indicate that the proposed transactive control system
improves the steady-state and transient response of the grid to sudden perturbations in the supply
and demand equilibrium. To decouple frequency from price during daily operation and maintain
frequency near the nominal value, we propose adding a feedforward price broadcast signal to the
control loop based on the net demand measurement. Through various simulations, we conclude that
a combination of feedback transactive controller with feedforward price broadcast scheme provides
an effective solution for the simultaneous generation-side and demand-side energy management and
frequency control in smart power grids.

Keywords: transactive control; smart grid; load frequency control; demand-side energy management;
thermostatically controlled loads; energy storage

1. Introduction

This paper investigates an alternative solution to the load frequency control (LFC) problem in
smart grids through a fast transactive approach. The main benefit of the transactive control is enabling
a direct and transparent medium for compensating the services provided by the demand-side and
energy storage resources for frequency regulation in power grids. This paper investigates scenarios in
which thermostatically controlled loads (TCLs) in buildings can be used alongside battery storage and
generation-side resources to balance power supply and demand in the grid.

Energy conservation in buildings has become one of the top priorities of electric utilities in the past
few decades [1,2]. New technologies have been developed to propel rapid information and statistics
for the energy conservation efforts [3,4], and the expanding usage of distributed renewable energy [5,6].
However, due to the high intermittency of renewable sources, the power supply and demand balancing
paradigms have to shift from traditional LFC and automatic generation control (AGC) [7,8] to a mix of
general-side and demand-side control strategies [9,10].
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Studies on demand-side energy management expand in many different fields of literature.
Economic incentives such as rebate programs and time-of-use electricity pricing have been the
primary tools to achieve effective demand response [11–13]. The authors in Reference [11] investigate
the consumer behavior in response to peak-time rebate programs using a multi-stage stochastic
optimization process and conclude that a rational consumer changes his/her consumption pattern
in order to increase his/her welfare. The paper cautions that depending on whether the economic
incentive is lower or higher than the retail price of electricity, this behavior may result in potentially
larger overall energy consumption despite reduction during peak hours. Reference [12] studies the
optimal response of household appliances with thermostatic controllers to time-varying electricity
price signals. The appliances reduce their demand during peak hours and coordinate with one another
to maximize the utilization of the on-site energy production such as solar power. The authors in
Reference [13] propose a two-level day-ahead energy planning process that uses a dynamic benefit
function to maximize consumer benefit while reducing the financial risks imposed on the energy
providers. It is shown that, through his process, the grid load curve flattens, and consumers see about
20% cut in their energy bills.

In several studies, energy demands for residential units have been modeled by major
thermostatically controlled loads (TCLs) such as refrigerators, air conditioners (ACs), and water
heaters [14–19]. These loads are deemed as flexible because their demands can be shifted significantly
through small offsets in their setpoint temperatures or on-off schedules. References [14] and [15] develop
diffusion and transport-based partial differential equation models for the aggregate air conditioning
loads, as well as setpoint offset algorithms to balance power supply and demand in the presence of
renewable power. In Reference [16], a quadratic programming-based hybrid controller is proposed to
achieve the optimal TCL response to a time-varying electricity price signal, using an experimentally
validated air conditioner model. Reference [17] applies dynamic programming to solve the optimal
TCL control problem and discovers that precooling under the real-time electricity market can result
in more economic benefits than that under the day-ahead market. Packetized energy management
(PEM) is another recently developed framework for controlling the aggregate TCL load [18,19]. In this
framework, which is inspired by digital communications, the end-users request for certain amount of
energy packets over fixed periods of time. The PEM algorithm then decides whether to accept or deny
the packets based on the energy availability, thereby balancing the power supply and demand.

Several studies on transactive grid control have analyzed how a price moderator sets up a clearance
price that factors in generation costs along with energy demands [20–23]. Reference [20] models a
transactive control scheme for a single commercial building showing that the price market can passively
influence the heating, ventilation, and air conditioning (HVAC), lighting, and electric vehicle (EV) loads
in real-time. The simulation results show improvements in energy savings and efficiency. Reference [21]
proposes a study for transactive control and the charging of 200 EVs with a day-ahead forecast and
a real-time EV charging management. The authors use a model predictive control method to allow
the scheduler/aggregator to handle the uncertainty of various users’ charging demands while making
profit to regulate the grid. Reference [22] proposes an energy management system based on transactive
control to compare its efficacy against a more centralized method. The authors find the advantages
of transactive control for multiple energy systems are scalability for having multiple energy hubs,
flexibility for the aggregators, and privacy-preserving for consumers. Studies of transactive control
also show the ability to handle the intermittencies of renewable energy. Reference [23] implements
transactive control on a conventional model of an energy grid with cloud computing to improve
robustness and flexibility in the exchange of information so that intermittencies with renewable energy
sources like wind energy can be better transmitted in frequency regulation of the grid. Results show
improvements versus conventional hardware. The authors warn that cyber security and robustness
challenges will need to be addressed.

One of the main challenges in implementing some of these solutions is the delay in the process due
to the addition of a third party, and time needed to converge to a clearance price. In practice, to have
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many devices communicate and measure data in the smart grid environment involves the concept of
a middleware structure [24]. The middleware architecture features end user domains, aggregators,
and power generator domains that are essential for incorporating transactive control policies.

Linking electricity price to grid frequency has been the subject of a few studies. One of the early
efforts used a proportional price-frequency relation to achieve frequency droop control in a power
network with price responsive generators [10,25]. In these studies, the electricity price is proposed
to be set as a linear function of frequency within a certain range around the nominal frequency.
In Reference [10], the price signal is used to control the generators, whereas loads such as TCLs are
controlled directly using the frequency signal. Therefore, the supply and demand-side resources are not
controlled via a common variable. Other studies investigate combining the day-ahead electricity market
prices with the real-time frequency-based price adjustments [26,27] to achieve optimal transactive
frequency control. These studies use different optimization schemes such as linear programming [26]
and model-predictive control [27] to optimize the dispatch schedules and reference setpoints for
an optimal grid performance. Therefore, an optimization process is placed within the feedback
loop, which can significantly increase the computational requirement compared to the conventional
AGC-based algorithms.

To develop a fully automatic feedback control scheme operated based on a single market-wide
control variable, i.e., electricity price, this paper develops a transactive feedback controller that
performs similarly to a conventional frequency droop controller without requiring any real-time
optimizations. To maintain the frequency deviations near zero, the controller is equipped with a
feedforward component based on the real-time demand measurements. We develop an integrated
network of generation-side and demand-side resources such as steam generators, renewables, TCLs,
and batteries to demonstrate the effectiveness of the proposed control strategy. The individual TCL
and battery controllers are developed to synergistically respond to the proposed transactive frequency
controller. We investigate the response of the system under various step changes in the demand,
and use the California ISO power demand and renewable energy data to simulate the system for a
24-h power cycle. Various simulations are presented to show the improvements and drawbacks of the
proposed transactive and the subsystem-level controllers.

Remainder of the paper is organized as follows: Section 2 presents the generation-side transactive
frequency control. Section 3 develops the TCL demand response model. Section 4 adds the
battery storage system. Section 5 presents the 24-h simulations based on California ISO data.
Section 6 formulates and integrates the feedforward controller, and Section 7 summarizes the paper’s
key conclusions.

2. Generation-Side Transactive Frequency Control

In the traditional automatic generation control, the grid frequency is mainly regulated via a control
scheme called frequency droop control [7]. In this scheme, as shown in Figure 1, the frequency is
measured and scaled by a negative feedback gain called the droop constant. The scaled signal is then
fed into a low-pass filter to mitigate the feedback noise. The filtered signal is then used as the reference
position for the generator’s input valve to control the power output.
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Steam generators and grid frequency dynamics have been mainly modeled by simplified linear
dynamics in the automatic generation control literature [7,8]. Under the frequency droop control
scheme, multiple generators can be connected to the grid simultaneously in what is called a lumped
area dynamic model. In a large grid, a selected number of generators use an additional integral
controller to eliminate the error residuals.

2.1. Transactive Frequency Control

Frequency deviations in a power grid result from supply and demand imbalances. When the
demand is larger than the supply, the generators’ rotational speed slows down, resulting in a grid-wide
frequency drop from the nominal value. Contrarily, when the supply is larger, the generators speed up
and the grid frequency increases.

Generally, in a large power grid, the cost of electricity generation increases with the increase in
demand. This is mainly because more expensive generators have to be brought on to meet the added
demand. In addition, the locational marginal prices of electricity could grow significantly larger in
the event of transmission line congestion during peak hours. As the demand peaks, the generation
cost and the market price of electricity peak as well. In decentralized power networks, the wholesale
transactions are usually conducted in the day-ahead and the real-time markets [28]. In the day-ahead
market, the participants commit to sell or buy wholesale electricity a day before the operation based
on an approximate forecast of the demand. Additional adjustments are made in the real-time market
based on an improved forecast. The time scale of the real-time market can range from a few minutes
to up to an hour before the production. None of these markets address the frequency regulation,
which requires a much faster balancing action, i.e., every 2–4 s. The frequency control loop is carried
out based on the frequency feedback only, and the participants receive compensation based on a pre-set
frequency regulation market contract.

The goal of transactive frequency control in this paper is to demonstrate the possibility of using fast
economic transactions to regulate grid frequency. This requires a universal price signal to be generated
and broadcasted to all participants every few seconds. When the price is high, the generators will
ramp up their production to gain as much economic benefit as possible, and the demand-side resources
would cut their consumption. This would result in a downward frequency trajectory. When the price
is low, the price-responsive loads and energy storage systems would take the advantage and increase
the demand while the generators will reduce their production, leading to an upward frequency drift.
Therefore, the price can be tied to frequency through a continuous antisymmetric function as follows:

Prp.u.(t) = f
(
Freqp.u.(t)

)
f (0) = 0 and f (x)

∣∣∣ f (x)∣∣∣ < 0 ∀x , 0
(1)

where Prp.u. and Freqp.u. represent the normalized deviations of electricity price and grid frequency

with respect to their nominal values in per unit (p.u.). For example, Freqp.u. =
(Freq−Freqnom)

Freqnom
.
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There are many possibilities for function f , such as a line, a third-order polynomial, a tangent
function (to explode the price), or even an arctangent or sigmoid function (to saturate the price).
These functions may create different effects on the price/frequency dynamics, but they behave similarly
near the nominal frequency. In this paper, we use a simple linear relation between the price and
frequency, similar to Reference [10], as follows:

Prp.u.(t) = −kpr Freqp.u.(t) (2)

where kpr is a constant positive gain to be tuned by trial and error or based on the conventional
frequency droop controller.

2.2. Power Generation Response to Price Variation

As discussed earlier, the cost and price of electricity is an increasing function of power demand in
large power grids with many generators connected. In small microgrids with one or more generators,
we can assume or enforce a similar trend to achieve a stable system behavior. In this paper, we adopt a
second-order polynomial for the power generation vs. price function:

Pgp.u. = aPr2
p.u. + bPrp.u. (3)

where Pgp.u. represents the generation output in p.u., and a and b are constants to be determined based
on the generator’s operating costs. In practice, the price and the generation output will be subject to
lower and upper bounds.

Figure 2 depicts the second-order polynomial used in this study to simulate generation behavior
vs. the electricity price. This polynomial has been tuned in such a way that for 50% drop in price
with respect to nominal, the power generation also drops by 50%, and for 100% increase in the price,
the power generation increases by 50%. It is important to note that any lower or higher order polynomial
can be used for this function as long as the closed-loop system maintains sufficient stability margins.
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2.3. Closed-Loop System Analysis

To demonstrate the transactive frequency control scheme, we use the same steam plant and grid
model in Figure 3. The frequency is converted to price using Equation (2) and fed into the generation
control unit. The polynomial in Equation (3) converts the price to a reference valve position, which is
then filtered and passed to the generator plant. The generator output will converge to the pre-filtered
signal at steady-state since both transfer functions on its path have a DC gain of 1.



Energies 2020, 13, 4771 6 of 23

Energies 2020, 13, x FOR PEER REVIEW 5 of 23 

 

where 𝑘𝑝𝑟  is a constant positive gain to be tuned by trial and error or based on  the conventional 

frequency droop controller. 

2.2. Power Generation Response to Price Variation 

As discussed earlier, the cost and price of electricity is an increasing function of power demand 

in large power grids with many generators connected. In small microgrids with one or more 

generators, we can assume or enforce a similar trend to achieve a stable system behavior. In this 

paper, we adopt a second-order polynomial for the power generation vs. price function: 

𝑃𝑔𝑝 .𝑢 . = 𝑎𝑃𝑟𝑝.𝑢 .
2 + 𝑏𝑃𝑟𝑝 .𝑢. (3) 

where 𝑃𝑔𝑝 .𝑢.  represents the generation output in p.u., and 𝑎 and 𝑏 are constants to be determined 

based on the generator’s operating costs. In practice, the price and the generation output will be 

subject to lower and upper bounds. 

Figure 2 depicts the second-order polynomial used in this study to simulate generation 

behavior vs. the electricity price. This polynomial has been tuned in such a way that for 50% drop in 

price with respect to nominal, the power generation also drops by 50%, and for 100% increase in the 

price, the power generation increases by 50%. It is important to note that any lower or higher order 

polynomial can be used for this function as long as the closed-loop system maintains sufficient 

stability margins. 

 

Figure 2. Steady-state power generation vs. e lectricity price. 

2.3. Closed-Loop System Analysis 

To demonstrate the transactive frequency control scheme, we use the same steam plant and 

grid model in Figure 3. The frequency is converted to price using Equation (2) and fed into the 

generation control unit. The polynomial in Equation (3) converts the price to a reference valve 

position, which is then filtered and passed to the generator plant. The generator output will 

converge to the pre-filtered signal at steady-state since both transfer functions on its path have a DC 

gain of 1. 

 

Figure 3. Transactive frequency droop control diagram. 

To analyze the stability of the closed-loop system with the nonlinear generation vs. price 

function, we can linearize it around a given frequency or  price point (e.g., 𝑃𝑟0 ), and use the slope of 

the line as the effective gain of the nonlinear block. The intercept of the linearized function does not 

Figure 3. Transactive frequency droop control diagram.

To analyze the stability of the closed-loop system with the nonlinear generation vs. price function,
we can linearize it around a given frequency or price point (e.g., Pr0), and use the slope of the line as
the effective gain of the nonlinear block. The intercept of the linearized function does not affect the
closed-loop stability around the linearized point since it can be treated as an exogenous input. Figure 4
depicts the equivalent linearized system diagram.
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The loop gain transfer function of the linearized system is given by:

L(s) =
kpr(2aPr0 + b)(FHPTRHs + 1)

(TGs + 1)(TCHTRHs2 + (TCH + TRH)s + 1)(Ms + D)
(4)

The characteristics equation of the closed-loop system (i.e., 1 + L(s) = 0) can then be derived as:

c4s4 + c3s3 + c2s2 + c1s + c0 = 0
c4 = TCH TRHM TG
c3 = TCH TRH(D TG + M) + (TCH + TRH)M TG
c2 = MTG + TCH TRHD + (TCH + TRH)(M + D TG)

c1 = M + (TCH + TRH + TG)D + kprFHPTRH(2aPr0 + b)
c0 = D + kpr(2aPr0 + b)

(5)

For a given set of parameter values, the roots of the characteristics equation can be evaluated
numerically or using the Routh-Hurwitz criterion to check the stability of the system. Alternatively,
one can investigate the stability margins of the closed-loop system using the Bode or Nyquist analysis
of L(s).

To demonstrate the stability of the system, we adopt the parameter values for the steam generator
and the grid frequency dynamics from Reference [7]. To assign a reasonable value for the frequency-price
gain, kpr, we match the transactive and the traditional droop controllers at the nominal price of Pr0 =

0 p.u. This would result in the equivalent value of kpr = 1/(bR). Table 1 summarizes the parameter
values adopted from Reference [7], as well as those obtained from the generation-price function, and the
resulting equivalent kpr value.
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Table 1. System parameters mainly adopted from Reference [7].

Parameter Value Parameter Value

M 10.0 s D 1.0

TRH 7.0 s R 0.05

TCH 0.3 s kpr 24

TG 0.2 s a −0.33

FHP 0.3 b 0.83

To evaluate the stability of the transactive controller, Figure 5 demonstrates the Bode diagram
of the linearized loop gain transfer function for the transactive controller in the price range of Pr0

@ [−1.0 1.0] p.u. As can be seen, in the worst-case scenario, when Pr0 = −1.0 p.u., the gain margin
of the closed-loop system is 16.7 dB, which is far away from instability. The phase margin of the
transactive controller is not affected by the price variation since there are no dynamic terms included
in the frequency-price relation or the generation-price function.
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2.4. Transactive Frequency Control Simulations

To provide a comparison between the conventional and the transactive frequency droop controllers,
we apply a ±10% step change in the demand. Figure 6 presents the resulting responses. As can be seen,
both controllers perform similarly in preventing the frequency to drift away from the nominal value.
Compared to the no control scenario, where the frequency deviates by about 0.1 p.u., both controllers
are able to maintain the frequency at around 0.005 p.u. at steady state, thanks to the droop constant
value of 0.05.

The conventional controller remains symmetric with respect to the direction of the demand
offset due to linearity of the system. However, the transactive controller exhibits a small amount
of asymmetricity in the frequency and power output responses due to the adopted nonlinear
generation-price function. The resulted electricity price signals from the transactive controller are shown
in Figure 6c. Despite the observed differences, the transactive controller provides a fairly comparable
response to the changes in the power demand. In addition, the transactive controller provides a useful
signal, i.e., the electricity price that can be used to control demand-side resources such as energy
storage devices and systems directly and autonomously. In the next section, we introduce the TCLs as
a well-known resource for price-based demand-side energy management for frequency regulation.
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3. Demand Response of Thermostatically Controlled Loads

One of the key advantages of the proposed transactive frequency control scheme is the ability to
directly incentivize price-responsive loads. TCLs are great candidates to be integrated with a grid-wide
transactive frequency control policy, thanks to their setpoint flexibility that provides a control over
their thermal storage capacity. In this paper, we adopt a widely used TCL model for air conditioners
(ACs) to demonstrate the synergistic integration of TCLs with the transactive frequency control scheme.
We assume that the AC thermostats have access to the real-time electricity price, either through a
communication network like internet or via local frequency measurement and conversion to price in
accordance with a prior grid-wide agreement. We also assume that thermostats are allowed to move
the setpoint temperature smoothly and continuously within a limited range specified by the user.

3.1. Aggregate AC Load Model

In this study, we use a first-order differential equation model to simulate the indoor temperature
dynamics of TCLs as follows [14,28]:

.
Ti =

1
CiRi

(T∞ − Ti − si(t)RiQi), i = 1, 2, . . . , NAC (6)
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where i is the load index, T is the indoor temperature, T∞ is the ambient temperature, C represents the
thermal capacity and R is the thermal resistance of the building, Q is the energy transfer rate, and s
represents the switching control logic imposed by the thermostat:

si(t) =


0, i f si(t− ε) = 1 and Ti(t) ≤ Tmin,i
1, i f si(t− ε) = 0 and Ti(t) ≥ Tmax,i
si(t− ε), otherwise

(7)

where ε is an infinitesimal time step, and Tmin and Tmax represent the thermostat’s lower and upper
dead-band limits, respectively. These variables are related to the setpoint temperature (Tsp) and the
thermostat’s dead-band range, δdb.

Tmin,i = Tsp,i −
δdb
2

, Tmax,i = Tsp,i +
δdb
2

(8)

The aggregate AC power can be calculated by adding the individual AC power demands adjusted
by their respective coefficient of performance, ηc:

PAgg(t) =
NAC∑
i=1

si
Qi

ηci
(9)

In this study, we assume that each thermostat is able to offset the user-specified setpoint temperature
up or down, continuously, within a limited range:

Tsp,i(t) = Tsp0,i + ∆Tsp,i(t),
∣∣∣∆Tsp,i(t)

∣∣∣ ≤ ∆Tmax,i (10)

where Tsp0 is the user-specified setpoint temperature, ∆Tsp is the temperature offset, and ∆Tmax is the
maximum allowed setpoint temperature deviation.

In this study, we used Simulink to simulate the aggregate AC system model, as shown in Figure 7.
All the parameters and signals have been vectorized to facilitate the model development and simulation.
The AC temperatures are initialized inside the integrator, and a custom relay function is developed
based on Equation (7) to allow arbitrary initial values for the switching state, s. The parameters
of the system are adopted from Reference [14] and given in Table 2. The table also contains the
relative standard deviation of the parameters used to create a realistic population from normal
(Gaussian) distributions.
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Table 2. System parameters adopted from Reference [14].

Parameter Mean Value Unit Rel. Stand. Deviation

R, Thermal Resistance 2 ◦C/kW 0.1

C, Thermal Capacitance 10 kWh/◦C 0.1

ηc, Coefficient of
Performance 2.5 - 0.0

δdb, Thermostat
Deadband 0.5 ◦C 0.0

Q, Energy Transfer Rate 14 kW 0.1

To simulate the aggregate system response, a 24-h ambient temperature profile is created based
on temperature data for the city of San Jose, California, in a warm summer day. The number of loads
(NAC) is set to be 5000 to create a smooth aggregate response. The setpoint temperatures are distributed
normally with 20.0 ◦C mean value and 10% relative standard deviation. The system is simulated first
with temperatures initially set to be the same as the initial ambient temperature. The simulation is then
repeated by setting the initial temperature values same as the final temperature values from the first
run. This would represent a more realistic simulation, as the initial temperatures are dependent on the
historical ambient temperature trajectory and the user setpoints.

Figure 8 shows the simulation result, with the ambient temperature, aggregate AC power,
and 5 sample indoor temperature trajectories with different setpoint values being plotted. As can be
seen, the average AC power follows the ambient temperature with a small time delay. During peak
time, the average AC power reaches to around 45% of the maximum potential power the ACs can
demand (2.5 kW vs. 5.6 kW max power per AC unit). This is because of the fact that the loads turn on
and off at different times due to different initial conditions and thermal properties, as seen from the
sample indoor trajectories. From the individual temperature trajectories, we can see that the lower the
setpoint temperature, the higher the AC activity.Energies 2020, 13, x FOR PEER REVIEW 10 of 23 
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3.2. AC Price Response Controller

The aggregate power demand response of TCLs to setpoint input is similar to that of a linear
underdamped second-order system [29]. Both linear and nonlinear controllers have been used to
achieve power tracking and frequency regulation [29–33]. Most of these controllers have a common
element of using an integral controller. For frequency control, adding a proportional term may be
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necessary to deal with the added grid frequency dynamics. Therefore, we propose using a simple
proportional-integral (PI) controller to adjust the AC setpoints using real-time price signal:

∆Tsp(t) = kpPrp.u.(t) + ki

∫ t

0
Proj∆Tsp

[
Prp.u.(τ)

]
dτ (11)

where kp and ki are the proportional and integral gains, and Proj∆Tsp
is an integrator anti-windup

operator defined as:

Proj∆Tsp

[
Prp.u.

]
=


0 i f ∆Tsp ≥ ∆Tmax and Prp.u. > 0
0 i f ∆Tsp ≤ −∆Tmax and Prp.u. < 0
Prp.u. otherwise

(12)

Based on the proposed PI controller, when the price (or frequency) rises above the nominal value,
the setpoint temperature would increase, thereby decreasing the power demand in the cooling mode.
During the cold season, when the ACs are used for heating, we can use the same PI controller with a
flipped price signal sign to achieve the same balancing effect. Each AC may have different response
sensitivity and setpoint flexibility range (i.e., different kp, ki, and ∆Tmax values) set by the user. However,
for an effective overall control performance, these parameters must be kept within a certain range.
For the simulations of this study, we use the same PI controller and temperature limit for all the TCLs.

The block diagram of the integrated demand-side and generation-side transactive frequency
control system is shown in Figure 9. The PI controller receives the price signal and determines the
change in the setpoint temperature of the TCLs according to Equation (11). In practice, the PI controller
computations can be done within each thermostat through sensing the frequency, conversion to price,
and then adjustment of the setpoint temperature.Energies 2020, 13, x FOR PEER REVIEW 11 of 23 
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To evaluate the proposed transactive TCL control scheme, we first disconnect the steam plant
from the simulation model and run the TCL-based control only. Then, we evaluate the integrated
system. The ambient temperature is kept at the constant value of 30 ◦C during this simulation, and the
controller’s proportional and integral gains are obtained by a trial and error process and set to 0.2 and
0.0002, respectively. Larger control gains may improve the system’s response time, but they could also
trigger the internal dynamics of the aggregated system. To convert the aggregate AC power to the p.u.
system, we divide it by the total number of ACs multiplied by the maximum power of each AC, i.e.,
5000 × 5.6 W = 28,000 W.

Figure 10 summarizes the TCL simulation for controlling the frequency when there is a ±10% step
change in the load. We compare 4 different cases: No control; proportional (P) control only; integral (I)
control only; and PI control. As can be seen, the 10% step load results in around 10% offset in the
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frequency in the absence of any control action. The integral controller is able to revive the frequency to
a great extent, but very slowly and with a lot of steady-state fluctuations. These fluctuations mainly
result from the randomness infused in the TCL population. The proportional controller acts quickly to
stabilize the frequency at the beginning but drifts away over time. The PI controller provides the most
stable performance by acting quickly through its proportional channel and maintaining the frequency
at a steady level through its integrator.Energies 2020, 13, x FOR PEER REVIEW 12 of 23 
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From the resulting setpoint offset trajectories in Figure 10, we can see that there is a steady
temperature drift over time after the initial transient period in all cases with active control. This drift
would continue until reaching the limit set by the user unless the supply and demand imbalance
is mitigated by other resources. This implies that the frequency control by TCLs during power
imbalance periods is subject to capacity limits, as with any energy storage system. Similar to the
previous simulations, there are asymmetricities in the frequency and temperature responses between
the step-up/down scenarios because of the nonlinearity of the price-generation function.

To evaluate the combined effects of demand-side and generation-side frequency control,
we compare three cases: TCL control only; generation-side control only; and the combined control.
Figure 11 summarizes this comparison, indicating that the generation-side controller provides a much
faster and a more steady response compared to the TCL demand response alone. The integrated
system, however, provides an even faster response with a smaller frequency deviation, as expected.
Besides, the TCL setpoint temperature drift is slowed down because of burden sharing between the
two resources.
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In the next section, we further extend the transactive frequency control study by adding a battery
storage component to the system.

4. Energy Storage

Transactive frequency control provides a unique opportunity to engage batteries for active
participation in frequency regulation. In this section, an equivalent-circuit battery cell model is used
and scaled up to capture the main energy storage and transient dynamics of electrochemical batteries
connected to the grid. A multi-level control algorithm is then developed to operate the battery within
its safe constraints in response to the real-time electricity price signal.

4.1. Battery System Model

The battery system model adopted in this paper is based on a widely used equivalent circuit
model shown in Figure 12 [34]. The system’s state equations are given by:

.
SOC(t) = ηe

1
Q I(t)

.
Vd(t) = − 1

RdCd
Vd(t) + 1

Cd
I(t)

(13)

where SOC stands for the battery state-of-charge, ηe represents coulombic efficiency, Q is the charge
capacity, I is the charging current, Vd represents the diffusion voltage, and Rd and Cd are the diffusion
resistance and capacitance, respectively. The battery terminal voltage is given by:

V(t) = Voc(SOC(t)) + Vd(t) + R0I(t) (14)

where Voc is the SOC-dependent open-circuit voltage, and R0 is the internal resistance of the battery.
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The block diagram of the system is shown in Figure 13. A function block is used to create the
nonlinear SOC-dependent open-circuit voltage relation. The battery power is calculated by multiplying
the input current by the terminal voltage as shown in the diagram.

To scale the battery cell’s power to the grid level represented in p.u., we can divide the cell power
by the maximum allowed cell power and multiply by the maximum grid-level power in p.u., as follows:

Pb,p.u.(t) = Pcell(t)
Pbmax,p.u.

Pcell, max
(15)

where Pbmax,p.u. represents the maximum battery power seen by the grid (e.g., 0.1 p.u.) and Pcell,max
stands for the maximum allowed cell power (e.g., 7.2 w).

It is important to note that there is round-trip efficiency loss in the battery due to electrical energy
losses in resistors R0 and Rd. Additional losses due to the power electronic circuits have been ignored
in this study, but can be accounted for by increasing R0 accordingly.
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4.2. Transactive Battery Management System

The transactive battery power control is done in two steps: First, we obtain the desired amount
of battery power based on the real-time electricity price signal. Then, we command it to the battery
controller which delivers the desired power, as long as the battery power and SOC remain within
specified limits.

A quadratic relation is proposed here to relate the desired battery power to the electricity price
function as follows:

Pbdes,p.u.(t) =

 −min
{
η Pr2

p.u.(t), Pbmax,p.u.

}
, Prp.u.(t) ≥ 0

min
{
η Pr2

p.u.(t), Pbmax,p.u.

}
, Prp.u.(t) < 0

(16)

where η is a constant positive parameter for tuning the battery system’s sensitivity to the price signal.
Figure 14 demonstrates this function for the different values of η in the range of 0.5 to 10. Based on
this relation, the battery discharges to the grid when the price rises above the nominal value (i.e.,
0 p.u.) and charges from the grid when the price drops below the nominal value. The battery
charging/discharging power increases quadratically as the price deviates from zero until it hits the
maximum limit, beyond which the desired power remains constant. There is a nearly flat region
around the nominal price, where the battery’s activity is marginalized. The larger η, the narrower the
flat region and the higher the sensitivity of the desired power to the price signal.
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It is important to note that the price function can be replaced with other similar functions such as
a linear relation subject to a dead-zone region or a third-order polynomial. It can be shown that the
proposed function would not impact the stability of the grid’s frequency dynamics as long as it remains
continuous and non-increasing with respect to price. It is also important to note that the nominal price
is subject to changes due to significant energy price fluctuations over time. A slowly changing moving
average of the electricity price may be a good representative of the nominal price.

Once the desired battery power is determined in p.u., it can be converted to cell-level power using
the inverse of the conversion factor used in Equation (15):

Pcell,des(t) = Pbdes,p.u.(t)
Pcell, max

Pbmax,p.u.
(17)

We can further impose the SOC constraints by limiting the charging and discharging power
through a pair of scaling factors as follows:

Pcell,cmd(t) =

 min
{
Pcell,des(t), αcPcell, max

}
Pcell,des(t) ≥ 0

max
{
Pcell,des(t),−αdPcell, max

}
Pcell,des(t) < 0

(18)

where Pcell,cmd is the final commanded cell power applied to the battery cell, and αc and αd are the
SOC-dependent power constraint factors during charging and discharging, defined as:

αc(SOC) =


0 SOC ≥ SOCmax

(SOCmax − SOC)/δ SOCmax − δ < SOC < SOCmax

1 SOC ≤ SOCmax − δ
(19)

αd(SOC) =


0 SOC ≥ SOCmin
(SOC− SOCmin)/δ SOCmin < SOC < SOCmin + δ
1 SOC ≥ SOCmin + δ

(20)

where SOCmin and SOCmax are the lower and upper SOC limits, respectively, and δ determines the
SOC range within which the battery power slows down near the lower or upper limit. Figure 15 shows
the shape of αc and αd for the admissible SOC range of 0.1–0.9 and δ value of 0.1.
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Figure 15. Battery power limiting coefficients for charging and discharging.

Once the commanded cell power is calculated via Equations (18)–(20), the input current can be
determined by dividing the power by the measured cell voltage.

The proposed logic ensures a smooth operation of the battery within desirable SOC and power
limits. Additional safety measures can be taken in a similar fashion to protect the battery based on
voltage and temperature limits if necessary.

4.3. Transactive Battery-Grid System Simulation

Figure 16 shows the block diagram of the transactive frequency control system with AGC, AC,
and battery storage. The battery management block contains the algorithms and procedures discussed
in the previous section. It receives the electricity price, battery SOC, and battery voltage as inputs,
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and outputs the commanded cell current. To avoid algebraic loop in the simulation, a one-time-step
delay is applied in the voltage feedback path. For the simulations of this study, the parameters and
the open-circuit voltage curve of the battery model are adopted from Reference [34]. The maximum
battery power is set to be 0.1 p.u., and the maximum cell current is set to ±1C, corresponding to full
charging and full discharging within 1 h. This would create the storage capacity that can address
nearly 8% of the grid’s demand for about 1 h if the batteries are fully charged. Note that the battery
system will always have an unused 20% capacity (approximately, 2% of the grid load) due to the
imposed SOC constraints.Energies 2020, 13, x FOR PEER REVIEW 16 of 23 
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The first simulation of this section looks into the grid’s frequency when only the battery is
responsible for the grid’s frequency regulation. The generator is disconnected from the grid, and the
AC system’s demand response controller is turned off, making it a passive load on the grid. The battery’s
initial SOC for this simulation is set to 0.5. A 10% step load is applied after 5 minutes. The simulation
results are shown in Figure 17 for the different values of parameter η. As can be seen, the battery is
able to maintain the grid frequency near the nominal value as long as the SOC is above 0.2. Once the
SOC drops in the δ range, i.e., below 0.2, after about 20 minutes, the battery slows down discharging,
and the frequency is dropped to near the uncontrolled level of -0.1 p.u. when SOC reaches the lower
limit of 0.1. The larger the value of η, the more aggressive the battery discharging, and the higher
the initial frequency control performance. However, the battery provides a shorter response due to
capacity limitation. In practice, this gain must be tuned to provide the maximum economic return
from the daily price fluctuations on the grid.

The second simulation of this section explores the integrated system when all the components
discussed previously are actively responding to the electricity price signal. Figure 18 compares the
three cases of AGC only, AGC plus AC demand response, and all the three systems together, for the
case of 10% step increase in the load. As can be seen, the addition of battery provides a significant
improvement to the grid’s transient response. This is mainly due to the battery’s instantaneous
response to price variation, which prevents the frequency from dipping significantly. There is a small
improvement in the steady-state response of the system as well. However, the battery’s share of
steady-state power contribution is only about 15%, which is the smallest among the three systems for
this particular simulation.
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Figure 18. Response of generator, AC, and battery system to 10% step increase in load.

To further evaluate the overall system’s performance under real loading conditions, we study a
set of 24-h period simulations with real power demand and renewable energy data.

5. Daily Grid Simulations

In this section, we use the California Independent System Operator (CAISO) data to obtain sample
grid demand and renewable power profiles for a full daily cycle simulation. The data for the same
day as that of the ambient temperature shown in Figure 8 is used for consistency. To separate the
aggregate AC power from the total grid demand, we first divide the grid demand by its maximum
value to convert it in the p.u. scale, and then subtract the open-loop aggregate AC power to get the
base demand trajectory. Figure 19 shows the different power trajectories including the renewable
power for a 30-hour time period.
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Figure 19. Total grid demand and renewable power obtained from the California Independent
System Operator (CAISO), as well as the aggregate AC power and computed base demand for a daily
cycle simulation.

To start the simulation from an equilibrium condition and near the nominal price, we set the
simulation start time to 2 a.m., where the net demand (grid demand minus renewable power) is near
its mid-point. The battery control parameter η is tuned in such a way that the battery’s main charging
and discharging events occur during price valley and peak periods. To achieve this goal, we use two
different values for η, one for charging (ηcharge = 0.85) and another for discharging (ηdischarge = 0.45),
obtained based on trial and error for this particular simulation. The AC demand response controller’s
parameters are kept the same as before (kp = 0.2 and ki = 0.0002) since they result in a reasonable
setpoint temperature variation, i.e., around 1 ◦C during the simulation period.

We perform the simulation for three scenarios: Controlling the grid frequency with transactive
controller using (i) AGC only, (ii) AGC with AC demand response, and (iii) AGC with AC and battery
demand response. Figure 20 provides a comparison among the three scenarios. We observe that
adding AC demand response significantly reduces the frequency deviation, peak demand, and peak
price. The AC demand is shifted to the left to avoid the peak price period. This is an effect known
as pre-cooling, which is produced by the proposed transactive control framework, automatically.
Adding the battery further reduces the peak demand. However, its contribution is smaller than AC
demand response due to the small storage capacity considered in the simulation. The battery also
fills the demand valley, making the overall load profile more uniform. The net change in frequency is
0.0207 p.u. for the case of AGC only, 0.0148 p.u. for the case of AGC plus AC, and 0.0134 when all
three systems are active. Therefore, the total frequency deviation improves by 29% through the AC
demand response, and by another 7% when the battery is included. Similar improvement percentages
are obtained for the price and net demand trajectories.
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To further demonstrate the AC system’s demand response, Figure 21 shows the setpoint offset
for the 3 different scenarios. As can be seen, the net setpoint temperature change for the duration of
the simulation is around 1 ◦C, which indicates a small but manageable compromise in the building
occupants’ comfort as a result of the demand response operation. In return, the average AC energy
cost is reduced by 13% as also shown in Figure 21. The addition of the battery further reduces the
energy cost by 0.5% for the ACs.
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Figure 21. AC setpoint temperature offset and energy cost trajectories during the daily cycle simulation.

The battery power, SOC, and economic profit are shown in Figure 22. The peak charging power
coincides with the net demand valley between 8–9 a.m., and the peak discharging power coincides with
the net demand peak as expected. The maximum charging power is around 0.02 p.u., which corresponds
to 0.2 C, and the discharging power is around 0.15 C. The SOC trajectory remains within the 10–90%
range as a result of active constraint control scheme developed in the previous section. The net 24-h
profit is around 2 cents per kWh of energy storage capacity. This amount can be larger or smaller
depending on the daily price variation. In practice, the price variations could be significantly larger
than that in this simulation during certain high-demand periods. As discussed in the previous section,
battery can also mitigate transient frequency fluctuations during contingencies.
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The simulations of this section indicate the effectiveness of the proposed transactive frequency
control and demand response algorithms. One of the shortfalls of this method is the considerable
frequency deviation from the nominal value during the day, which is the main driving factor for
creating the price differential required for the transactive controller and demand response operations
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to work. In the next section, we propose a modified control strategy that can resolve the frequency
deviation problem while maintaining the necessary price differential factor.

6. Feedforward Price Broadcast for Frequency Error Suppression

To attenuate frequency deviation despite the variation of electricity price, the grid operator can
broadcast a feedforward price signal based on the measured instantaneous demand, and the electricity
cost function parameters provided by the generator. The feedforward price signal is a function of the
grid’s net demand and is calculated as:

Pr f f ,p.u. =
−b +

√
b2 + 4aDnet,p.u.

2a
(21)

where a and b are the price function coefficients from Equation (3), and Dnet,p.u. is the net demand
measured by the grid. The feedforward price can be fed into the control loop as follows:

Prp.u.(t) = Pr f f ,p.u.(t) − kpr Freqp.u.(t) (22)

where kpr is the same feedback gain used previously in Equation (2). This modification will significantly
decouple frequency from the price, thereby allowing the price to move up and down freely while the
frequency remains near its nominal point.

The impacts of the feedforward price broadcast addition are shown in Figure 23 for the case of
having all three systems (i.e., AGC, AC, and battery) actively responding to the price signal. As can be
seen, the frequency variation drops to near 0, while all the other trajectories remain nearly the same as
before. This simulation proves the importance of the feedforward price broadcast if the frequency
deviation has to be maintained within a narrow range.
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Figure 23. Transactive frequency control with feedforward price broadcast.

Since the feedforward price is dependent on the net grid demand, there may be a measurement
and communication time delay. Besides, the price signal may be broadcast at much slower intervals
than the frequency control loop. Therefore, it is reasonable to investigate the impacts of such time
delays on the grid frequency. Figure 24 compares the three levels of broadcast delays on the frequency:
No time delay; 1-min demand averaging and broadcast intervals; and 5-min intervals. The time delay
involved in averaging and broadcast is clearly creating chatter in the frequency signal. The longer
the delay, the larger is the chatter. Nonetheless, the maximum frequency deviation remains within
a small range, i.e., around 0.05% and 0.2% with 1 min and 5 min broadcast intervals, respectively.
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Without any feedforward price information, the maximum frequency deviation is around 0.7% as
depicted in Figure 23.
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7. Conclusions

In this paper, a transactive controller was proposed to simultaneously manage grid frequency
and demand response resources via a universal electricity price signal. The price can be related to
grid frequency and measured locally by the generators and loads, or broadcast via a communication
infrastructure to all entities. A frequency droop controller was adopted from the conventional automatic
generation control framework to build a simulation model. To incorporate a demand response capacity,
a population of thermostatically controlled air conditioning (AC) loads was added to the grid. The loads
were assumed to have flexible setpoint temperatures that can be adjusted continuously based on the
price signal. A PI controller was used to control the AC system’s response. To capture energy arbitrage
dynamics on the grid, an equivalent-circuit battery model was adopted. A nonlinear control scheme
was developed for the battery to provide appropriate charging and discharging cycles in accordance
with the price signal.

Simulation results indicate that the transactive frequency controller can lead to similar results to
the conventional frequency droop controller. Besides, it can directly invite the AC loads and energy
storage resources to actively participate in the power balancing effort. The AC demand response
reduces the steady-state frequency deviation, and the battery system improves the transient response
in the event of contingencies. During the daily operation, the ACs reduce the peak demand and the
battery fills the demand valley, thereby creating a more uniform load profile. To minimize frequency
deviation, a feedforward price broadcast strategy was implemented. The feedforward price can
significantly reduce the frequency deviations, particularly when it is computed and broadcast promptly,
leading to a transactive control system suitable for modern power grids.
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