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Abstract: This paper presents a gain scheduling output feedback control method to reduce driver
workload and improve driving performance by considering input saturation. The driver–vehicle
system model is developed by considering tire cornering stiffness uncertainties and different driver
parameter uncertainties. Meanwhile, the input saturation is also considered in the driver-vehicle
system. A quadratic Lyapunov function is designed to solve the optimization problem with
uncertainties and input saturation. The results, which are based on the MATLAB-CarSim co-simulation
platform, indicate that the robust controller not only improves the convergence rate of the state but
also reduces the steering workload of the driver.

Keywords: robust control; gain scheduling output feedback; input saturation; intelligent vehicle;
path following

1. Introduction

With the development of science and technology, the application of advanced driver assistance
systems (ADASs), which help drivers reduce their workload and improve safety, has become
increasingly possible. The DARPA (Defense Advanced Research Projects Agency) challenge in
the United States has promoted the application of intelligent vehicles in daily life and has attracted
worldwide attention. In Europe, many research institutes and universities have initiated research
on the real-world safety benefits of ADASs and active safety systems. ADASs have advantages
including reducing a driver’s workload, facilitating more relaxed mental and physical activities,
and increasing the driving safety potential [1]. ADASs also have the potential to optimize safety
and efficiency in road traffic. For example, ADASs can correct the vehicle’s trajectory and provide
correct guidance to the driver with the steering wheel by direct controller intervention [2]. Due to the
unpredictability of the driving environment, the driver needs to be alert to the control system and
environment to handle any automation errors. As it is impossible to completely predict the driving
environment, human supervision is considered necessary, especially when automated errors have
serious consequences [3]. Driver characteristics must be implemented by using a realistic driver model
to design a human–machine driving assistance system.

Many scholars have studied the characteristics of drivers for driving assistance system. Ref. [4]
discuss the general design of personalized ADAS and propose a general conceptual framework to
personalization in ADAS. Ref. [5] aims to examine how do driver gender, age, and aggression affect
the performances and driver acceptances of typical ADAS. Based on the current machine learning
approaches, Ref. [6] provides a survey on driving style characterization and recognition revising a
variety of algorithms. In [7], two kinds of learning-based car-following personalized driver models
were developed using naturalistic driving data. Ref. [8] identified teen drivers’ perceived need for
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ADASs, receptiveness to in-vehicle technology, and intervention preferences. A large number of
driver assistance systems have been described in the scientific literature. Ref. [9] aimed to investigate
consensus regarding the design, evaluation methods, and effectiveness of these systems. Ref. [10]
presented a combined lateral and longitudinal driver model developed based on human subject
driving simulator experiments that is able to identify different driver behaviors through driver model
parameter identification. In [11], a lateral control method that redistributes the control effort between
the steering angle and the brake is proposed. Meanwhile, the technique could facilitate the interaction
between the driver and the assistance system while avoiding vehicle state saturation, including the tire
force and steering angle. In [12], a driver-assistant control system with braking and steering functions
is proposed to track the reference trajectory to ensure vehicle stability. In [13], an effective method
to estimate the driving characteristic parameters of the general driver model is presented. To help
the driver deal with handover scenarios smoothly, in [14], a robust controller is proposed to help
the driver achieve better driving performance by considering different driver driving performances.
To assist young drivers in tacking a given trajectory, in [15], a gain-scheduling controller is discussed,
which considers driver parameters. In [16], the lateral shared control method is presented to ensure an
excellent transfer of the control authority without generating harmful interference by considering the
interaction between the controller and drivers. In [17], a human-centered steering assistant controller
is proposed to realize sharing authority between the driver and the automatic copilot. By using a
Gaussian distribution function with lateral deviation, the driving style, authority shifting, and authority
conflict were considered by the steering assistance controller. Ref. [18] presented a novel shared control
concept for lane keeping assist (LKA) systems of intelligent vehicles. The core idea is to combine system
perception with robust control so that the proposed strategy can successfully share the control authority
between human drivers and the LKA system. In [19,20], a novel weighted method is proposed to solve
the conflict problem of shared control authority. Moreover, the author emphasized that the fictive
control saturation about the steering angle can be easily reached even if the actuator did not reach its
physical limitations. Therefore, the control input saturation should be considered in the controller
design to prevent performance degradation.

Notably, the above research has mainly focused on the design of assistance controllers that
consider control authority and driver characteristics, while less attention is paid to input saturation.
Most research has only considered the saturation of the lateral force of the tire [21–24], and currently,
there are only a few good methods to deal with the steering angle saturation [25]. In [25], a robust output
feedback controller is presented to adjust the lateral vehicle dynamics under front lateral tire force
saturation and a network delay. In [26], a robust yaw moment controller is proposed to improve vehicle
stability by considering the uncertainty of the vehicle mass, moment of inertia, cornering stiffness,
and control saturation. In [27], the Takagi–Sugeno (T-S) fuzzy method for nonlinear systems under the
action of actuator saturation is proposed, and the problem of estimation of the attractive region of the
T-S fuzzy system is given by the optimization method. In [28], based on the T-S fuzzy model, a lateral
control method is described to address a new driver–automatic collaboration method for the lateral
shared control of lane keeping assist systems (LKAS) devices. Under the design conditions based on
the least squares method, the input saturation, the driver’s safety, and comfort are clearly considered in
the control design. Nevertheless, the lateral control method based on the T-S fuzzy model is proposed
to implement control saturation. Moreover, penalizing the objective function so that the physical limits
of the actuator are never reached often leads to weak and conservative designs [29]. Model predictive
control (MPC) [30,31] is a very effective method for path following with the consideration of the
steering angle saturation, but its complexity and less ability to deal with uncertainty are the main
shortcomings. Compared with most existing anti-windup schemes, anti-windup [32–35] compensation
schemes are less conservative, but their sizeable computational amount and complexity are the main
shortcomings of these algorithm. Therefore, when disturbances and uncertainties are involved in
a driver–vehicle system, the input saturation should be clearly considered to prevent performance
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degradation and the loss of stability [36,37]. Moreover, it is crucial to deal with input saturation by
considering a simple computation method.

Thus, this paper mainly considers how to design a simple and effective controller to assist drivers in
improving driving performance and reducing workload by considering fictive control input saturation.
Moreover, in [15], it was pointed out that the controller can reduce the lateral deviation by providing a
larger assistance steering angle, especially for inexperienced drivers. Thus, the different drivers should
be considered to obtain optimal driving performance by a different saturation threshold value of the
control input. A gain scheduling output feedback controller taking into account time-varying driver
parameters, vehicle dynamic parameters, and assistance control saturation is proposed in this paper,
which can improve the convergence rate of the state [38]. A driver–vehicle system with uncertainties
and disturbances is established by combining the vehicle dynamics model and the driver model.
The driver–vehicle system mainly considers the uncertainties of driver parameters and tire stiffness to
improve the robustness performance. A gain scheduling output feedback controller [39] is designed to
assist the driver with the consideration of the input saturation. The simulation results, which are based
on the MATLAB-CarSim co-simulation platform, show that the proposed controller can effectively
support the driver in reducing the workload and lateral deviations. Additionally, the vehicles can
effectively follow the trajectory.

The main structure of this article is grouped into the following parts: (1) This paper describes the
modelling of the driver model and vehicle dynamics. (2) To improve the robustness performance of the
driver–vehicle system, the uncertainties of the driver-vehicle system are developed, including the tire
cornering stiffness at the front and rear, external disturbances, and driver parameters, including the
preview time, steering gain and driver delay time. (3) The gain scheduling output feedback controller
with saturation is applied to the driver–vehicle system to handle assistance angle saturation and
uncertainties. (4) The CarSim/Simulink co-simulation platform is proposed to verify the effectiveness
of the proposed method in changing lane maneuvers. (5) The simulation results are presented in
Section 4.

2. System Modelling

In this section, the vehicle dynamics and the driver model are described. To ameliorate the
robustness performance of the system, we take into account the uncertainties of the tire cornering
stiffness, driver characteristic parameters, and system modelling. Moreover, the input saturation is
considered by the gain scheduling output feedback controller.

2.1. Driver–Vehicle System

For the sake of designing the path following controller and considering vehicle dynamics, it is
supposed that the slip angle and front steering angle of the vehicle are relatively small. Assuming that
the vehicle state equation is linear, a two-degree bicycle dynamics model [40] with a linear parameter
variation (LPV) is obtained by using the linear proportional relationship between the side angle and
lateral tyre force. The path following model of intelligent vehicles is shown in Figure 1.

m
.

Vy = −mVx
.
ψ+ Fy f + Fyr (1)

..
ψ =

1
Iz

(
L f Fy f − LrFyr

)
(2)

.
Y = Vxψ+ Vy (3)

where m denotes the mass of the vehicle, Iz denotes the yaw moment of the inertia, Fy f denotes lateral
tyre forces at the front, Fyr denotes the lateral tyre forces at the rear, L f denotes the distances between
the front axles and the CG of the vehicle, Lr denotes the distances between the rear axles and the
CG, Vy denotes the lateral speed, Vx denotes the longitudinal speed, ψ denotes the yaw angle, and Y
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denotes the lateral position of the CG along the global coordinates. The formula of the lateral tire force
is expressed as

Fy f = −C fα f , Fyr = −Crαr (4)

where C f and Cr denote the front and rear tyre cornering stiffness, respectively, and α f and αr denote
the front and rear slip angles of the tyre and are expressed as

α f =
L f

.
ψ

Vx
+

Vy

Vx
− δ f , αr =

Vy

Vx
−

Lr
.
ψ

Vx
(5)

where δ f is the front wheel steering angle.
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Figure 1. The path following the model of intelligent vehicles.

The parameter e is the lateral offset of the CG and can be expressed as

.
e = Vxψ+ Vy (6)

A fundamental driver model is used to minimize the lateral offset concerning the given reference
road. As shown in Figure 1, the driver model [41,42] can be described as

δd =
Gd

1 + τds

(
Yp −Y −Vxτpψ

)
(7)

where Gd and τd are the steering gain and delay time of the driver, respectively, τp is the driver preview
time, and Yp is the lateral offset of the preview point. Based on the above driver model, the driver’s steer
parameters are estimated and obtained, by optimizing the parameters for the simulated driver’s steer
angle during a lane change to best agree with the actual/measured driver’s steer angle obtained from the
experimental tests [41]. Assuming that the road curvature is small, then e ≈ Yp −Y. According to [15],
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δ f = δd + u, and u is the designed assistance steering angle. Then, combining (1)–(7), the tracking
trajectory system of the driver-vehicle can be described as

.
x = A(t)x + B1d + B2u (8)

where x is the state variables of the path following model as x =
[

e
.
e ψ

.
ψ δd

]T
, A is the system

matrix, B2 is the control matrix, d is the system disturbance vector, and B1 is the disturbance matrix.

A(t) =



0 1 0 0 0

0
C f +Cr

mVx
−

C f +Cr
m

C f L f−CrLr
mVx

C f
m

0 0 0 1 0

0
CrLr−C f L f

IzVx

CrLr−C f L f
Iz

−
CrL2

r+C f L2
f

IzVx

C f L f
Iz

Gd
τd

0 −
GdτpVx
τd

0 −
1
τd


B2(t) =

[
0

C f
m 0

C f L f
Iz

0
]T

, B1(t) = I , d =
[

d1 d2 d3 d4 d5
]T

2.2. System Uncertainties

Human drivers have different driving characteristic parameters, which are the uncertainties in
the driver–vehicle system. These driving characteristic parameters include the steering gain, preview
time, and delay time and can be regarded as varying parameters. This paper mainly considers these
varying parameters to be Gd, τp, and τd and assumes that there is a 5% uncertainty.

To simplify the uncertainties of the controller, according to [14], the characteristic parameters can
be expressed as

1
τd

=
1
τd0

+ θ1N1 ,
Gd
τd

=
Gd0

τd0
+ θ2N2 ,

Gdτp

τd
=

Gd0τp0

τd0
+ θ3N3 (9)

where Gd0 is the nominal value of the gain, τp0 is the nominal value of the preview time, τd0 is the
nominal value of the delay, G̃d is the uncertainty value of the gain, τ̃p is the uncertain value of the
preview time, τ̃d is the uncertainty value of the delay, and θ1, θ2, and θ3 are uncertainty values. N1, N2,
and N3 are the uncertainty coefficients and are expressed as

θ1 = 1
τ̃d

θ2 =
Gd0
τ̃d

+
G̃d
τd0

+
G̃d
τ̃d

θ3 = θ3τp0 +
Gd0
τd0
τ̃p +

Gd0
τ̃d
τ̃p +

G̃d
τd0
τ̃p +

G̃d
τ̃d
τ̃p

(10)

|Ni| < 1 iε{1, 2, 3} (11)

The tire cornering stiffness is mainly affected by the speed, the reasonable force, and the road,
which are varying parameters. The tire cornering stiffness is considered to be an inaccurate parameter
in the system and can be described by the following:

C f = C f 0 + N f C̃ f , Cr = Cr0 + NrC̃r (12)

Then, by combining Equations (8)–(12), the driver-vehicle system considering the uncertainties of
the driving characteristic parameters and tire cornering stiffness is expressed as

.
x =

(
A + ∆A

)
x + B1d +

(
B2 + ∆B2

)
u (13)
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where A = A + ∆A , B2 = B2 + ∆B2 , ∆A = ÃNAE , ∆B = B̃2NB.
Considering the saturated linear plant subject to actuator saturation, Equation (13) can be

expressed as 
.
x = Ax + B1d + B2sat(u)

e = C1x + D11d + D12sat(u)
y = C2x + D21d

(14)

where e is the performance output of the linear saturated plant, y is the measurement output, sat(u) is
the saturation function, and u is the maximum positive value of the control input.

sat(u) =


u u ≥ u
u −u ≤ u ≤ u
−u u ≤ −u

3. Problem Formulation and Robust Controller Design

In this section, the design procedure of the controller is described in detail. The goal of the
controller is to minimize the lateral offset relative to a given reference trajectory as soon as possible.

3.1. Problem Formulation

To consider the control saturation, the system Equation (14), which can be described in the form
of a dead-zone function, can be expressed as

.
x
u
e
y

 =


A −B2 B1 B2

0 0 0 I
C1 −D12 D11 D12

C2 0 D21 0




x
p
d
u

 (15)

p = dz(u) (16)

where dz(u) = u− sat(u) is the dead-zone function.
Consider a scheduling controller in the form of that described in Equations (17) and (18).

.
xk
qk
u

 =


Ak Bk0 Bk1
Ck0 Dk00 Dk01
Ck1 Dk10 Dk11




xk
pk
y

 (17)

pk = dz(qk) (18)

where xk is the state matrix and pk and qk are the input and output of a scheduling controller, respectively.
According to Theorem 1 [38], Formulations (16) and (18) can be described as

p = Θ(u−H2xk) (19)

pk = Θ(qk −H4xk) (20)

where the parameter is limited to 0 ≤ Θ ≤ 1 here.

Theorem 1. Let h(x) = Hx be a linear relationship, and assume that Hx ∈ [−u, u]. For any u, we have
sat(u) ∈ Co{u, Hx} and dz = θ(u−Hx) for some θ ∈ [0, 1].



Energies 2020, 13, 4570 7 of 19

Then, by combining Formulations (15), (17), (19), and (20), the system is described as
.
xCL
qCL

e

 =


ACL B0,CL B1,CL
C0,CL D00,CL D01,CL
C1,CL D10,CL D11,CL




xCL
pCL
d

 (21)

pCL =

[
Θ 0
0 Θ

]
(qCL −HxCL) (22)

where xCL =
[

x xk
]T

qCL =
[

u qk
]T

pCL =
[

p pk
]T

.


ACL B0,CL B1,CL

C0,CL D00,CL D01,CL
C1,CL D10,CL D11,CL

 =


A 0 −B2 0 B1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

C1 0 −D12 0 D11


+ · · · (23)

· · ·+


0 B2 0
I 0 0
0 I 0
0 0 I
0 D12 0




Ak Bk1 Bk0
Ck1 Dk11 Dk10
Ck0 Dk01 Dk00




0 I 0 0 0
C2 0 0 0 D21

0 0 0 I 0



H =

[
0 H2

0 H4

]
Π =


Ak Bk1 Bk0
Ck1 Dk11 Dk10
Ck0 Dk01 Dk00


3.2. Robust Controller Design

For trajectory tracking, it is necessary to find the controller to make the tracking error converge
under the uncertainties of the parameters and disturbance. The structure of the proposed method is
illustrated in Figure 2.
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According to a quadratic Lyapunov function V = xT
CLPxCL and a matrix Λ = diag(Θ, Θ) > 0,

the quadratic Lyapunov function of the system (21) and (22) can be described as

.
V +

1
γ2 eTe + pT

CLΛ(qCL − pCL −HxCL) + (qCL − pCL −HxCL)
TΛpCL − dTd < 0 (24)

Moreover, the actuator saturation set inclusion condition can be described as{
xCL : xT

CLPxCL ≤ s2
}
⊂

{
xCL :

∣∣∣∣[ 0 H2
]
xCL

∣∣∣∣ ≤ u
}

(25)

where given scalars s > 0, and a positive matrix P. According to the scaled bounded real lemma,
(23) and (24) can be rewritten in the following form:

AT
CLP + PACL ∗ ∗ ∗

Λ(C0,CL −H) + BT
0,CLP (D00,CL − I)TΛ + Λ(D00,CL − I) ∗ ∗

BT
1,CLP DT

01,CLΛ −I ∗

C1,CL D10,CL D11,CL −γ2I

 < 0 (26)


u2

s2

[
0 H2

][
0

HT
2

]
P

 ≥ 0 (27)

To improve system performance in the existence of the uncertainty of the parameters, disturbance,
and input saturation, Theorem 2 is introduced in the following term.

Theorem 2. Ref. [39]. For system (21) and (22), the control objectives in (23) and (24) are satisfied. The relation
s,γ > 0 is given if there exist positive matrices R, S, positive diagonal matrices L, J and a rectangular matrix H̃2

such that

 HT
Φ̃

0

0 I




R
(
A + ∆A

)T
+

(
A + ∆A

)
R ∗ ∗ ∗

−L
(
B2 + ∆B2

)T
− H̃2 −2L ∗ ∗

C1R −D12L −γ2I ∗

BT
1 0 DT

11 −I


[

HΦ̃ 0
0 I

]
< 0 (28)

[
HT

Γ 0
0 I

]

(
A + ∆A

)T
S + S

(
A + ∆A

)
∗ ∗ ∗

BT
1 S −I ∗ ∗

−

(
B2 + ∆B2

)T
S 0 −2J ∗

C1 D11 −D12 −γ2I


[

HΓ 0
0 I

]
< 0 (29)

[
R I
I S

]
> 0 (30)

[
L I
I J

]
> 0 (31)


u2

s2 H̃2 0
∗ R I
∗ ∗ S

 > 0 (32)

where
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HΦ̃ =
[

HT
Φ̃1

HT
Φ̃2

HT
Φ̃3

]T
= Ker

[
BT

2 I DT
12

]
HΓ =

[
HT

Γ1
HT

Γ2

]T
= Ker

[
C2 D21

]
.

The above feasibility problem is transformed into an optimization problem, which is described as

Min γ2

subj.to(27) − (31)
(33)

For systems (21) and (22), the control objectives in (23) and (24) are satisfied by using Theorem 2 and
calculating the above linear matrix inequality (LMI). The proof of Theorem 2 can be found in [39] and
is thus ignored here. Obviously, Theorem 2 cannot directly solve the scheduling controller. However,
Inequality (25) can be applied to solve the value of a scheduling controller again. By combining the
LMI (25) and Equation (21), the inequality can be simplified and rewritten as

Ψ0 + αTH4β+ βTHT
4α+ ΓTΠTΦ + ΦTΠΓ < 0 (34)

Based on the Inequality (33), the controller gain can be obtained by calculating Π and H4 by
solving the LMI feasibility problem.

The matrix R, S, L, J, H̃2 can be calculated by making use of the Theorem 2, and the matrix
M, N, U, V,<3, H2 can be obtained by choosing suitable matrices such that UVT = I−LJ , MNT = I−RS,

determining<3 form the constructed Λ matrix and computing H2 = H̃2
(
MT

)−1
.

Ψ0 =



(
A + ∆A

)T
S + S

(
A + ∆A

)
∗ ∗ ∗ ∗ ∗

NTA 0 ∗ ∗ ∗ ∗

−

(
B2 + ∆B2

)T
S −

(
B2 + ∆B2

)T
N − JH2 −2J ∗ ∗ ∗

0 −VTH2 −2VT
−2<3 ∗ ∗

BT
1 S BT

1 N 0 0 −I ∗

C1 0 −D12 0 D11 −γ2I


.

P =

[
S N

NT
<1

]
P−1 =

[
R M

MT
<2

]
Λ =

[
J V

VT
<3

]
Λ−1 =

[
L U

UT
<4

]

F1 =


0 I

C2 0
0 0

 F2 =


0 0
0 0
0 1

 F3 =


0

D21

0


G1 =

[
0 B2 0
I 0 0

]
G2 =

[
0 I 0
0 0 I

]
G3 =

[
0 D12 0

]
Γ =

[
F1 F2 F3 0

]
Φ =

[
GT

1 P GT
2 Λ 0 GT

3

]
α =

[
0 0 −VT

−<
T
3 0 0

]
β =

[
0 I 0 0 0 0

]
In summary, we take advantage of Theorem 2 to calculate the matrix R, S, L, J, H̃2 by solving the

LMI optimization problem. Then, the gain Π can be obtained by solving the LMI feasibility problem
for Inequality (33).

Theorem 2 and Inequality (33), which contain the time-varying parameters NA, NB, cannot be
applied to the controller design directly. Therefore, to address uncertainties, Theorem 3 is derived and
described as follows.
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Theorem 3. For system (21) and (22), the controller performance in (23) and (24) is satisfied. The scalars
s,γ, ε > 0 are given if there exist positive diagonal matrices L, J, positive matrices R, S, and a rectangular matrix
H̃2 such that 

`T
1 Ω1`1 ε`T

1=11 `T
1=

T
12

∗ −εI 0
∗ ∗ −εI

 < 0 (35)


`T

2 Ω2`2 ε`T
2=21 `T

2=
T
22

∗ −εI 0
∗ ∗ −εI

 < 0 (36)

[
R I
I S

]
> 0 (37)

[
L I
I J

]
> 0 (38)


u2

s2 H̃2 0
∗ R I
∗ ∗ S

 > 0 (39)

Proof. The uncertainty terms of Equation (13) can be expressed as

∆A = ÃNAE ∆B = B̃2NB (40)

where
NA = diag

(
N1 N f Nr N f Nr N2 N f Nr N f N3

)

Ã =



0 0 0 0 0 0 0 0 0 0

0
C̃ f

mVx

C̃r
mVx

−
C̃ f
m −

C̃r
m 0

L f C̃ f
mVx

−
LrC̃r
mVx

C̃ f
m 0

0 0 0 0 0 0 0 0 0 0

0 −
L f C̃ f
IzVx

LrC̃r
IzVx

−
L f C̃ f

Iz

LrC̃r
Iz

0 −
L2

f C̃ f

IzVx
−

L2
r C̃ f

IzVx

L f C̃ f
Iz

0
Gd0
τd0

0 0 0 0 −
Gd0τp0Vx
τd0

0 0 0 −
1
τd0



B̃2 =



0
C̃ f
m
0

L f C̃ f
Iz

0


E =



1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 −Vx 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 −1


Considering the Equality (39), the Theorem 2 Inequalities (27) and (28) can be further rewritten as

`T
1

(
Ω1 +=11ℵ=12 +=

T
12ℵ

T
=

T
11

)
`1 < 0 (41)

`T
2

(
Ω2 +=21ℵ=22 +=

T
22ℵ

T
=

T
21

)
`2 < 0 (42)
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where

Ω1 =


RA

T
+ AR ∗ ∗ ∗

−LB
T
2 − H̃2 −2L ∗ ∗

C1R −D12L −γ2I ∗

BT
1 0 DT

11 −I

 Ω2 =


A

T
S + SA ∗ ∗ ∗

BT
1 S −I ∗ ∗

−B
T
2 S 0 −2J ∗

C1 D11 −D12 −γ2I



=11 =


Ã −B̃
0 0
0 0
0 0

 =12 =

[
ER 0 0 0
0 LT 0 0

]
`1 =

[
HΦ̃ 0
0 I

]
ℵ =

[
NA 0
0 NB

]

=12 =


SÃ −SB̃
0 0
0 0
0 0

 =22 =

[
E 0 0 0
0 0 I 0

]
`1 =

[
HΓ 0
0 I

]

Then, by using [43] (Lemma2) and [15] (Lemma2), the Inequalities (40) and (41) is equivalent to
the Inequalities (42) and (43). Thus, this completes the proof. �

`T
1 Ω1`1 ε`T

1=11 `T
1=

T
12

∗ −εI 0
∗ ∗ −εI

 < 0 (43)


`T

2 Ω2`2 ε`T
2=21 `T

2=
T
22

∗ −εI 0
∗ ∗ −εI

 < 0 (44)

Obviously, Theorem 3 is applied to calculate the matrix R, S, L, J, H̃2 by solving the LMI optimization
problem. However, the gain Π of the controller cannot be calculated directly. It’s worth noting that the
matrix parameters R, S, L, J, H̃2 have already been calculated by using Theorem 3 Therefore, by making
use of Inequality (33), which contains the matrix R, S, L, J, H̃2 and the gain Π, the gain Π of the controller
can be calculated indirectly.

In the same way, by considering the Equality (39), then the Inequality (33) can be further described
and rewritten as:

ΩΨ +=Ψ1ℵ=Ψ2 +=
T
Ψ2ℵ

T
=

T
Ψ1 + αTH4β+ βTHT

4α+ ΓTΠTΦ + ΦTΠΓ < 0 (45)

Making use of [15] (Lemma2) to address uncertainties, Inequality (44) is further described as
ΩΨ + αTH4β+ βTHT

4α+ ΓTΠTΦ + ΦTΠΓ ε=Ψ1 =
T
Ψ2

∗ −εI 0
∗ ∗ εI

 < 0 (46)

where

ΩΨ =



A
T

S + SA ∗ ∗ ∗ ∗ ∗

NTA 0 ∗ ∗ ∗ ∗

−B
T
2 S −B

T
2 N − JH2 −2J ∗ ∗ ∗

0 −VTH2 −2VT
−2<3 ∗ ∗

BT
1 S BT

1 N 0 0 −I ∗

C1 0 −D12 0 D11 −γ2I


(47)
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=Ψ1 =



SÃ −STB̃2

0 −NTB̃2

0 0
0 0
0 0
0 0
0 0


=Ψ2 =

[
E 0 0 0 0
0 0 I 0 0

]

To solve the scheduling controller Π, there is a need for more steps to calculate parameters. Firstly,
Theorem 3 is applied to calculate the matrix R, S, L, J, H̃2 by solving the LMI optimization problem.
Secondly, the known parameters R, S, L, J, H̃2 need to be substituted into the inequality. The gain Π of
the controller can be obtained by solving the LMI feasibility problem for Inequality (45).

4. Simulation Results

The simulation is implemented on the CarSim-Simulink co-simulation platform. The LMI
optimization problem can be solved by using the MATLAB Robust Control Toolbox. The vehicle
dynamics parameters are listed as follows: m = 1800 kg, Iz = 1600 kg·m2, L f = 1.3 m, Lr = 1.4 m,
C f = 80,000 N/rad, and Cr = 90,000 N/rad. A comparison of the different drivers is made to highlight
the advantages of the proposed approach, which help drivers reduce their workload and improve their
driving performance. The driver A parameters are listed as follows.

Gd0 = 0.6, τp0 = 0.68, τd0 = 0.30, G̃d = 5%*Gd0, τ̃p = 5%*τp0, and τ̃d = 5%*τd0.
The assistance control saturation value is u = 10/180*3.14.
The driver B parameters are listed as follows.
Gd0 = 0.7, τp0 = 0.68, τd0 = 0.23, G̃d = 5%*Gd0, τ̃p = 5%*τp0, and τ̃d = 5%*τd0.
The assistance control saturation value is u = 8/180*3.14.
In the simulation, the vehicle is supposed to complete lane changing maneuvers with a constant

vehicle speed of 20 m/s, which is proposed to complete the effectiveness verification of the proposed
method. To evaluate controller performance, the driver average angle is defined and expressed as

w =

∫ t=T
t=0 |δd|dt

T

4.1. Driver A Steering Manoeuvres Tests

The global trajectories are shown in Figure 3. The driver steering maneuvers without an assistance
controller reach the largest lateral deviations at 85 m, and their global trajectory positions settle down at
approximately 142 m. Meanwhile, the global trajectory position of the driver steering maneuvers with
the controller converges at 130 m. Obviously, the controller can assist the driver by quickly reducing
the lateral deviations and the overshoot. Notably, the controller with a consideration of the saturation
converges faster than the controller without a consideration of the saturation.

The simulation results for the heading angle deviation, lateral deviation, lateral acceleration,
and yaw rate are plotted in Figure 4. The maximum lateral deviation and heading deviation reach
0.23 m and 0.051 rad, respectively, when using the designed controller, which is smaller than that
without the controller. Meanwhile, the lateral acceleration and yaw rate responses of the vehicle without
the controller have larger amplitudes than the vehicle with the controller. This finding shows that the
designed controller assists the driver in obtaining better driving performance. Compared with both
controllers, the controller with a consideration of saturation has a small lateral deviation. The lateral
acceleration and yaw rate with a consideration of saturation have slightly larger amplitudes than those
without considering saturation. This result shows that the controller with a consideration of saturation
can optimize the driving performance by limiting the input.
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Figure 4. The simulation results for the heading angle deviation, lateral deviation, lateral acceleration,
and yaw rate.

The simulation results for the steering angle are plotted in Figure 5. The total steering angle of the
drivers without the controller is larger than that with the controller and may lead to a potential lane
departure. The result shows that the controller provides an assistance angle to help drivers traverse
the trajectory.

The simulation results for the driver steering angle are plotted in Figure 6. It is clear that drivers
without assistance control require more aggressive steering control angles to smoothly track the
trajectory. The steering angle without using the controller is up to 44◦ at 3.8 s, and the driver suffers
from driver overload. According to Table 1, the assistance controller provides a small assistance
steering angle to assist the driver and can reduce the driver’s workload. Moreover, the controller with
the consideration of saturation can optimize driving performance and improve the state convergence
rate by limiting the input.
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Table 1. Driver average angle.

Controller Name Driver Average Steer (◦)

Driver 1 With Saturation 60.4275
Driver 1 Without Saturation 61.3871
Driver 1 Without Controller 80.0831

4.2. Driver B Steering Manoeuvre Tests

The global trajectories are shown in Figure 7. The driver maneuvers without using the controller
have the largest lateral deviations at 90 m and tend to overshoot. The global trajectory position
converges at 140 m. Meanwhile, the controller can help the driver quickly reduce the overshoot, and its
global trajectories converge at 132 m, which is smaller than the trajectories without the help of the
controller. Obviously, the controller can quickly assist the driver in reducing lateral deviations and the
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overshoot. Compared with both controllers, the controller with consideration of saturation converges
faster than the controller without consideration of saturation.

In Figure 8, the lateral deviation and the yaw deviation reach 0.51 m and 0.07 rad, respectively,
at approximately 4.2 s without using the proposed controller, which may lead to a potential deterioration
of the control accuracy. Meanwhile, the lateral acceleration and the yaw rate reach 3.8 m/s2 and 10◦/s,
respectively. On the other hand, the lateral deviation and yaw deviation are maintained in the region
of approximately 0.31 m and 0.065 rad, respectively. The lateral acceleration and the yaw rate of the
vehicle with the controller can be kept in a range of 3.0 m/s2 and 8◦/s. This result shows that the
designed controller assists the driver in obtaining better driving performance. Compared with both
controllers, the controller with consideration of saturation has a smaller lateral deviation than that
without saturation. The state convergence rate of the drive vehicle system can be improved by using
the controller with the consideration of input saturation.
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The simulation results for the steering angle are plotted in Figure 9. The total steering angle of
drivers without the controller is larger than that with the controller and reaches 39◦ at 3.8 s, which may
lead to a potential deterioration of the control accuracy and a large deviation from the given reference
trajectory. Moreover, the controller provides an assistance angle to help the driver effectively follow
the given trajectory.
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Figure 9. The simulation results for the steering angle.

The simulation results for the driver steer angle are shown in Figure 10. It is clear that the driver
without a controller requires more aggressive steering control angles to smoothly track the given
trajectory, which may lead to a large deviation. The steering angle without using the controller reaches
39◦ at 3.8 s and tends to overshoot. The driver steering angle using the designed controller can be
maintained within a specific range of approximately 30◦. According to Table 2, the assistance controller
can reduce the driver’s workload by providing a small assistance steering angle to assist the driver.
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Table 2. Driver average angle.

Controller Name Driver Average Steer (◦)

Driver 2 With Saturation 59.9365
Driver 2 Without Saturation 60.1861
Driver 2 Without Controller 77.7396

By analyzing the different steering maneuvers, different drivers have different driving
characteristics in the absence of an assistance controller. The proposed controller can assist the
drivers in reducing the workload and lateral deviation. The controller with saturation can further
optimize driving performance and improve the state convergence rate by limiting the input.

5. Conclusions

In this paper, gain scheduling output feedback control for vehicle path tracking considering
assistance steering saturation is proposed to assist drivers in tracking reference trajectories.
Driver–vehicle modelling considers the uncertainties of the different driver parameters, tire cornering
stiffness, and assistance steer angle saturation. A Lyapunov function considering saturation and
uncertainty parameters is used to optimize the controller performance. Based on the MATLAB-CarSim
co-simulation platform, the controller with saturation can reduce the steering workload and lateral
deviation and improve the convergence rate of the state.
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