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Abstract: The potential absorption of solar energy in photovoltaic thermal (PVT) hybrid solar
collectors at different tilt angles was compared in the present study. The optimal tilt angles were
tested in three variants: during 1 day, 1 year and a period of 30 years. Simulations were performed
based on actual weather data for 30 years, including average hourly total radiation, insolation and air
temperature. The apparent movement of the Sun across the sky, solar radiation properties, and the
electrical and thermal efficiency of a PVT collector were also taken into account in the simulation
model. The optimal orientation of the absorber surface was determined by solving an optimization
task. The results of the study indicate that in the long-term perspective, the collector’s performance is
maximized when the absorber is positioned toward the south at an elevation angle of 34.1◦.
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1. Introduction

The global economy relies primarily on energy derived from fossil fuels. However, the progressive
depletion of fossil fuels and their environmental impact have prompted the search for alternative
renewable sources of energy. The transition from fossil fuels to renewable energy (RE) is in its infancy:
the share of electricity from renewable sources exceeds 60% in countries that are RE leaders, but it does
not exceed a few percent in most countries. In Poland, the share of RE in total energy consumption
is only 11.27% [1], and around 85% of electricity is derived from coal (53.6% from bituminous coal
and 31.6% from brown coal), whose combustion releases massive amounts of CO2 into ambient air [2].
The adoption of more stringent environmental protection regulations in EU law will force Poland to
replace fossil fuels with effective RE sources.

The rapid development of solar technology could offer a solution to this problem [3]. The solar
energy flux reaching the surface of the Earth is several thousand times higher than the present
consumption of solar energy [4]. However, solar energy dissipation poses a considerable obstacle
because the amount of energy that reaches the Earth per unit area is relatively low. Solar irradiance
also varies considerably on a yearly, monthly and daily basis. This is determined by geographical
location as well as climate. The low effectiveness and high cost of solar-powered equipment create
additional problems. For these reasons, solar energy accounts for less than 1% of total energy from RE
sources, and it does not exceed 0.3% in Poland [5].

Solar energy might be the most promising source of RE that can be converted to thermal and
electrical energy. There are two main types of devices for harnessing the energy of the Sun: solar
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thermal collectors and photovoltaic (PV) panels. Recent years have witnessed the development of
hybrid devices that convert solar energy into both heat and electricity [6–10]. These solutions have
numerous advantages because only approximately 15% of solar irradiance is converted into electricity,
and the remainder is reflected and converted into heat that is accumulated by the collector (up to
60%) [11,12]. Excess heat from the PV module can be harnessed to produce heat, which can increase
energy conversion efficiency by 10–15% [13,14].

The conversion efficiency of solar panels is influenced by numerous factors, such as the type of
device, the applied technology and materials [15–18], solar radiation parameters [19–22] and weather
conditions (ambient temperature, wind and particulate pollution) [23–28]. From the practical point
of view, these parameters are largely variable and independent because users can only control the
collector’s orientation relative to the angle at which the incoming insolation strikes the absorber [29–34].
Automatic solar tracking systems for orienting the panel continuously toward the Sun [35–39] and
seasonal tilt angles have been extensively studied in the literature [40–44]. Automatic tracking systems
increase the amount of harnessed solar energy, but their economic efficiency continues to pose a
challenge [45,46].

A well-known and well-described topic is the optimization of the absorber positioning angles
determined independently for thermal collectors and PV cells. In the case of hybrid collectors
(photovoltaic thermal, PVT), the situation becomes more complex due to the different influences of
ambient temperature, solar spectrum and the proportion of diffuse radiation. Therefore, the main aim
of this study was to determine the optimal, time-invariant position of the absorber plane (with the
simultaneous conversion of solar radiation into heat and electricity) in view of the actual characteristics
of solar radiation and weather conditions.

2. Materials and Methods

In this study, digital simulations were performed with the use of:

• Long-term meteorological data for the analyzed location;
• Operating parameters of a photovoltaic thermal (PVT) hybrid solar collector; and
• A mathematical model developed for data simulation.

2.1. Location and Meteorological Data

In Europe, total solar irradiance increased at a rate of 1.0% per decade in 1987–2002 [47] and 2.2%
per decade in 1985–2005 [48], which favored the development of solar-powered equipment. The above
trends were also confirmed by Polish studies [49].

The following criteria were used to select the location for optimizing the tilt angle of a PVT
hybrid solar collector: number of sunshine hours, total monthly and annual radiation, atmospheric
transmissivity, and duration of uninterrupted insolation. In Poland, these criteria are met in the
coastal region, which is characterized by the highest total insolation and the highest number of
sunshine hours between April and September. The coastal region receives more than 70% of average
annual insolation, which exceeds 3800 MJ·m−2 in Kołobrzeg (15◦35′ E, 54◦10′ N); therefore, it is
particularly suited to the needs of insolation analyses [50]. This study relied on long-term weather
data collected by the Hydrological and Meteorological Station in Kołobrzeg (Institute of Meteorology
and Water Management, Kołobrzeg, Poland) over a period of 30 years between 1 January 1986 and
31 December 2015. The following data were analyzed: average hourly total radiation, insolation
(according to Niedźwiedź [51]) and air temperature. The influence of wind speed and wind direction
was intentionally disregarded because the values registered by the meteorological station generally do
not reflect local conditions (landform, plant cover, buildings and structures) [46,52,53]. Meteorological
data were processed by spline interpolation with a time step of ∆t = 60 s. Exemplary results are
presented in Figure 1.
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performance of PVT hybrid solar collectors is less standardized, and the relevant conditions are often 
not sufficiently defined. The available solutions can be compared based on the EN 12975 standard for 
assessing the performance of solar collectors—in particular, panels with the Solar Keymark certificate 
[61]. PVT hybrid solar collectors combine elements of thermal solar collector technology and PV 
modules; therefore, they have to meet the requirements of standard EN 12975 for glazed solar 
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The apparent movement of the Sun across the sky, solar radiation properties and the electrical 
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2.3.1. Apparent Movement of the Sun across the Sky 

Various algorithms for calculating the apparent movement of the Sun across the sky have been 
proposed in the literature, including simple [63,64] and more complex solutions [65–68]. The developed 
algorithms differ in accuracy and validity period, and local landform is also taken into account in some 
solutions to compute sunrise and sunset times [69]. This study relied on one of the five algorithms (no. 2) 
proposed by Grena [70] for calculating angles 𝛼 (𝑡)  and 𝛽 (𝑡)  with a precision of 0.034°. The 
visualization of data for a selected day of the year 2006 is presented in Figure 2a. 

Figure 1. Total radiation, insolation and air temperature on selected days.

2.2. Photovoltaic Thermal Hybrid Solar Collectors

Photovoltaic thermal (PVT) hybrid solar collectors convert solar energy into both electricity and
heat. Various types of PVT hybrid collectors have been developed [54–57], and most of them are
liquid-cooled uncovered devices [58–60].

Most PVT hybrid solar collectors and photovoltaic modules are certified for compliance with
the IEC 61215 standard. The performance of PV solar panels is evaluated under the Standard Test
Conditions (STC), where irradiation on the solar panel is 1000 W/m2 and ambient temperature is
25 ◦C. The Nominal Operating Cell Temperature (NOCT) accounts for environmental factors that
affect the performance of solar panels. The NOCT is based on the following standard reference
conditions: irradiation on the solar panel 800 W·m−2, air temperature 20 ◦C and wind velocity 1 m·s−1.
The thermal performance of PVT hybrid solar collectors is less standardized, and the relevant conditions
are often not sufficiently defined. The available solutions can be compared based on the EN 12975
standard for assessing the performance of solar collectors—in particular, panels with the Solar Keymark
certificate [61]. PVT hybrid solar collectors combine elements of thermal solar collector technology
and PV modules; therefore, they have to meet the requirements of standard EN 12975 for glazed solar
collectors as well as standard IEC 61215 for PV modules [62].

2.3. Mathematical Model

The apparent movement of the Sun across the sky, solar radiation properties and the electrical
and thermal efficiency of a PVT collector were also taken into account in the mathematical model.

2.3.1. Apparent Movement of the Sun across the Sky

Various algorithms for calculating the apparent movement of the Sun across the sky have been
proposed in the literature, including simple [63,64] and more complex solutions [65–68]. The developed
algorithms differ in accuracy and validity period, and local landform is also taken into account in some
solutions to compute sunrise and sunset times [69]. This study relied on one of the five algorithms
(no. 2) proposed by Grena [70] for calculating angles αc(t) and βc(t) with a precision of 0.034◦.
The visualization of data for a selected day of the year 2006 is presented in Figure 2a.
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for a selected orientation of the absorber surface.

2.3.2. Solar Radiation Properties

Total radiation and insolation are the most important solar radiation properties. Total radiation
is the sum of direct and diffuse solar radiation. In Poland, the proportion of diffuse solar radiation
in total radiation ranges from around 47% in summer to 70% in winter. Diffuse radiation data are
not easily available, and this parameter is estimated with the use of various models based on general
meteorological observations [71–74]. These models account for latitude, solar declination angle,
elevation, length of day and atmospheric transmissivity [75].

Diffuse solar irradiance Is was calculated based on the extrapolated values of solar flux density
and insolation [76]:

Is(t) = (1− kd(t))It(t) (1)

where: It(t) is the instantaneous solar flux density incident on 1 m2 of a horizontal surface per second;
and kd(t) is the insolation (instantaneous direct solar radiation in 1 h, measured at 0.1-h intervals).

Based on the absorber’s orientation relative to the Sun, which is described by the solar azimuth
angle αc and the solar elevation angle βc (Figure 2a), as well as the assumption that the diffuse fraction
of solar radiation is isotropic and uniform over the sky dome [77], total radiance incident on the
absorber surface is described by the following formula:

Ia = It·

[
kd· cos(δsc) +

(1− kd)

2
·(1 + cos(βc))

]
, (2)

where δsc is the solar incidence angle (the angle between the Sun’s rays and the normal on the absorber
surface), which is determined by the scalar product of unit vectors

→
es and

→
ec:

δsc = arc cos
(
→
es ◦

→
ec
)

(3)

where
→
es denotes the direction of the Sun’s rays:

→
es = [sin(βs) cos(αs), sin(ϕs) sin(αs), cos(βs)], (4)

and vector
→
ec is perpendicular to the absorber surface:

→
ec = [sin(αc), − cos(αc), 0] × [sin(βc) cos(αc), sin(βc) sin(αc), cos(βc)] (5)

Daily fluctuations in solar irradiance on a selected day of the year and the orientation of the
absorber surface of a PVT collector are presented in Figure 2b. The daily distribution of solar radiation
is determined by daytime length, the altitude of the Sun above the horizon (Figure 2a), cloud cover
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and cloud type, and atmospheric transparency. The differences between real and theoretical solar
irradiance in Figure 2b are caused mainly by cloud cover. Considerable cloud cover, particularly in
summer, results from enhanced cyclone activity in northern Europe (North Sea and Baltic Sea), and in
colder parts of the year—from cyclogenesis in the Mediterranean Region and the Black Sea region [78].
The average number of cloudy days in Poland is estimated to be between 110 and 200 [79].

2.3.3. Performance Parameters of PVT Collectors

If the solar energy received by the absorber (Ia) is first converted into electricity [80], the power
output of a PV module PV is calculated as follows:

PV = ηV·Ia·A. (6)

The thermal output PT of a thermal module is determined using the following formula:

PT = ηT·Ia·(1− ηV)·A (7)

and the combined electrical and heat output PVT of a PVT hybrid solar collector is calculated as:

PVT = (ηV + ηT − ηV·ηT)·Ia·A (8)

where ηV is the PV module efficiency; ηT is the thermal module efficiency; and A is the absorber surface
area. The efficiency of the PV module ηV at the given values of solar energy Ia and module temperature
ϑm is calculated with the following formula [59]:

ηV = ηSTC
V ·

[
1− 0.04· ln

( Ia

1000 W·m−2

)
− γSTC

V ·

(
ϑm − 25

◦

C
)]

(9)

where ηSTC
V and γSTC

V denote the efficiency and the temperature coefficient of a PV module based on STC.
For crystalline silicon PV modules, the value of γSTC

V ranges from 0.0037 to 0.0052 ◦C−1. The module’s
operating temperature ϑm is determined by its structure as well as weather conditions. The above
parameters have been discussed extensively by Akhsassi et al. [81]. A PV module compliant with
NOCT parameters was tested in this study:

ϑm = ϑa + Ia·
NOCT− 20
800 W·m−2 (10)

where ϑa is the ambient temperature and NOCT is 42 to 46 ◦C.
The efficiency of the thermal module ηT varies in different types of collectors. In covered PVT

hybrid solar collectors (liquid-cooled or air-cooled with a closed air circuit), thermal efficiency is
determined with the use of the following formula [77,82]:

ηT = η0 −
1

Ia·(1− ηV)
[a1·(ϑm − ϑa) + a2·(ϑm − ϑa)

2] (11)

where η0 is the maximum thermal efficiency; a1 is the linear heat loss coefficient; and a2 is the quadratic
heat loss coefficient.

2.4. Simulations

Numerical calculations were performed based on the average operating parameters of

liquid-cooled PVT collectors [59,83]: η0 = 0.50, a1 = 5 W
(
m2 ◦C

)−1
, a2 = 0.02 W

(
m
◦

C
)−2

, ηSTC
V = 0.16,

γSTC
V = 0.0045

◦

C−1 and NOTC = 44
◦

C [84].
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The objective of the model was to provide information about the potential amount of solar energy
that can be converted by 1 m2 of absorber surface area into electricity EV, heat ET, and both electricity
and heat EVT in:

• One day

EV(d) =

tsr∫
t=tss

PV(d) dt; ET(d) =

tsr∫
t=tss

PT(d) dt; EVT(d) =

tsr∫
t=tss

PVT(d) dt, (12)

where tss and tsr are sunrise and sunset time, and d is the day of the year;
• One year

EV(y) =
∑365(366)

d=1
EV(d); ET(y) =

∑365(366)

d=1
ET(d); EVT(y) =

∑365(366)

d=1
EVT(d); and (13)

• The analyzed period of 30 years

EV(all) =
∑2015

y=1986
EV(y); ET(all) =

∑2015

y=1986
ET(y); EVT(all) =

∑2015

y=1986
EVT(y). (14)

The optimal orientation of the absorber surface was determined by solving an optimization task,
where the absorber’s azimuth angle αc and elevation angle βc were the decision criteria, and the
amount of solar energy converted into electricity EV, heat ET and both electricity and heat EVT were
the optimization criteria:

max
(αc,βc)

(
∑

d
EV(d)); max

(αc,βc)
(
∑

d
ET(d)); max

(αc,βc)
(
∑

d
EVT(d)). (15)

The entire mathematical model was implemented in the MATLAB R2014a environment (Math
Works, Natick, MA, USA). Data were simulated with a time step of ∆t = 60 s. A block diagram
presenting all stages of the simulation process is presented in Figure 3.
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3. Results and Discussion

The results of the study indicate that the absorber’s optimal azimuth angle αc(opt) and elevation
angle βc(opt) are determined by the daily distribution of solar radiation, insolation, ambient temperature,
and the solar energy conversion method. Both angles change with an increase in insolation, and the
absorber is positioned perpendicular to the direction of the Sun, which corresponds to the highest direct
solar irradiance. In turn, when the proportion of diffuse solar irradiance increases, azimuth angle αc is
less significant, and the horizontal orientation of the absorber (βc → 0) plays a more important role.

For the daily distribution of solar radiation indicated in Figure 2 (extensive cloud cover before
noon), the optimal angles are αc(opt) = 29.6

◦

and βc(opt) = 33.7
◦

(Figure 4c). These angles would be
determined at αc(opt) = 0

◦

and βc(opt) = 42.6
◦

if all hours in the analyzed day were sunshine hours.
The minor differences in the optimal orientation of an absorber that converts solar energy to electricity
only (Figure 4a) or heat only (Figure 4b) result from the daily distribution of temperature and its
influence on conversion efficiency described by Equations (9) and (11).
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Figure 4. Optimal orientation of the absorber surface on a selected day: (a) electrical; (b) thermal;
and (c) electrical & thermal.

Daily cloud cover and insolation data are averaged for longer periods of time (1 year: Figure 5;
many years: Figure 6), and diffuse solar radiation accounts for around 31% of the overall balance.
The time shift (around 2 h) between the maximum daily temperature and the maximum daily solar
radiation remains unchanged (Figure 7a). The observed time shift can be attributed to the fact that
radiation is absorbed by air and the surface of the Earth, which leads to thermal inertia. The collector’s
performance can be optimized by positioning the absorber towards the south (αc(opt) = 0.5

◦

) at an
elevation angle of βc(opt) = 34.1

◦

(Figure 6). However, if we account for the flat shape of the curve
(Figures 5 and 6) near the optimal point, and if we assume that the generated energy does not differ by
more than 1% from the maximum output, the optimal azimuth angle is αc(opt) = 0.5 ± 20

◦

, and the
optimal elevation angle is βc(opt) = 34.1± 8.5

◦

.
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The optimal annual settings for the absorber surface, determined in the study, were compared with
the values calculated in the Photovoltaic Geographical Information System (PVGIS) [85]. Depending
on the applied PVGIS database (SARAH, CMSAF, ERA5, COSMO) and PV technology, the optimal
azimuth angle was determined in the range of αc = −1

◦

to αc = 3
◦

, and the optimal elevation angle
in the range of βc = 39

◦

to βc = 43
◦

. The elevation angle calculated in the study is much smaller,
which indicates that local cloud cover and, consequently, diffuse radiation significantly influence
absorber settings. Cloud cover also affects electricity generation. In the proposed model, the annual
energy output is determined at 0.52 ± 0.02 GJm−2 on average (Figure 7c), around 0.12 GJm−2 less than
that calculated for sunny days. The above applies to the values calculated in the proposed model (from
0.62 to 0.68 GJm−2) as well as those computed in PVGIS (from 0.60 to 0.70 GJm−2).

The fact that electricity and heat can be generated simultaneously is an unquestioned advantage
of PVT hybrid solar collectors (Figure 7c). Hybrid collectors generate less thermal energy (around 60%
per year) than conventional solutions [46]. Nonetheless, heat generation should be regarded as an
additional benefit, and it also increases the efficiency of the PV cell.

4. Conclusions

The results of the simulation validate the assumption that in addition to insolation, the daily
distribution of solar radiation and temperature also influence the optimal orientation of a PVT hybrid
solar collector. If local conditions are taken into account, the calculated values can significantly deviate
from the average values of satellite measurements. The above applies to the absorber’s orientation as
well as its energy output.

In this study, local conditions were evaluated a posteriori, which implies that the optimal
orientation of a PVT hybrid solar collector should be determined based on an analysis of long-term
historical meteorological data at the installation site. The absorber’s optimal orientation can also
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be affected by other factors that were not taken into account in this study, including wind speed,
wind direction, topography and plant cover.

It should also be noted that the orientation of the absorber surface was determined based on several
optimization criteria to maximize the annual energy output. In the evaluated location, the amount of
solar radiation reaching the surface of the Earth is unevenly distributed during the year (it is nearly
eight times lower in winter than in summer; Figure 7b). Therefore, a strategy where the differences in
energy output across months are leveled out could be adopted as an alternative optimization criterion.
The proposed model supports the selection of other optimization criteria and limitations than the
available tools, including the PVGIS calculator.
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Nomenclature

A Absorber surface area (m2)
a1 Linear heat loss coefficient (W (m2 ◦C)−1)
a2 Quadratic heat loss coefficient (W (m ◦C)−2)
→
ec Unit vector perpendicular to the absorber surface
→
es Unit vector in the direction of the Sun
EV Solar energy converted into electrical energy (Jm−2)
ET Solar energy converted into thermal energy (Jm−2)
EVT Solar energy converted into electrical and thermal energy (Jm−2)
Ia Solar irradiance received by the absorber (Wm−2)
Is Diffuse solar irradiance (Wm−2)
It Solar flux density (Wm−2)
kd Insolation (h−1)
PV Power output of the PV module (W)
PT Power output of the thermal module (W)
PVT Power output of a PVT hybrid solar collector (W)
t Time (s)
αc, βc Azimuth and elevation angles of a PVT collector (◦)
αs, βs Solar azimuth and elevation angles (◦)
γSTC

V Temperature coefficient of a PV module based on STC standard (◦C−1)
δsc Solar incidence angle (◦)
η0 Maximum thermal efficiency (-)
ηV PV module efficiency (-)
ηSTC

V PV module efficiency based on STC standard (-)
ηT Thermal module efficiency (-)
ϑa Ambient temperature (◦C)
ϑm Operating temperature of a PVT collector (◦C)
NOCT Nominal Operating Cell Temperature
STC Standard Test Conditions
PVT Photovoltaic thermal hybrid solar collectors
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53. Strzyżewski, T.; Uscka-Kowalkowska, J.; Przybylak, R.; Kejna, M.; Araźny, A.; Maszewski, R. The diversity
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