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Abstract: The recuperation of otherwise lost waste heat provides a formidable way to decrease the
primary energy consumption of many technical systems. A possible route to achieve that goal is
through the use of Stirling engines, which have shown to be reliable and efficient devices. One can
increase their performance by optimizing the piston motion. Here, it is investigated to which extent
the cycle averaged power output can be increased by using a special class of adjustable sinusoidal
motions (the AS class). In particular the influence of the regeneration effectiveness on the piston
motion is examined. It turns out that with the optimized piston motion one can achieve performance
gains for the power output of up to 50 % depending on the loss mechanisms involved. A remarkable
result is that the power output does not depend strongly on the limitations of the regenerator,
in fact—depending on the loss terms—the influence of the regenerator practically vanishes.

Keywords: piston motion optimization; endoreversible thermodynamics; stirling engine; irreversibility;
power; efficiency; optimization

1. Introduction

The global trend towards fossil fuel savings, reduction of CO2 emissions, and use of renewable
energy sources is calling for ways to reuse energy and especially to recoup energy in the form of heat,
which would be lost otherwise. The Stirling engine, invented by Robert Stirling in 1816 [1,2], is among
other devices one of the most suitable engines to harness such waste heat. Owing to its regenerator that
internally stores and releases heat during its cyclic operation, it has an excellent theoretical efficiency.
It is thus natural that efforts have been undertaken to improve its operation even further, for example
via design and process parameter optimizations [3–6] or free-piston approaches [7,8].

A particular interesting way to optimize heat engines in general is the optimization of the piston
motion [9–13]. In the past, the piston trajectories of engines with Otto [14–16], Diesel [10,17,18],
Miller [19] and Brayton [20] cycles as well as light-driven engines [21–23] have been the subject of
interest. These investigations showed substantial improvements of the engine efficiencies and power
outputs. Such an approach has also been taken for Stirling engines. Kojima [24] considered the optimal
control problem of free-piston Stirling engine generators. Moreover, Craun and Bamieh [25] and
Craun [26] solved cyclic optimal control problems for an actuated beta-type Stirling engine, based on
the Schmidt model with an indirect optimization method, and based on a higher fidelity reduced order
model with a direct optimization method, respectively.
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The aim of the present study is to follow the same route and to determine the potential gains
in the power output for a particular type of Stirling engine, namely a Stirling engine in alpha
configuration characterized by its two independently operating pistons. While this work was initialized
by the task to use Stirling engines to recover waste heat of machine tools—a task which has a
considerable energy-saving potential—we here analyze an endoreversible alpha Stirling engine and
its optimal piston motion in general. In order to avoid a full control theory based calculation, which
would be overly demanding for this preliminary assessment, here a simpler approach is taken [27].
We investigate the gains for a parametrized piston motion, which will provide lower limits for the gain
achievable by a control theory based optimization.

While in [27] a Stirling engine with ideal regeneration was analyzed, here our special focus will
be on the imperfect regeneration and its consequences.

The goal of our investigations is to go beyond a classical ideal thermodynamic treatment and
take important dissipative processes into account. This approach follows the ideas of finite-time
thermodynamics [28–31]. One well developed finite-time thermodynamics method, which will be
used here, is Endoreversible Thermodynamics. It has proven to be a suitable tool to model dissipative
systems, for a review the reader is referred to [32–34]. In particular it provides a methodology to
capture the dissipative loss terms quantitatively. For the Stirling engine considered here these include
losses due to the mechanical friction of the moving pistons, the flow friction of the working gas flowing
through the regenerator while moving from the hot to the cold cylinder and back, and the finite heat
transfer rates from the heat source into the engine and from the engine into the heat sink.

In Endoreversible Thermodynamics, the Stirling engine is seen as a collection of subsystems.
While these are still reversible solely, the connections between them can be irreversible. The advantage
of this description is that knowledge about equilibrium systems can be applied and entropy
production only occurs through transfers between the subsystems. Initially the focus of Endoreversible
Thermodynamics was on relatively simple heat engines and refrigerators [35–38], but its scope
widened later to include applications related to for instance solar power [39–42] and chemical
processes [15,43–46]. Also the performance of more complex systems [47–52] has been investigated
and recent work widened the treatment to the thermodynamics of computing [53] and systems
under temporal fluctuations [54] leading to generalizations of the well known Curzon–Ahlborn
efficiency [55].

2. The AS Class of Piston Motions

Typically in classical Stirling engine modeling, time-harmonic piston motions with a fixed phase
shift ∆φ = −π/2 between the two cylinders are considered.

Then for a single cylinder its change in volume, which will be called “standard harmonic motion”
(ST), is described by

V(t) = Vdead + ∆V(1 + sin(2πt/t0))/2. (1)

Therein, Vdead denotes the dead volume, i.e., the minimum volume that is left unswept by the
piston, ∆V describes the displacement, i.e., the volume that is swept by the piston during its motion,
and t0 is the period of motion. As the goal is to maximize the average power output compared to the
classical Stirling engine motion by the use of a nonlinear optimization approach, we introduce a new
motion class for the time-dependent volume characterized by three main properties. First, the function
allows to vary both the volume “speed” V̇(t) and the time the volume spends close to its maximum
Vdead + ∆V or close to its minimum Vdead. Second, it keeps the periodicity of the ST and, in addition,
is able to regain the ST by the proper choice of the function parameters. Third, the function is
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continuously differentiable with respect to time. We define this so-called “adjustable sinusoidal
motion” (AS)

V(t) = Vdead + ∆V f (t/t0; σ, δ), (2)

the core of which consists of the function composition

f (x; σ, δ) = ( f1 ◦ f2)(x) = f1( f2(x; δ); σ), (3)

with f1 as

f1(y; σ) = (sin(2πy + σ sin(4πy)) + 1) /2, (4)

and f2 as

f2(x; δ) = x + δ(1− cos(2πx)). (5)

Like in the ST, Vdead and ∆V are the dead volume and the displacement, respectively. The period
of motion is chosen to be t0 = 0.1 s for the remainder of the study.

Let us now focus on the dimensionless scalar motion control parameter σ and δ. One can clearly
see that by choosing σ = δ = 0, the AS turns into the ST, i.e., the standard harmonic motion can be
considered a special case of the adjustable sinusoidal motion class. Keeping δ = 0, the alteration of the
shape of the AS with respect to the parameter σ is shown in Figure 1.
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Figure 1. Comparison of the cylinder volume over time V(t) for the “standard harmonic motion” ST
(solid line) and “adjustable sinusoidal motion” AS (dashed line) for t0 = 0.1 s with δ = 0 and σ = 0.6.
For the AS motion with σ > 0, the maximum volume speed (e.g., around t = 0.05 s) increases, while
the piston speed around the volume extrema decreases.

An increase of σ extends the dwell time of the piston around the minimum and maximum volume
and it also increases the piston speed within the phases of compression and expansion.

A further shape change of the AS motion due to an additional variation of parameter δ is displayed
in Figure 2.

This parameter affects the symmetry of the shape of the volume vs. time curve within a period of
motion. For δ > 0, the dwell time of the piston at the volume maximum is reduced, while the dwell
time around the volume minimum is increased. As Figure 2 shows, the slope of the volume curve is
practically unchanged while varying δ, thus it has a much smaller influence on the piston speed than
the parameter σ.
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Figure 2. Plot of the cylinder volume over time V(t) for the “adjustable sinusoidal motion” AS for
t0 = 0.1 s with δ = 0 and σ = 0.6 (solid line) in comparison to the AS motion with δ = −0.05
and σ = 0.6 (dashed line) and with δ = 0.05 and σ = 0.6 (dotted line). Within a period of motion,
negative values of δ reduce the time the volume spends around its maximum and increase the time it
spends around its minimum. Positive values lead to the opposite effect.

In view of the optimization of the AS, constraints for the parameter σ : −0.13 < σ < 0.6 and
δ : −0.08 < δ < 0.08 are introduced, which have proven useful in the course of the performed
numerical studies. Additionally, we no longer consider the piston motion of a single cylinder but
rather take into account the entire dynamics of the alpha-type Stirling engine. This is characterized by
the two piston motions

V1(t) = Vdead + ∆V f (t/t0; σ1, δ1), (6)

V2(t) = Vdead + ∆V f (t/t0 + ∆t/t0; σ2, δ2), (7)

that are coupled by the time shift ∆t/t0. The ST value for this parameter translates into ∆t = −0.25t0
corresponding to ∆φ = −π/2. Hence, the subsequent analysis of the potential power gains achievable
by the nonlinear optimization of the piston dynamics incorporates five dimensionless parameters σ1,
δ1, σ2, δ2, and ∆t. Once these have been optimized for a particular engine, the optimized function for
the volume will be labeled by “optimized sinusoidal motion” OS.

3. Endoreversible Thermodynamics

Endoreversible modeling aims at a description of a system by specifying the system components
and the processes occurring in form of equilibrium subsystems and reversible or irreversible
interactions, respectively. Endoreversible Thermodynamics has shown to be a reliable modeling
tool within the context of finite-time thermodynamics and has been applied in a variety of systems.

The subsystems needed in our application come in two varieties: either as (in)finite Reservoirs or
Engines. The latter serve for energy conversion, while the former store extensities and energy. A finite
Reservoir is defined by specifying its energy Ei as a function of its extensities, where i denotes the i-th
subsystem. For each extensity Xα

i a corresponding intensity Yα
i can be calculated by

Yα
i =

∂Ei(Xα
i )

∂Xα
i

, (8)

where the superscript α specifies the extensity. For example the chemical potential µ = Yn, as it
corresponds to the extensity mole number n. Then a change in energy can be expressed by changes in
the extensities

dEi = ∑
α

Yα
i dXα

i . (9)
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As a consequence each flux of extensity Jα
i carries an accompanying flux of energy

Iα
i = Yα

i Jα
i (10)

into the subsystem.
For each subsystem i all extensities including the energy can then be accounted for by

balance equations

d
dt

Xα
i = ∑

k
Jα
i,k for all α and (11)

d
dt

Ei = ∑
k,α

Iα
i,k , (12)

where k is the contact point of subsystem i, which is here labeled by the interaction they are connected
to. For an infinite reservoir like a fixed temperature heat bath its intensity does not change if the
corresponding extensity is added or removed, and thus it is specified by its fixed intensity.

The endoreversible subsystem class Engines differs from Reservoirs in that they can neither store
extensities nor energy. Thus all extensity fluxes and energy fluxes going in and out of an interaction
have to cancel:

0 = ∑
k

Jα
i,k for all α and (13)

0 = ∑
k,α

Iα
i,k. (14)

The interactions between subsystems are the important entities for the non-equilibrium
description of the overall system. They are the entities in which entropy can be produced and
are thus indispensable for modeling irreversibilities. Interactions are described by specifying the
extensity and energy fluxes at all connected contact points as functions of the state variables of the
subsystems. Due to Equation (10) it suffices to specify at each contact point k of subsystem i either the
extensity flux Jα

i,k or the energy flux Iα
i,k. Usually such interactions contain transport parameters like a

heat conductance, which specifies the heat flux between to contact points in terms of the temperature
difference. Nonetheless, interactions can also be reversible. In that case the flux of extensity α is
specified by the requirement that equal intensities of the connected subsystems Yα

i = Yα
j have to be

maintained. Within one interaction for all conserved extensities the respective fluxes have to balance
at all times, but entropy can be produced. For simplicity it is sometimes possible to not consider the
carrying extensity of an energy flux and just use the latter referred to as power flux to describe the rate
of transferred energy.

4. The Stirling Engine Model

4.1. The Structure of the Endoreversible Stirling Engine Model

The endoreversible description just introduced enables us to build the model of the alpha-type
Stirling engine as shown in Figure 3. Here, the subsystems shown as circles are the endoreversible
engines T1 and T2 representing the mechanical transmission. They are the link between the cylinders
of the Stirling engine (reservoirs 1 and 2) and the environment (reservoirs E) and convert the volume
work flux of the piston stroke into power fluxes. The latter are collected in the work reservoir WT for
net power from the volumetric process and in the work reservoir WF for frictional power loss of the
mechanical transmission.

The reservoirs H and C represent the hot and the cold heat bath, respectively. They are irreversibly
connected to reservoirs 1 and 2 which are used to model the gas within the engine’s hot and cold
cylinder. Finally, the irreversible interactions between them, which are further connected to the
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work and entropy reservoirs WR and SR, respectively, are used to model the regenerator of the
Stirling engine.

The following subsections provide a more detailed description of the reservoirs and interactions.

1 2

H C

SRWR

WT

WF

T1 T2

E E

TH TC

µ1, T1
p1

µ2, T2
p2

pe peJS
2,r

JS
SR,r

JS
1,h JS

2,c

Jn
2,r

IWR,r
I2,r

P1 P2

Pf,1 Pf,2

JV
T1,e1 JV

T2,e2JV
1,t1 JV

2,t2

Figure 3. Endoreversible model of the alpha-type Stirling engine with reservoirs (rectangles),
engines (circles), and reversible (straight lines) as well as irreversible (wavy lines) interactions.
The dashed rectangles represent reservoirs, which are not physically existent but which primarily
serve bookkeeping purposes. At the top, there are the hot and the cold heat baths H and C,
respectively, which are irreversibly connected to the hot and cold cylinder 1 and 2 of the Stirling
engine. The regenerator between these cylinders is modeled as an irreversible interaction. Also,
for bookkeeping purposes, this interaction is connected to a work reservoir WR and an entropy
reservoir SR. The endoreversible engines T1 and T2 represent the mechanical transmission the pistons
are connected to. They further interact with the environment, which is modeled as a (distributed)
volume reservoir E. The work reservoirs WT and WF collect the net power and the friction losses,
respectively, from the mechanical transmission engines.

4.2. The Working Fluid

The working fluid in the two cylinders of the Stirling engine is modeled as a diatomic ideal gas
with the thermal equation of state

pV = nRT, (15)

where p, V, n, R and T are the pressure, volume, mole number, gas constant and temperature,
respectively. The caloric equation of state is

U = ĉVnRT, (16)

where U is the internal energy and ĉV is the dimensionless specific heat capacity at constant volume,
which is here chosen as ĉV = 5/2. As the momentum and the angular momentum of the gas are not
considered here, the energy E from Equation (9) is here identical to the internal energy U.

For an ideal gas the usual extensities are the entropy S, V and n, and once the internal energy
is known as a function of those one can easily get all the intensities. Due to the presence of
multi-extensity fluxes [56] it turns out to be advantageous to use U, V and n instead, and express the
other thermodynamic variables by these. We find

S(U, V, n) = nR
(

ĉV ln
U
U0

+ ln
V
V0
− (1 + ĉV) ln

n
n0

)
+ n

S0
n0

(17)
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with U0, V0 and n0 being the reference internal energy, volume and mole number, respectively, for the
reference entropy S0(U0, V0, n0). For the intensities one obtains

T(U, V, n) =
U

ĉVnR
, (18)

p(U, V, n) =
U

ĉVV
, (19)

µ(U, V, n) =
U

ĉVn

(
1 + ĉV + (1 + ĉV) ln

n
n0
− ĉV ln

U
U0
− ln

V
V0
− S0

n0R

)
. (20)

4.3. Heat Transfer

The heat transfer between the hot heat bath H and the gas reservoir 1 as well as between the
gas reservoir 2 and the cold heat bath C are represented by two interactions h and c, respectively.
Both are assumed to be Newtonian, and thus, with the hot and cold heat bath temperatures TH and TC,
one obtains

IS
1,h = κ(TH − T1) = −IS

H,h , (21)

IS
2,c = κ(TC − T1) = −IS

C,c , (22)

where κ is the heat conductance. The accompanying entropy fluxes into or out of the reservoirs are

JS
1,h = IS

1,h/T1 , (23)

JS
2,c = IS

2,c/T2. (24)

The temperatures of both heat baths remain constant throughout the operation of the Stirling
engine at TH and TC, respectively.

4.4. The Imperfect Regenerator

A real regenerator stores energy and entropy at a continuum of temperatures. The possible
temperature range is determined by the temperatures of the reservoirs 1 and 2. In cyclic operation
gas streams from one cylinder into the other and back. While flowing from the hot cylinder 1 along
its path through the regenerator the gas temperature will drop, but due to finite heat transfer it will
stay above the local regenerator temperature. Finally it will leave the regenerator at a temperature still
above the cold cylinder 2 temperature. On the way back it will start below the regenerator temperature
and stay below it. It will warm up but will not reach the hot cylinder temperature. This necessitates
the discussion of two cases depending on the flow direction of the gas.

The regenerator performance depends on a variety of features and is degraded by several different
loss phenomena. In the theories of Martini as well as Kühl and Schulz for example, these losses are
referred to as the reheat loss, the temperature swing loss, the thermal conduction loss, the internal
temperature swing loss, the dispersion loss, and the bypass loss [57].

However, what is essential from a thermodynamic point of view is the thermodynamic state of the
gas when it enters and leaves the regenerator at its contacts to the cylinders. We will thus concentrate
on these properties, and make the simplifying assumption, that the gas amount in the regenerator can
be neglected compared to the gas amounts in the cylinders.

The imperfect regenerator is here modeled as an irreversible interaction between reservoirs 1
and 2 and two bookkeeping reservoirs, which provide the storage for energy WR and entropy SR.
This regenerator interaction is labeled with “r”. We define the regenerator interaction by giving all the
fluxes at the contact points it connects to. The gas flow is a multi-extensity flux [56], which transports
particles (mols) and entropy (α =Sn).
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The particle fluxes are specified as:

Jn
1,r = α(p2 − p1) , (25)

Jn
2,r = α(p1 − p2) , (26)

where α is the mass transfer coefficient. As both particle fluxes have the same magnitude and differ
only in their sign, Jn

1,r = −Jn
2,r, no gas is lost in the regenerator. If Jn

i,r is positive, gas flows into
reservoir i, if it is negative gas flows out of reservoir i. Thus, the sign of Jn

i,r can be used to discriminate
between the two flow cases mentioned above. If needed, fluxes of this interaction will be split into
two summands

Jα
i,r = Jα

→i,r + Jα
←i,r , (27)

Iα
i,r = Iα

→i,r + Iα
←i,r , (28)

where Jα
→i,r and Iα

→i,r indicate that Jn
i,r is positive and flows into reservoir i, while Jα

←i,r and Iα
←i,r indicate

that Jn
i,r is negative and flows out of reservoir i. With this notation we set

ISn
←1,r =

{
Jn
1,rh1 if Jn

1,r < 0,

0 otherwise,
(29)

with hi = Hi/ni being the molar enthalpy of subsystem i and

ISn
→1,r =

{
Jn
1,r(r1h1 + (1− r1)h2) if Jn

1,r > 0,

0 otherwise,
(30)

where r1 is the regeneration coefficient for reservoir 1. Likewise we set

ISn
←2,r =

{
Jn
2,rh2 if Jn

2,r < 0,

0 otherwise,
(31)

and

ISn
→2,r =

{
Jn
2,r(r2h2 + (1− r2)h1) if Jn

2,r > 0,

0 otherwise,
(32)

where r2 is the regeneration coefficient for reservoir 2.
This choice corresponds to the physical situation in the regenerator described above: The gas

leaving one of the cylinders has the properties of the gas in the cylinder it comes from leading to
Equations (29) and (31). For the gas entering one of the cylinders the properties of the gas depend
on the extent of the regeneration. If no regeneration would take place (ri = 0), this gas would enter
with exactly the properties of the cylinder it came from. If regeneration is present, then the gas
properties would become closer and closer to the properties of the gas within the receiving cylinder
with increasing ri, completely reaching the properties of the receiving cylinder for ri = 1. This leads to
Equations (30) and (32).

Given the energy fluxes ISn
1,r and ISn

2,r , the entropy fluxes can be inferred from ISn
i,r = Ti J

S
i,r + µi J

n
i,r

and one finds

JS
i,r = (ISn

i,r − µi J
n
i,r)/Ti. (33)
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In case of out going particle fluxes this leads to

JS
←1,r = s1 Jn

1,r, (34)

JS
←2,r = s2 Jn

2,r, (35)

where si = Si/ni is the molar entropy of subsystem i, in the other case one has to use Equation (33).
Finally, the fluxes into the bookkeeping reservoirs WR and SR are specified:

IWR,r = −ISn
1,r − ISn

2,r and (36)

JS
SR,r = −JS

1,r − JS
2,r. (37)

If we now look at the energy content EWR(t) of reservoir WR, then it turns out that

EWR(t0)− EWR(0) =
∫ t0

0
IWR,rdt. (38)

A cyclic operation requires reservoir WR to return to its initial state at the end of the cycle,
EWR(0) = EWR(t0). This couples the regeneration coefficients r1 and r2, because in

0 = EWR(t0)− EWR(0) = −
∫ t0

0
(ISn
←1,r + ISn

←2,r + ISn
→1,r + ISn

→2,r)dt (39)

the last two terms in the integral depend on r1 and r2.
Thus the operation of the above defined regenerator—which we will term an r-Regenerator

from here on—will depend on one variable r only: For a given value of the regeneration coefficient
r, the regeneration coefficients r1 and r2 are determined in a way such that in stationary cyclic
operation (all state variables are cyclic including the energy of WR) the conditions r = (r1 + r2)/2 and
Equation (39) are both fulfilled.

Finally, we look at the entropy content in the bookkeeping reservoir SR

SSR(t0)− SSR(0) =
∫ t0

0
JS
SR,rdt = −

∫ t0

0
(JS

1,r + JS
2,r)dt. (40)

It allows to determine the cycle averaged regeneration-related entropy production rate

1
t0

∫ t0

0
(JS

1,r + JS
2,r)dt = −SSR(t0)− SSR(0)

t0
, (41)

which is part of the overall entropy production rate Σ introduced later.

4.5. The Dynamics

The temporal development of the system is described in terms of a coupled system of differential
equations. From the balance equations for the extensities derived above, the transport laws, and the
gas properties we obtain a coupled system of differential equations to be integrated:

U̇1 = IS
1,h + ISn

1,r = κ(TH − T1) + ISn
1,r , U̇2 = IS

2,c + ISn
2,r = κ(TC − T2) + ISn

2,r , (42)

V1 = V1(t; σ1, δ1), V2 = V2(t + ∆t; σ2, δ2), (43)

ṅ1 = Jn
1,r = α(p2 − p1), ṅ2 = Jn

2,r = α(p1 − p2). (44)
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4.6. Power Output, Efficiency and Entropy Production

The power output of the Stirling engine originates from the cyclic volume fluxes JV
T1,e1 = JV

1,t1 = V̇1

and JV
T2,e2 = JV

2,t2 = V̇2 between cylinders 1 and 2 and the environment over a pressure difference of
p1 − pe and p2 − pe, respectively. This power flux is delivered by the two engines T1 and T2, and then
split into fluxes Pf,i and Pi. The first one is the power lost into friction and here modeled as

Pf,i = βV̇2
i , (45)

where β is the mechanical friction coefficient [47]. For both cylinders 1 and 2 it is later dissipated to
heat dumped into the environment at TC. The usable parts P1 and P2 with

Pi = piV̇i − Pf,i (46)

are combined into the cycle averaged power output of the Stirling engine

Pout =
1
t0

∫ t0

0
P1 + P2 dt. (47)

The cycle averaged heat fluxes are

qH =
1
t0

∫ t0

0
IS
H,h dt qC =

1
t0

∫ t0

0
IS
C,c dt , (48)

and the efficiency is η = Pout/qH. Finally the cycle averaged entropy production rate Σ can be
determined by the entropy changes in the two heat baths H and C, as—due to their cyclic operation—all
other subsystems are after one cycle back into their initial state, i.e., their entropy is unchanged.
Thus one finds

Σ =
qH
TH

+
qC
TC

+

∫ t0
0 Pf,1 + Pf,2 dt

t0TC
. (49)

5. Results

In this study the aim is to quantify the potential gains in the power output of an alpha Stirling
engine by an optimal motion of its two independent pistons. Of particular interest is the dependence of
the performance features on the extent of regeneration possible in the imperfect regenerator. Our results
are based on an endoreversible model of the Stirling engine capturing the most important dissipation
processes. More specifically, we determine for cyclic operation that volume dynamics out of the AS
class of piston motions, for which the cycle averaged power output of the Stirling engine is maximized.
In particular, for given system parameters α, β, κ and the regeneration coefficients r1, r2 and for the
motion parameters σ1, δ1, σ2, δ2 and ∆t the dynamical equations are integrated until cyclic operation is
reached. Then the power output and other quantities relevant for the analysis are determined.

By varying the motion parameters and repeating the procedure the power output is optimized
numerically based on a Nelder–Mead approach [58]; the corresponding results are labeled OS
(optimized sinusoidal). For comparison the standard piston motion labeled ST will be used.

In our investigation of the Stirling engine performance we will look at three different cases
distinguished by their parameter sets. For the reference case the system parameters are chosen to
be: TH = 400 ◦C, TC = 300 ◦C, t0 = 0.1 s, n0 = 2 mol, Vdead = 0.5 L, ∆V = 5 L, β0 = 25 kJs/m6,
α0 = 500 mol/(s bar), κ0 = 1.4× 105 W/K. With these choices the reference case is characterized by a
relatively large heat conductance and mass transfer. The other two cases are chosen for demonstrating
the impact of a small heat conductance and small mass transfer coefficient. The low conductance case
has the same parameters as the reference case but κ< = κ0/20. The low mass transfer case has the same
parameters as the reference case but α< = α0/20.
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For these three cases the engine performance is studied in particular as a function of the
regeneration coefficient r = (r1 + r2)/2 in the range 0 ≤ r ≤ 0.95. This range ensures that r1
and r2 are both smaller than one and that the cycle averaged regeneration-related entropy production
rate is positive.

5.1. Power

In Figures 4 and 5 the optimized power output is shown for the reference case in comparison with
the low mass transfer and low conductance cases, respectively. For the reference case the OS motion shows
a power output of about 150 % of the ST motion. This is a quite remarkable increase. Even more
remarkable is the fact that this power increase is nearly independent of the regeneration coefficient
r over its full range. The same applies to the performance of the low mass transfer case shown in
Figure 4. Again it shows nearly no r dependence, however the relative power gain is much larger than
for the reference case.

In order to understand that behavior one has to consider the effects of the regeneration rate r.
With little regeneration (corresponding to small r) most of the heat leaving the hot cylinder will reach
the cold one and will be transported further into the cold bath. When the gas flow is reversed the
cold gas will not be heated up much and would cool down the gas in the hot cylinder unless the
connectivity to the hot bath is large enough to compensate that effect. So for a large heat conductance
as in the reference case the effects of little regeneration are mitigated by increased heat fluxes from or
to the heat baths. This can be seen in Figure 5, where the power output for the low conductance case
declines with smaller r.
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Figure 4. The power output is shown as a function of the regeneration coefficient r for the reference case
in comparison with the low mass transfer case. For both, the power output is nearly unaffected by the
extent of the regeneration independent of the used motion.
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Figure 5. The power output is shown as a function of the regeneration coefficient r for the reference
case in comparison with the low conductance case. While the power output for the reference case is nearly
unaffected by the extent of the regeneration this is different for the low conductance case, which shows a
declining power with declining regeneration.
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5.2. Efficiency

While on the one hand the power output is little affected for a large enough heat conductance,
the efficiency on the other hand is affected quite a bit: The increased heat fluxes needed for
the maximum power operation get larger and larger the smaller the regeneration coefficient gets.
Figures 6 and 7 show this clearly. As a reference value for the efficiency one can take the Carnot
efficiency ηCarnot = 0.25 for the given heat bath temperatures.

In the reference case the efficiency declines for the OS motion from about 21 % at 95 % regeneration
down to roughly 13 % for no regeneration, and for the ST motion from about 21 % to below 12 %.
The fact that both curves cross demonstrate that it is not the efficiency that is optimized but the power
output. In the low mass transfer case the efficiency is considerably lower; from below 20 % it declines
down to 9 % for the OS motion and is in the 1 % to 3 % range for the ST motion.

For the low conductance case the efficiency declines as well. However, the decline is steeper
compared to the low mass transfer case, as a comparison of Figures 6 and 7 reveals: from a starting value
at 95 % regeneration at about half the Carnot efficiency it goes down to slightly below 5 %. Interestingly,
the efficiency for the ST motion is larger than for the low mass transfer case starting at more than 7 %.
However, once it reaches the no regeneration region it also shows the very low efficiency of the low
mass transfer case.
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Figure 6. The efficiency is shown as a function of the regeneration coefficient r for the reference case in
comparison with the low mass transfer case. For both cases the efficiency is clearly decaying with weaker
regeneration. Moreover the efficiency for the standard motion is larger than for the OS motion close to
perfect regeneration for the reference case. Note that the efficiency for the OS motion is improved by
factors on the order of 5 compared to the ST motion for the low mass transfer case.
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Figure 7. The efficiency is shown as a function of the regeneration coefficient r for the reference case in
comparison with the low conductance case. For both cases the efficiency is clearly decaying with weaker
regeneration. Again the efficiency for the standard motion is larger than for the OS motion close to
perfect regeneration for the reference case.
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5.3. Entropy Production

Another interesting quantity to characterize the performance features is the cycle averaged
entropy production rate Σ. It is displayed as a function of the regeneration coefficient in Figures 8 and 9.
Several observations can be made. For all three cases the entropy production rate decreases with
increasing regeneration. That is not unexpected, as with better regeneration the amount of heat which
has to pass the finite heat conduction is reduced and thus the entropy production also decreases.

For the reference case Σ decays almost linearly with r, and moreover the absolute difference between
the entropy production rates between the OS and the ST motion stays more or less constant. For the
low mass transfer case the difference in Σ between the OS and the ST motion is inverted: the standard
motion has a higher entropy production than the optimized one. The same can be observed for the low
conductance case. This feature would seem natural, as a higher entropy production reduces the ability
to extract work from a given amount of heat, and thus a higher power output would require a reduced
entropy production. However the reference case shows, that this need not be true: the OS motion can
achieve a higher output “paying an entropy production toll” for its performance.

Finally it is worth noting that for the low mass transfer case the entropy production rate is higher
than for the low conductance case. This indicates that the finite mass transfer through the regenerator
leads to a larger pressure difference, which in turn gives a higher difference in the chemical potential.
That finally leads to an increased entropy production because the gas entering the receiving cylinder
differs not only in temperature but also in a significant fashion with respect to pressure from the
receiving gas.

��� ��� ��� ��� ��� ���
�

��

��

��

��

���

������������ ���������� � [-]

�
�
��
�
�
�
�
��
�
�
Σ
[�

/�
]

�� α�

�� α�

�� α�/��

�� α�/��

Figure 8. The cycle averaged entropy production rate is shown as a function of the regeneration
coefficient r for the reference case in comparison with the low mass transfer case. For both cases the entropy
production increases considerably with weaker regeneration.
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Figure 9. The cycle averaged entropy production rate is shown as a function of the regeneration
coefficient r for the reference case in comparison with the low conductance case. For the reference case the
OS motion leads to a stronger increase in the entropy production than for the low conductance case.
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5.4. OS Piston Motion

Finally we show the OS piston motion for the three cases introduced above for two different
regeneration situations: a very good regeneration at r = 0.9 and a very weak regeneration at r = 0.1.
In Figure 10 the temporal behavior of V1(t) is shown, in Figure 11 that of V2(t). The first observation
in both figures is that the OS motion is clearly different from the ST motion for all three cases and for
both regeneration situations. A surprising result is that for all three cases the 10 % regeneration and
the 90 % regeneration lead to very similar piston motions.

For both volumes the largest deviations can be observed for the low conductance case. All trajectories
show a trapezoid wave form, where the reference case has the most noticeable one, while the other cases
are closer to a sine wave form. Also the time shift between the two volumes clearly depends on the
case. Overall the degrees of freedom provided by the AS piston motion class are well used by the
different cases, while the influence of the regeneration extent is of minor importance.
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Figure 10. The optimized volume dynamics of the hot cylinder is shown as a function of time for the
reference, low mass transfer and the low conductance cases with r = 10 % and r = 90 %. The influence of the
regeneration coefficient is clearly visible, even though the impact of the different cases is much larger.
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Figure 11. The optimized volume dynamics of the cold cylinder is shown as a function of time for
the reference, low mass transfer and the low conductance cases with r = 10 % and r = 90 %. The influence
of the regeneration coefficient is clearly visible, but the impact of the different cases is considerably
smaller than for the hot cylinder.

6. Conclusions

Within this work, possible performance improvements were investigated for an alpha-type Stirling
engine by optimizing its piston motion. To limit optimization complexity, the possible motion paths of
each of both pistons were chosen from a particular functional class introduced as adjustable sinusoidal
(AS) motion. This motion is governed by two parameters for each piston and one phase shift parameter.
Thus, the complete optimization space consists of only five parameters. Additionally, the particular
choice of the AS motion class is motivated by previous optimization results [27], which show that
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letting the piston rest at extreme positions for a while on the one hand and unevenly distributing these
resting times between both extreme positions on the other hand has proven to be beneficial for the
thermal process efficiency.

The primary aim of this analysis is to understand the impact of imperfect regeneration within
the Stirling engine upon the engines power output and efficiency. To this end, a mathematical model
based on Endoreversible Thermodynamics has been developed, which particularly includes the main
dissipative process of a non-ideal regenerator represented by a single parameter, the regeneration
coefficient r.

In particular, we have set up three distinct cases where we analyzed the engines power output,
efficiency and entropy generation for both standard and optimized motion paths while varying the
regeneration coefficient. These cases are a reference case, a case with low mass transfer and one
with low heat conduction. In all these cases our results confirm the role of the regenerator as an
efficiency enhancing component for the Stirling engine for both standard and optimized motion paths.
The power output in the base case is largely independent from the regeneration coefficient while
for reduced mass transfer or heat conductance, the power output increases with better regeneration.
The efficiency is enhanced by a larger regeneration coefficient in any case.

Additionally, it was also observed that optimizing for maximal power output may lead
to a decreased efficiency, as maximal power output and maximal efficiency are distinct
operation points [47].

Summarizing, the maximal power output of the considered Stirling engine model benefits largely
from the motion path optimization. Especially in cases with limited mass transfer or heat conductance,
it benefits from an improved regeneration as well. The optimization for maximal power output may
however cause a decrease in efficiency. In certain application scenarios like waste heat recovery,
where the thermal energy supply is effectively for free, this can be desirable as the engine needs to pay
itself off by the power generated.

The above findings can provide the basis for future research efforts. An important next step
on the theoretical side of investigations would be a full control theoretic analysis of the optimized
piston movement. It would be very interesting to see to what extent the AS motion has exhausted
the optimization potential for the cycle averaged power output. On the practical side it would of
course be important to investigate to what extent the optimized piston motion can be approximated
by appropriate piston drives. For that purpose one can use mechanical couplings, but also electrical
motor driven pistons are possible, for which an appropriate excitation control in combination with the
inertial forces can—within limits—generate the desired motion.
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Nomenclature

Greek symbols:
∆φ Piston phase shift
∆t Piston time shift
α Mass transfer coefficient
β Mechanical friction coefficient
δ, σ Motion control parameter
η Efficiency
κ Heat conductance
µ Chemical potential



Energies 2020, 13, 4564 16 of 18

Symbols:
E Energy
I Flux of energy
J Flux of extensity
P, Pout Power
R Gas constant
S Entropy
T Temperature
U Internal energy
V Cylinder volume
Vdead Cylinder dead volume
X Extensity
Y Intensity
ĉV Specific heat capacity
h Molar enthalpy
n Mole number
p Pressure
r Regeneration coefficient
t Time
t0 Period of motion
q Heat flux

Subscripts:
0 Reference
1, 2 Piston number
C, c Cold
H, h Hot
e Environment
f Friction
i Subsystem
k Contact point
r Regenerator

Superscripts:

α Extensity type

Abbreviations:
AS Adjustable sinusoidal motion
OS Optimized sinusoidal motion
ST Standard harmonic motion
SR Entropy reservoir
WR, WT, WF Work reservoirs
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