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Abstract: The subject of this paper is gains selection of an extended induction machine speed
observer. A high number of gains makes manual gains selection difficult and due to nonlinear
equations of the observer, well-known methods of gains selection for linear systems cannot be applied.
A method based on genetic algorithms has been proposed instead. Such an approach requires multiple
fitness function calls; therefore, using a quality index based on simulations makes gains selection a
time-consuming process. To find a fitness function that evaluates, in a short time, quality indices
based on poles placement have been proposed. As the observer is nonlinear, equations describing the
observer dynamics have been linearized. The relationship between poles placement and real dynamic
properties has been shown. A series of studies has been performed to investigate the influence of the
operating point of the machine on the dynamics of the observer. It has been proven that rotor speed
has a significant impact on the placement of the poles and the observer may lose stability after a
rotation direction change. A method of gains modification to maintain symmetrical properties of the
observer for both directions has been presented. Experimental studies of the observer during machine
reverse in the open and closed-loop control system have been performed. The results show that the
observer can be implemented in a sensorless drive, using the proposed gains selection method.

Keywords: speed observer; induction machine; gains selection; genetic algorithm; stability

1. Introduction

The availability and low price of digital signal processors and microcontrollers have increased
interest in the development of controlled electric drives over recent decades. Although less common
motor types, like piezoelectric motors [1,2], are still being improved, AC electric motors remain the
most popular electric machines. Induction machine-based electric drives are one of the most commonly
used drives in the industry. They owe their popularity to the simplicity of mechanical construction,
low price and reliability. Development of new control methods makes asynchronous machines to
provide good dynamic properties. Modern control systems [3–6] require rotor speed and flux as
feedback. Flux is not an easily measurable quantity, therefore, flux observers are usually implemented
to estimate its value. Rotor speed can be measured using e.g., optical encoder. Such a device may be
troublesome to mount on the rotor shaft and may have a significant cost share of the drive, especially
in the case of low power drives. Rotor speed measurement can be avoided by using a speed observer
in sensorless drives.

Induction machines are commonly used as generators in wind turbines and micro hydro
installations or as motors (that operate as generators during energy recovery) in electric vehicles.
Such applications require advanced control systems where state estimation is necessary. Additionally,
speed estimation implementation can be used as a backup source of rotor speed information in case
of measurement device malfunctions that may have great significance e.g., in electrically powered
rail vehicles. Alternatively, speed measurement can be completely omitted for the purpose of the
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control system reducing the cost of the electric drive, especially in the case of low power wind turbines,
micro hydro plants or vehicles (like electric scooters or bikes). Since modern control systems rely on
estimated variables, features like dynamic properties or efficiency of the drive rely on the implemented
observer quality.

Among the most common induction machine speed estimation techniques, the following main
groups can be distinguished: Model Reference Adaptive Systems (MRAS) [7,8], Adaptive Flux
Observers (AFO) [9–11], Sliding Mode observers [12,13], Artificial Intelligence estimators [14–16],
Kalman filters [17–19], backstepping observers [20,21]. The subject of studies presented in this paper is
an observer proposed by Krzemiński in [22] which finally evolved into [23]. This is a proportional
Luenberger observer based on an extended induction machine mathematical model. Model parameter
robustness as well as good properties at a wide rotor speed range, including low speed, are the main
benefits of the Luenberger based observers. Their complexity is low therefore such observers can be
easily implemented on modern microcontrollers, compared to e.g., Extended Kalman Filter which
requires matrix product and inverse [24,25]. Successful estimation depends on proper gains selection.
In the case of the analyzed observer, 12 gains need to be adjusted. A high number of gains makes
manual selection very challenging; therefore, a more efficient method needs to be applied.

Sections 2 and 3 introduce the extended machine model and the observer proposed by its author
in [23]. The rest of the paper addresses the gains selection problem and analysis of estimation
quality based on simulation and real experiments. An extended machine model is a nonlinear object,
hence an observer based on this model is nonlinear as well, and well-known methods of analytical
gains selection [26] cannot be used. Heuristic methods, like Genetic Algorithms or Particle Swarm
Optimization [26–28], can be used instead. Since worldwide literature does not describe methods
of gains selection of an analyzed observer, the main goal of the paper is to propose an automated
and time-efficient method of gains selection of the observer. For that purpose, a linearized system of
equations describing dynamics of the observer error has been proposed. A series of simulation and
experimental studies have been performed to verify that the observer, with gains acquired through
the proposed method, can be applied for the machine operating as both a motor and a generator.
Additionally, a lack of symmetry of the observer after rotation direction change has been proven as
well as a method of gains modification to maintain that symmetry has been explained.

2. Dynamic Model of Induction Machine

Squirrel cage induction machine mathematical model can be expressed with the following dynamic
vector equations:

dψs
dt + Rsis = us

dψr
dt − jωrψr + Rrir = 0

, (1)

and two algebraic vector equations:

ψs = Lsis + Lmir
ψr = Lrir + Lmis

}
, (2)

where denotes vector quantity, ωr is rotor speed, ψs and ψr are stator and rotor flux, is and ir are
stator and rotor current, us is stator voltage, Rs and Rr are stator and rotor winding resistances, Lm, Ls

and Lr are magnetizing, stator and rotor inductances.
For the purpose of the observer design, stator current and rotor flux are chosen as the state

variables. In a sensorless system, usually the only measured variable, besides known stator voltage,
is stator current. Therefore, the only corrective feedback to compensate the observer errors can be
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applied from stator current. As a consequence, a mathematical model with stator current and rotor
flux as state variables has been selected. Transformed Equation sets (1), (2) have the following form:

dis
dt = a1is + a2ψr + ja3ωrψr + a4us

dψr
dt = a5is + a6ψr + jωrψr

, (3)

where a1–a6 are constant coefficients and depend on machine parameters:

a1 = −
RsL2

r + RrL2
m

wLr
, a2 =

RrLm

wLr
, a3 = −

Lm

w
, a4 =

Lr

w
, a5 =

RrLm

Lr
, a6 = −

Rr

Lr
, w = LsLr − L2

m. (4)

Extended speed observer proposed in [23] is based on an extended induction machine model
where new variable ζ, defined below, has been introduced:

ζ = ωrψr. (5)

Replacing the expression on the right side of (5) with variable ζ in Equation (3) leads to the
following equations:

dis
dt = a1is + a2ψr + ja3ζ+ a4us

dψr
dt = a5is + a6ψr + jζ

. (6)

The equation that describes the dynamics of variable ζ can be obtained by computing a derivative
of (5):

dζ
dt

=
dωr

dt
ψr +ωr

dψr
dt

. (7)

Substituting the second equation from (6) into (7) yields the final equation of the extended
induction machine mathematical model:

dζ
dt

=
dωr

dt
ψr + a5ωris + a6ζ+ jωrζ. (8)

The rotor speed can be computed based on the state variables of the extended model. Transforming
Equation (5) leads to the following scalar formula:

ωr =
ψrxζx +ψryζy

ψ2
r

, (9)

where ψr is the length of the rotor flux vector and x,y suffixes denote compounds of the vectors in any
reference frame.

3. Extended Speed Observer

The extended speed observer is based on the extended induction machine model presented above
and formed from Equations (6) and (8). It is worth noting that Equation (8) contains a rotor speed
derivative. As rotor speed is a quantity that changes significantly slower than other variables of the
model, e.g., the compounds of the vectors, and in steady-state it is constant, the term containing rotor
speed derivative is omitted in the equations of the observer. Any estimation errors that are a result
of this simplification are compensated by corrective feedbacks of the observer. The equations of the
observer are presented below [23]:

dîs
dt = a1 îs + a2ψ̂r + ja3ζ̂+ a4us + k11ζ̃+ jk12ζ̃+ k13̃is + jk14̃is

dψ̂r
dt = a5 îs + a6ψ̂r + jζ̂+ k21ζ̃+ jk22ζ̃+ k23̃is + jk24̃is

dζ̂
dt = a5ω̂r îs + a6ζ̂+ jω̂rζ̂+ k31ζ̃+ jk32ζ̃+ k33̃is + jk34̃is

, (10)
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where ˆ means estimated variables,̃ denotes corrective feedback and k11–k34 are observer gains.
The estimated rotor speed can be expressed with the transformed Equation (9):

ω̂r =
ψ̂rxζ̂x + ψ̂ryζ̂y

ψ̂2
r

. (11)

The stator current is a measured quantity. Thus, the estimation error of this variable can be
expressed as a difference between an estimated value and the real value:

ĩs = îs − is. (12)

Due to estimation errors, estimated ζ may deviate from the product of estimated rotor speed and
rotor flux, as per definition (5). Therefore, additional corrective feedback has been defined as follows:

ζ̃ = ζ̂− ω̂rψ̂r. (13)

Equations of the observer (10) have the following form:

.

x̂ = f
(
x̂, ω̂r, us

)
+ Ke, (14)

where f are the functions on the right side of the extended induction machine model Equations (6) and
(8) and Ke is a corrective feedback, where:

x̂ =
[

îs ψ̂r ζ̂
]T

=
[

îsx îsy ψ̂rx ψ̂ry ζ̂x ζ̂y
]T

, (15)

e=
[
ζ̂ îs

]T
=

[
ζ̃x ζ̃y ĩsx ĩsy

]T
, (16)

K =


k11 jk12 k13 jk14

k21 jk22 k23 jk24

k31 jk32 k33 jk34

. (17)

Using above notation, a block diagram of the analyzed observer can be presented as in Figure 1.
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Figure 1. Block diagram of the extended speed observer.

4. Dynamics of the Extended Speed Observer

The stability of the observer is assured by proper placement of the poles of the linearized observer.
Equations of the dynamics of errors of the observer are formed by substituting Equations of the model
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(6) from the first two equations of the observer (10). The third Equation from (10) that describes
dynamics of the additional variable remains unchanged as it is impossible to express estimated rotor
speed or rotor speed estimation error with ζ̃ defined in (13). The equations describing dynamics of the
observer errors have the following form:

d̃is
dt = a1̃is + a2ψ̃r + ja3(ζ̂−ωrψr) + k11ζ̃+ jk12ζ̃+ k13̃is + jk14̃is
dψ̃r
dt = a5̃is + a6ψ̃r + j(ζ̂−ωrψr) + k21ζ̃+ jk22ζ̃+ k23̃is + jk24̃is

dζ̂
dt = a5ω̂r(is + ĩs) + a6ζ̂+ jω̂rζ̂+ k31ζ̃+ jk32ζ̃+ k33̃is + jk34̃is

, (18)

where:

ω̂r =
(ψrx + ψ̃rx)ζ̂x + (ψry + ψ̃ry)ζ̂y

(ψrx + ψ̃rx)
2
+ (ψry + ψ̃ry)

2 , (19)

ζ̃ = ζ̂− ω̂r(ψr + ψ̃r). (20)

The linearized system (18) has the form of (21), where x and u are state variable and input
vectors respectively, * denotes values in an operating point and ∆x is the vector of deviations from the
operating point:

∆
.
x(t) ≈ A∆x(t), (21)

A =
∂ f (x, u)
∂x

∣∣∣∣∣∣ x = x∗

u = u∗

. (22)

It is expected that in a steady state, the observer estimates variables with no errors. Therefore, the
operating point asserts zero estimation error. This goal is achieved when the estimated ζ satisfies (5).
The operating point and vector of deviations from the operating point are defined as follows:

x∗ =
[

ĩ
∗

s ψ̃
∗

r ζ̂
∗

]T
=

[
0 0 ωrψr

]T
, (23)

∆x = x− x∗ =
[

ĩs − ĩ
∗

s ψ̃r − ψ̃
∗

r ζ̂− ζ̂
∗

]T
=

[
ĩs ψ̃r ∆ζ̂

]T
. (24)

A state matrix of the linearized system is presented in (26). The coefficients of the terms of the
linearized system depend on constant values, like observer gains, and on variables, like compounds
of the stator current or rotor flux vectors. As those compounds change sinusoidally in a stationary
reference frame, it is impossible to perform analysis of placement of the poles. For this reason, the
system (18) has been transformed to the rotor flux reference frame where d, q compounds of the rotor
flux vector meet the following conditions:

ψrd = ψr

ψrq = 0

}
. (25)
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The compounds of vectors in such a reference frame are constant in a steady state.
This transformation ensures constant values of elements of the state matrix and enables analysis of
placement of the poles.



a1 + k13 −k14 + a5
isq
ψrd

+ωr a2 k12ωr 0 −a3 − k12

k14 − a5
isq
ψrd
−ωr a1 + k13 0 a2 − k11ωr a3 k11

a5 + k23 −k24 a6 a5
isq
ψrd

+ωr + k22ωr 0 −1− k22

k24 a5 + k23 −(a5
isq
ψrd

+ωr) a6 − k21ωr 1 k21

k33 + a5ωr −k34 −ωra5
isd
ψrd

k32ωr a6 + a5
isd
ψrd

−k32 + a5
isq
ψrd

k34 k33 + a5ωr −ωra5
isd
ψrd
−ω2

r −k31ωr ωr a6 + k31


(26)

According to Lyapunov’s first method, all poles of a linearized system must be placed in the left
half of the s-plane (poles need to have a negative real part) to maintain stability. Elements of the state
matrix (26) depend on:

• Coefficients a1–a6 that depend on machines parameters (resistances and inductances);
• Observer gains k11–k34;
• Real values of the rotor speed and the compounds of the stator current and rotor flux vectors.

As can be seen above, the dynamic properties of the observer depend not only on the observer
gains but also on the operating point of the machine. In the rotor flux reference frame, compound ψrd
is equal to the rotor flux vector module. Stator current compounds in steady state depend on the rotor
flux vector module and torque T:

isd =
ψrd

Lm
, (27)

isq =
LrT

Lmψrd
. (28)

The rotor flux vector module is usually kept at a constant value, close to the nominal value, by the
control system, hence it can be treated as constant as well as coefficients a1–a6. Rotor speed and external
torque can change in a wide range, therefore during gains selection, it must be taken into account and
the conditions of the stability of the observer must be satisfied for all possible values of the rotor speed
and load torque.

5. Gains Selection Using a Genetic Algorithm

The dynamic properties of the extended speed observer depend on the gains of the observer.
Due to the high dimension number of the state matrix and its lack of symmetry, it is not possible to
perform analytical gains selections like in [26]. Usage of metaheuristic optimization algorithms, like
genetic algorithms, is proposed instead. The success of gains selection using such techniques depends
on proper fitness function definition.

During gains selection, multiple criteria can be considered, like stability or presence of oscillations
during transient states of the observer. Such a multiobjective optimization problem can be solved using
linear scalarization, where non-negative weights are assigned to each objective function. The goal of
the gains selection algorithm is to minimize the following function, that represents quality index:

f =
n∑

i=1

wi fi(λ), (29)

where n is the number of criteria, w is the vector of weights, λ is the vector of poles of the observer (30)
where σλ is the rate of decay and wλ is the frequency of oscillation:

λ = σλ ± iωλ. (30)
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The first objective is to place all poles outside of the restricted zone, in the left half of the s-plane,
to ensure stability. The observer, as it is run on a digital signal processor, is part of a discrete system.
Therefore, it is important that the rate of decay σλ of the poles is higher than the sampling period as
well as the frequency of oscillation ωλ is a few times lower than the sampling frequency. This expands
the restricted zone to exclude poles with big imaginary parts as well as with big negative real parts.
The objective function related to the restricted zone can be defined as a sum of functions defining
permissible real and imaginary parts for each of the poles:

f1 =
6∑

p=1

[
f1r(λp) + f1i(λp)

]
, (31)

where:

f1r =


−ar(σλ − σmax) i f σλ ≤ σmax

0 i f σmax < σλ < σmin
ars(σλ − σmin) i f σλ ≥ σmin

, (32)

f1i =

{
0 i f |ωλ|< ωmax

ai(
∣∣∣ωλ∣∣∣−ωmax) i f |ωλ|≥ ωmax

, (33)

where σmax < σmin and both are negative. The function returns zero if all of the poles are in the allowable
area. When the poles deflect from this zone, the returned value of the function rises linearly to facilitate
the optimization algorithm in relocating poles out of the restricted zone. Coefficients ar, ars, ai define
the slope of those functions. It is suggested that the σmin should be a small negative number, rather than
zero, to ensure that poles with small positive real part yield sufficiently high value of the objective
function and avoid marginal stability of the observer.

It is expected that the observer’s dynamic is faster than the object’s dynamic. It can be achieved
by placing poles of the observer far away on the left side from the imaginary axis. The settling time is
determined mainly by poles with the slowest rate of decay (the dominant poles). Therefore, the goal
is to place the dominant poles of the observer possibly far from the imaginary axis. The objective
function related to this criterion can be defined as the rate of decay (the real part) of the dominant pole:

f2 = max(σλ1, σλ2, . . . , σλ6). (34)

For a stable observer, the function returns a negative value. Lower values imply a faster
observer response.

The last objective, related to the dynamic properties of the observer, is to minimize oscillations in
the transient states of the observer. Such oscillations may have a negative impact on the control system
of the electric drive. A minimal value of the damping ratio of ξmin = 0.707 is assumed. A damping
ratio for a pair of poles is defined as:

ξ =

∣∣∣<[λ]
∣∣∣√

<2[λ] +=2[λ]
. (35)

The condition of the proposed minimal damping ratio is fulfilled if the distance of a pair of poles
from the imaginary axis is greater or equal to the distance from the real axis. An objective function
related to the damping ratio condition has the following form:

f3 =
6∑

p=1

{
f3a(λp) f3b(λp) i f −<[λp] <

∣∣∣=[λp]
∣∣∣

0 i f −<[λp] ≥
∣∣∣=[λp]

∣∣∣ , (36)
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where:

f3a(λ) =

√
2<[λ]√

<2[λ] +=2[λ]
+ 1, (37)

f3b(λ) = e−a(<[λ]
r −1), (38)

where r is a real part of the dominant poles.
Function f 3 returns 0 if sufficient dumping is ensured and a positive value otherwise. Function f 3a

returns zero if the distance of the pole to the imaginary axis is equal to the distance to the real axis (in
that case the damping ratio is equal to ξ = 0.707) and rises linearly with decreasing damping ratio.
The function returns 1 for a damping ratio equal to zero.

In the case of the analyzed observer, up to three pairs of conjugate poles can be present.
Oscillations related to the poles placed far on the left side of the s-plane have less impact on the
transient states of the observer than the damping ratio of the dominant poles. Therefore, function f 3b
has been introduced as a weighting factor which is equal to 1 for dominant poles and exponentially
falls to zero with a distance of the pair of poles from the dominant poles.

Measurement errors of known state variables can lead to estimation errors. High observer gains
may amplify those errors, therefore, objective function f 4 has been introduced in order to minimize the
values of the observer gains:

f4 =
∣∣∣k13

∣∣∣+∣∣∣k14
∣∣∣+∣∣∣k23

∣∣∣+∣∣∣k24
∣∣∣+∣∣∣k33

∣∣∣+∣∣∣k34
∣∣∣. (39)

Only gains that amplify stator current errors are subject to function f 4 as only those errors are
based on the measured values. Variable ζ̃, defined in (13), depends only on estimated variables,
therefore the remaining gains are not taken into account during gains minimization.

The form of fitness function (29) allows us to include all of the presented objectives with specific
weights. It is suggested to assign a significantly higher value to w1 (weight related to objective of
stability) than to other weights. In that case, for an unstable solution, the terms of the fitness function
related to the other objectives have negligibly low values and the priority is to satisfy stability conditions
first. When all of the poles are out of the restricted areas on the complex plane, function f 1 returns 0.
The gains are then tuned to minimize other objective functions.

Observer gains are real numbers; therefore, a real coded genetic algorithm has been used in
gains selection where a chromosome is represented by a vector of 12 gains. A tournament selection
is used, where the best individual from randomly chosen candidates is moved into the mating pool.
Offspring is created from individuals from the mating pool using a whole arithmetic crossover:

Kchild = αKa + (1− α)Kb, (40)

where Ka and Kb are parents from the mating pool, α~U(0,1) and U is a uniform random function.
New individuals may be subject to mutation algorithm. A non-uniform mutation method is used:

kmut =

{
k + ∆(g)(kmax − k) i f α ≥ 0.5
k− ∆(g)(k− kmin) i f α < 0.5

, (41)

where α is a random value between 0 and 1, kmut is mutated observer gain, k is the original value and
kmin, kmax are minimal and maximal values of the observer gains. Function ∆(g):

∆(g) = 1− β(1−
g

gmax )
b

, (42)

for β~U(0,1), returns a random value between 0 and 1 for the initial generation but with increasing
generation g its upper bound decreases to zero in the final generation gmax. Therefore, the impact of
mutation is lower in older generations. Larger values of coefficient b result in quicker annealing.
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6. Gains selection results

In the following studies, an induction machine, whose parameters are presented in Appendix A,
is considered. During gains selection, nominal values of the rotor speed, the rotor flux module and
torque are assumed. Figure 2 presents the fitness function value of the best individual in a function
of generation in 10 consecutive gains selection attempts for genetic algorithm and fitness function
parameters presented in Appendix B.Energies 2020, 13, x FOR PEER REVIEW 9 of 23 
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Negative fitness value means that all of the poles are placed in an acceptable area and the observer
is stable, whereas large positive values indicate lack of stability. As can be seen in Figure 2 all
individuals in the first generation yield positive fitness values greater than 1000. This means that none
of the few thousand randomly chosen gain sets guarantee the stability of the observer. However, in all
attempts of gains selection using the genetic algorithms, fitness value reached acceptable values in the
last generation, proving that heuristic methods can be successfully used to find solutions in such a
complex, multidimensional problem.

As was mentioned in Section 4, placement of the poles of the observer depends on the machine
parameters, observer gains and the operating point of the machine understood as the rotor speed,
module of the rotor flux and torque. Machine resistances and inductances do not vary significantly
and are assumed to be constant for the purpose of this paper. The only parameters of the state matrix
(26) that can change in a wide range are the rotor speed, the rotor flux and torque. This means that
the dynamic properties, including stability of the observer, depend on those variables. As the fitness
function describes the dynamic properties of the observer at a given operating point of the machine, the
impact of changes on the operating point of the machine must be investigated. Such a study has been
performed for a constant gains set, defined in Appendix C, which was selected using the proposed
algorithm for nominal values of the rotor speed, rotor flux module and torque.

The influence of rotor flux module on the placement of the poles of the observer has been presented
in Figure 3. The study has been performed for nominal rotor speed and load torque T = 0.35 (roughly
half of the nominal torque). As can be seen from the figure, poles remain almost constant, therefore
changes of the rotor flux module do not affect the observer dynamic properties.
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Figure 3. Poles placement of the observer in the function of the rotor flux module under nominal rotor
speed and torque T = 0.35.

Rotor flux is usually kept at a constant, close to nominal, value by a control system. It is possible
though to lower the rotor flux when the machine is not operating at full load in order to reduce the
core losses. The investigated observer can be used without any gains adjustment in such conditions.

Figure 4 presents the impact of torque changes on the placement of the poles of the observer.
The analysis has been performed under nominal rotor speed and rotor flux. In this case, positive values
of the torque mean that the machine is operating as a motor and negative values denote operation as a
generator. The figure shows that poles of the observer are not affected by changes of the load of the
machine regardless of the operation mode. Therefore, the same set of observer gains can be used at the
whole range of torque values.

As can be seen in Figure 5, rotor speed has a significant influence on the dynamics of the observer.
With lower speed, dominant poles of the observer move closer to the imaginary axis. Gains selection,
in this case, has been performed for the nominal speed, therefore poles are indeed placed in an
allowable area for this operating point. For small speeds though, dominant poles may even cross
the imaginary axis leading to instability of the observer. It is also worth noting that the analyzed
extended observer has different dynamic properties after changing the rotation direction. In this case,
the observer is not stable for negative values of the rotor speed.

To explain and possibly find a solution to observer properties asymmetry after rotation direction
change, the extended induction machine model symmetry is analyzed first. Vectors presented in the
first equation of the extended induction machine model (6) are shown in Figure 6. If the machine is
operating as a motor, stator current vector precedes rotor flux vector. In the case of positive rotation
speed (all vectors rotate counterclockwise), vector ζ coincides with the rotor flux, as by definition (5)
ζ is formed by multiplying rotor flux vector by a scalar rotor speed. Multiplication of a vector by
imaginary number j rotates the vector by +90 degrees, therefore vector jζ precedes rotor flux vector
by 90 degrees. In the case of a negative speed (all vectors rotate clockwise), vector ζ is formed by
multiplying rotor flux vector by a negative value, hence it has the opposite direction to the rotor flux
vector. Rotated vector ζ (jζ) again precedes the rotor flux vector by 90 degrees. Terms on the right side
of the first equation of the extended induction machine model are formed by multiplying black vectors
presented in the figure by a constant value that only scales the length of the vector. The greyed-out,
not rotated vector ζ is not present in this equation. As can be seen, angles between all the vectors
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present in the mathematical model remain the same under the same operating conditions regardless of
the rotation direction. Similar conclusions can be drawn from analyzing the remaining two equations
of the machine. Therefore, it is possible for the extended induction machine model to preserve its
properties after a rotation direction change.
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Figure 6. State variables from the right side of the first equation of the extended induction machine
model presented as rotating vectors for: (a) positive speed values (vectors rotating counterclockwise)
and (b) negative speed values (vectors rotating clockwise).

Observer equations are based on the object’s mathematical model with the addition of corrective
feedback. Estimation errors vectors have been presented in Figure 7. Stator current estimation error
is the difference between estimated and real stator current vectors. Corrective feedback related to ζ
errors is defined by (5). Assuming symmetric properties of the observer after rotation direction change,
vectors of real and estimated stator current and rotor flux for negative speed values (Figure 7b) are
symmetric about the axis β to those vectors in case of positive speed (Figure 7a). Due to multiplication
by a negative number, vectors ζ̂ and ω r̂ ψ r̂ are symmetric (as stator current and rotor flux vectors)
and additionally rotated by 180 degrees in case of negative speed values.
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Figure 7. Real vectors of the state variables of the machine (black), estimated vectors (blue) and
estimation errors (red) for: (a) positive speed values (vectors rotating counterclockwise) and (b) negative
speed values (vectors rotating clockwise).

Estimated vectors (blue) and error vectors (red) present in the first equation of the observer (10)
are shown in Figure 8. Error vectors from Figure 7 are multiplied by observer gains, that affect only
the amplitude of the vector, and by imaginary number j, that rotates the vector by 90 degrees. As can
be seen in the figure, after rotation direction change, angles between vectors do not remain the same,
which can justify the lack of symmetry of dynamic properties of the observer shown in Figure 5.
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Figure 8. Vectors from the right side of the first equation of the observer for: (a) positive speed values
(vectors rotating counterclockwise) and (b) negative speed values (vectors rotating clockwise).

Vectors that are out of order after direction change are k11ζ̃ and jk14̃is. Rotating those vectors by
180 degrees, by multiplying gains k11 and k14 by −1 for negative rotation speed values, restores angles
between vectors as is shown in Figure 9. By changing the sign of appropriate observer gains after
rotation direction change, it may be possible for the observer properties to remain in symmetry.
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By performing a similar analysis on the other two equations of the observer, it can be concluded
that gains k21, k24, k32, k33 also need to change the sign for negative rotation speed values. Therefore,
for the observer gains set K+ selected for positive speed values:

K+ =


k11 k12 k13 k14

k21 k22 k23 k24

k31 k32 k33 k34

, (43)

the following gains set should be used for negative rotation speed:

K− =


−k11 k12 k13 −k14

−k21 k22 k23 −k24

k31 −k32 −k33 k34

. (44)
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Placement of the poles in the function of rotation speed, using the method of gains adjustment after
rotation direction change presented above, has been shown in Figure 10. As can be seen, the extended
speed observer has now the same dynamic properties regardless of the rotation direction.Energies 2020, 13, x FOR PEER REVIEW 14 of 23 
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module and no load with modified gains after a rotation direction change.

7. Simulation Results

Simulation and experimental studies have been performed on a machine described in Appendix A.
Conclusions concerning the dynamic properties of the observer can be drawn by analyzing its impulse
response. In a steady state of the machine and the observer, an estimation error of the rotor flux
module equal to 0.2 is imposed. Simulation and experimental results, as well as poles placement of the
observer for different rotor speed values, have been presented in Figure 11. As it was noted in the
previous chapter, rotor speed has a noticeable impact on the dynamics of the observer. For comparison,
settling time values estimated from poles placement and measured from simulation results have been
presented in Table 1. Settling time estimated from poles placement is calculated based on the time
constant of the dominant poles:

tsettling ≈ 3T = 3
1
σ

. (45)

where σ is the real part of the dominant pole, T is the time constant of the dominant pole and tsettling is
the estimated settling time of the observer.

As can be seen, dynamic properties read from the placement of the poles reflect results acquired
from the experiments. In simulations, rotor flux estimation error is a difference between the estimated
value and real value. As there is no flux measurement, in real experiments, the rotor flux estimation
error is understood as a difference between the estimated rotor flux module and estimated rotor flux
module in a steady-state (constant value) of the observer.
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Figure 11. Experimental and simulation studies of the influence of the rotor speed on the poles
placement and impulse response of the observer at nominal load torque and rotor flux.

Table 1. Comparison of settling time estimated from the placement of the dominant poles with real
settling time from simulations.

ωr T [s] Settling Time from Poles Placement [s] Settling Time from Simulations [s]

1.0 0.012 0.036 0.042
0.5 0.013 0.038 0.042
0.1 0.047 0.141 0.176

The results of the study of the influence of load torque and the rotor flux module on the dynamics
of the observer have been shown in Figures 12 and 13. As it was noted before, those two variables
have a minor impact on the placement of the poles, therefore, they do not influence the dynamics of
the observer, as has been confirmed in the experimental results. Settling time of the impulse response
of the observer remains almost the same regardless whether the machine is operating as a generator or
as a motor or with a lower rotor flux module.
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placement and impulse response of the observer at nominal rotor speed and rotor flux.

The above experiments have been performed in an open-loop system to eliminate the impact of
the control system on the results. Results of the experiments during the reverse of the machine have
been presented in Figure 14. Estimated rotor flux is not maintained at a constant level due to usage of
a simple open-loop control system, where at very low-speed maintaining constant ratio of voltage
module to frequency is not sufficient to provide constant rotor flux.
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Figure 14. Experimental results during rotor direction change using the open-loop control system.

Experimental results in a closed-loop sensorless system introduced in [29] have been presented in
Figure 15 (slow reverse) and Figure 16 (fast reverse). As can be seen, the observer can be implemented
in advanced control systems and cope well with fast dynamic changes of the rotor speed as well as
low dynamics of the machine even at a low speed. In the case of fast reverse in the first half of the
experiment, the rotor of the machine is being slowed down recovering the energy, therefore it works as
a generator, while in the second part when the rotor speed is greater than zero, the machine operates
as a motor. Such a transition is still handled well by the observer.
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8. Discussion and Conclusions

Speed observer based on the extended model of an induction machine requires a selection of
12 gains. Using genetic algorithms with the proposed fitness function provides gains that ensure
stability and proper dynamic properties of the observer. This approach also allows setting bands of
gains, limiting their values. High gains values of the observer may lead to amplification of measurement
errors and have an adverse impact on the quality of estimation. Limiting observer gains may be
beneficial in case of noisy current measurements.

A significant drawback of usage of heuristic optimization methods, like genetic algorithms, is a
high count of fitness function calls. One of the approaches of evaluation of estimation quality is to
perform a simulation and measure quality indices (e.g., settling time, overshot). Fitness function
based on simulation is computationally heavy, therefore a quality index based on the placement of
poles has been proposed instead. This approach allows the determination of the dynamic properties
of the observer without performing a simulation. This significantly reduces the time needed to run
the algorithm. Placement of the poles is obtained from linearized equations of the dynamics of the
observer, hence conclusions drawn from analysis of the poles are only approximations. Therefore,
the final gains set needs to be tested during simulations before it is considered valid and can be used
on a real machine.

Comparison of dynamic properties deduced from placement of the poles of the linearized system
and real dynamics of the observer has been presented. It is possible to successfully predict the settling
time and presence of oscillations based on the distance of the dominant poles from real or imaginary
axes. As linearization has been performed about an operating point that provides zero estimation
errors, the accuracy of conclusions drawn from the placement of the poles depends on estimation
errors. Forcing flux estimation error equal to 0.2 (about 20% of nominal flux) still allows the accurate
prediction of dynamic properties of the observer from the placement of the poles.

Analysis of the impact of the operating point of the machine on the placement of the poles shows
that the dynamics of the observer are independent of the rotor flux module and torque changes. On the
other hand, rotor speed changes have a significant impact on dynamic properties of the observer,
causing the estimation errors to decay slower at low speed. There is also a high probability that
the observer will lose stability after rotation direction change while using the same observer gains.
For that reason, specific gains need to change the sign to persevere dynamic properties. Simulation
and experimental studies confirm that the proposed method of gains correction after rotation direction
change is valid.

Gains acquired through the proposed method have also been tested during dynamic states of
the machine. The observer has been successfully used as feedback of a closed-loop control system to
control rotor speed and rotor flux. Estimates are correct for the machine operating as a motor as well
as a generator during slow speed changes as well as during fast transitions.
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Appendix A. Induction Machine Parameters

Table A1. Parameters of the induction machine.

Quantity Symbol Value

Nominal power Pn 5.5 kW
Nominal stator voltage Un 400 V
Nominal stator current In 11 A
Nominal rotor speed nn 1450 rpm
Nominal frequency fn 50 Hz
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Table A1. Cont.

Quantity Symbol Value

Stator resistance Rs 0.04870 p.u.
Rotor resistance Rr 0.02613 p.u.
Magnetizing inductance Lm 2.135 p.u.
Stator inductance Ls 2.224 p.u.
Rotor inductance Lr 2.224 p.u.

Appendix B. Parameters of Genetic Algorithm and Fitness Function

Table A2. Parameters of genetic algorithm.

Parameter Value

Population size 500
Max. number of generations gmax 50
Crossover probability 0.5
Mutation probability 0.2
Min. gains value kmin −10
Max. gains value kmax 10

Table A3. Parameters of the fitness function.

Parameter Value

σmax −12
σmin −0.001
ωmax 12
ar 10
ars 1000
ai 10
a 1

Appendix C. Gains of the Observer

Table A4. Gains of the observer for studies presented in Section 6.

Gain Value

k11 6.009328
k12 1.454451
k13 −7.339396
k14 0.138127
k21 0.162761
k22 0.047938
k23 1.380530
k24 −0.393255
k3 −6.946626
k32 4.227242
k33 1.442308
k34 −2.179116
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Table A5. Gains of the observer for ωr > 0.

Gain Value

k11 −3.195624
k12 2.652105
k13 −6.220342
k14 0.723027
k21 0.132168
k22 −0.440498
k23 −0.351436
k24 −0.364211
k3 −5.841087
k32 −1.939082
k33 −0.809362
k34 −1.498938

Table A6. Gains of the observer for ωr < 0.

Gain Value

k11 3.195624
k12 2.652105
k13 −6.220342
k14 −0.723027
k21 −0.132168
k22 −0.440498
k23 −0.351436
k24 0.364211
k3 −5.841087
k32 1.939082
k33 0.809362
k34 −1.498938
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