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Abstract: Over the years, electricity consumption behavior in Brazil has been analyzed due to financial
and social problems. In this context, it is important to simulate energy prices of the energy efficiency
auctions in the Brazilian electricity market. The Markov Chain Monte Carlo (MCMC) method generated
simulations; thus, several samples were generated with different sizes. It is possible to say that the
larger the sample, the better the approximation to the original data. Then, the Kernel method and the
Gaussian mixture model used to estimate the density distribution of energy price, and the MCMC
method were crucial in providing approximations of the original data and clearly analyzing its impact.
Next, the behavior of the data in each histogram was observed with 500, 1000, 5000 and 10,000 samples,
considering only one scenario. The sample which best approximates the original data in accordance with
the generated histograms is the 10,000th sample, which consistently follows the behavior of the data.
Therefore, this paper presents an approach to generate samples of auction energy prices in the energy
efficiency market, using the MCMC method through the Metropolis–Hastings algorithm. The results
show that this approach can be used to generate energy price samples.

Keywords: demand side bidding; MCMC; energy; energy efficiency; Gaussian mixture model

1. Introduction

Energy consumption and economic growth must be directly related [1]. Therefore, it is important
that, when planning efficient energy conservation policies, policymakers consider the direct impacts
of energy consumption on economic growth and the consequences on energy consumption [2,3].
In addition, studies reveal that with higher levels of economic activity, there are higher levels of energy
use and environmental impacts [4–6]. Moreover, it is important to address the concept of energy
efficiency, since it provides security [7,8] and contributes to the reduction of carbon dioxide (CO2)
emissions. Energy efficiency is one of the best ways to reduce and control greenhouse gas emissions [9].
Energy efficiency is an essential tool to protect the environment. Energy efficiency reduces greenhouse
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gases and harmful criteria pollutants by decreasing the amount of fossil fuels needed to meet energy
demand [10]. In that sense, energy efficiency means environmental preservation [11], because the
energy saved will prevent the construction of new hydro and thermal plants and power transmission
lines. This means less use of natural resources and less environmental damage [12,13].

In this context, there are efforts to move towards building an economy that is efficient in the
use of resources [12], in addition to evaluating and estimating the potential of energy saving and
emission reduction. All this can provide useful information for energy environmental policies, and also
contribute to the sustainable development of countries with great economic influence in the world [11].
Recent documents report that Latin America has received little attention in the literature in terms of
regional coverage, although Latin America could be considered a benchmark or a test laboratory to
align socioeconomic and environmental objectives, since the successful adoption of such policies in
this region could motivate other regions [14]. It is worth mentioning that, together with Russia, India,
China and South Africa, Brazil is one of the developing countries with great economic potentials [15,16].

Energy efficiency is related to the technical ratio between the quantity of primary or final energy
consumed and the maximum quantity of obtainable energy services (heating, lighting, cooling, mobility,
and others). This is the rational use of energy [17]. Here, the concept of the white certificate stands out,
defined as “Certificates issued by independent certifying bodies that confirm the demands for energy
savings by market players as a result of efficiency measures” [18].

In this scenario, the concept of virtual energy is extended, related to the appearance of new agents
such as virtual power plants. This is comparable to a conventional transmission power plant with
a feature profile, allowing it to directly interact with other market participants, performing functions
in the electrical system related to electricity management and trade [19–21]. In addition, it is worth
mentioning that in an environment of great expansion of the electricity matrix, which occurs especially
in developing countries such as Brazil, the increase in energy consumption can be supplied by a built
power plant (solar, wind, hydro, biomass, thermal, etc.) or a virtual power plant. The virtual power
plant, in this case, is modeled by the reduction of energy consumption due to the energy efficiency
measures that are implemented.

Therefore, establishing energy efficiency tenders (virtual energy), that reduces energy with energy
efficiency actions is rather important. In addition, this energy could be sold in the energy market
through bidding mechanisms at a lower cost than real energy. Furthermore, to obtain economic and
environmental benefits, one can have social gains, as the energy efficiency industry generates jobs and
services [22]. The virtual hydropower plant is one that should be built to provide the same amount of
energy saved, because, due to this reduction, it can be postponed, reducing costs and environmental
impacts. Together, it could be obtained by withdrawing energy from the system, in the form of packages
of saved energy. For example, equipment manufacturers could launch products with technologies
that incorporate greater energy efficiency, whose necessary investment would be payment with saved
energy sold through auctions [22,23].

To meet the progress of energy efficiency, auctions can be used as effective mechanisms.
Well-structured energy efficiency programs, with proven gains, would be useful to delay the construction
of new hydro and/or thermal power plants. Consequently, there would be cost reductions and
environmental gains with the more rational use of resources [23].

According to the International Renewable Energy Agency [24], energy auctions are important
for governments in developing countries to seek renewable electricity at a moderate cost. In Brazil,
a study was carried out to analyze energy prices at auctions [25]. In 2019, The International Renewable
Energy [26] pointed to a growing trend in energy auctions because policymakers seek to obtain
electricity from renewable sources at the lowest possible price. A recent study with energy auctions
data from several countries was presented in [27]. This study did not show any price and energy
generation methodology that can improve decision-making for the companies involved.

This paper presents a methodology to simulate the energy prices of the energy efficiency auction in
the market to find out if the viability in Brazil could materialize. To generate the energy price samples,
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it would be necessary to obtain the probability density distribution of the available data. More recently,
a study on the estimated density via the kernel method can be seen in [28]. Another approach used
to obtain the density function is using Gaussian mixture models [29]. From the probability density
distribution, the Markov Chain Monte Carlo (MCMC) method can be used to obtain the samples of
interest [30]. Two methods were used to obtain the density distribution of the data: the Kernel method
and the Gaussian mixture model. In addition, the MCMC method was used to generate energy price
samples from energy efficiency auctions in Brazil. That is important for the agencies and companies
that use the energy auction. Therefore, this study can contribute to the energy system planning of
companies or countries.

Furthermore, a Demand Side Bidding (DSB) model adapted for the Brazilian market is proposed.
This proposal contemplates the development of the process based on the specification of a case study
evaluated in 2 scenarios: First, without the use of energy efficiency and second, with the use of energy
efficiency (energy that was not used). The rest of the paper is organized as follows: Section 2 brings
a review of the literature on energy efficiency experiences in other countries. Section 3 shows the
dynamics of the demand side bidding proposal in Brazil and the operation of the proposal. Section 4
describes the methodology, which includes estimation and simulation methods. Section 5 presents the
results and discussion, as well as the reports obtained based on the energy prices that were assigned in
the Brazilian electricity market. Finally, Section 6 provides the main conclusions and some possibilities
for future research.

2. Experiences of Energy Efficiency in Other Countries

Interest in energy efficiency policies in the final use of electricity has boomed in recent years
worldwide. A main reason is that the MWh of electricity that is not produced is cheaper than building
new generating plants [31]. Recently, Brazil became the first country in South America, which was
considered by the International Energy Agency in the annual statistical report on energy efficiency for
the first time [32]. The purpose of this section is to present the main energy policies implemented in
those countries that stand out for continuous improvement in energy efficiency, so that the Brazilian
energy market, according to its reality, also adapts those policies.

2.1. Germany

In Germany, energy efficiency is already accepted as a key element of a sustainable energy system,
which offers the lowest cost reduction of CO2, safeguards energy security and reduces energy costs [33].
In recent years, the German government has presented a new set of energy efficiency policy measures
in its action plans on energy efficiency [34] and climate protection [35]. The purpose was to achieve
national and European political objectives and, in parallel, generate economic, environmental and
social benefits [34].

The set of energy efficiency policy measures has been considerably expanded and refined [33,34].
In this context, important energy efficiency objectives stand out, such as: 50% less energy consumption by
2050 compared to 2010 and the use of energy efficiency and renewable energies to reduce CO2 emissions
by at least 25% by 2020 and 80% by 2050 compared to 1990. In addition, it is possible to mention the
minimization of electricity consumption against projections for economic and demographic development,
10,000 energy efficient districts by 2020 and 100 energy efficient office buildings by 2020 [33]. All these
constant efforts at the national level place Germany among the leading countries with best energy
efficiency practices [36].

2.2. Italy

Italy is considered one of the most outstanding models in energy efficiency, since it has successful
energy efficiency obligation schemes, especially in the industrial context [37,38]. Over the years, 80% of
White Certificates have been produced in the industrial sector [38]. In order to achieve the objectives
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during the 2014–2020 period, Italy relies mainly on the White Certificate obligation scheme, which was
created in 2001 but has been applied since 2005 [39].

The Italian White Certificate, evaluated in tons of oil equivalent saved, acts as an obligation scheme
and as an incentive, due to the presence of a market for the trade of white certificates. On the one hand,
electricity and gas distributors with more than 50,000 customers are bound to meet ever-increasing
annual energy efficiency targets. On the other hand, it is a flexible mechanism, since energy savings
can be obtained through the operation of market operators: distributors bound by the environment,
companies operating in the energy service sector, companies or organizations that have an energy
manager or an ISO 50001 certified energy management system in place [40].

2.3. United States

According to Figure 1, the United States (US) occupies the top ten of the ranking, according to
the American Council for an Energy-Efficient Economy (ACEEE) [36]. Likewise, the US has projected
that consumers will save more than USD 545 billion between 2009 and 2030, in the adoption of these
minimum efficiency standards, thus reducing energy consumption by 11,957.29 TWh and, consequently,
of CO2 emissions by more than 2.26 trillion tons [41].

The US government, through energy efficiency policies, believes that it can control the growth
of electricity consumption. Simultaneously, they are guided by the rules of building construction,
standard equipment, as well as labeling and incentives. These actions aim to achieve an estimated
annual savings of 0.8% in 2025 [41].

Figure 1. Rankings by country. Source: ACEEE (2018).

2.4. Overview: International Energy Efficiency

Governments that promote investment in energy efficiency and the implementation of supportive
policies save citizens’ money and reduce pollution. In this context, the ACEEE, through the 2018
International Energy Efficiency Scorecard, presents and explores energy efficiency policies and
performance of 25 of the world’s top energy-consuming countries, including Brazil [36]. Figure 1
shows the top 25 countries with their respective position in the ranking. In the evaluation carried out
by ACEEE [36], and according to the established scores, it is possible to see that Germany and Italy tied
for first place, obtaining the highest overall score of 75.5 out of 100 possible points (considering four
categories: National efforts, Buildings, Industry and Transportation). The first places in the ranking are
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occupied by France, which ranked first in the transportation category, Japan, which led the industry
category, and the building categories led by Spain and the national efforts by Germany.

The average score was 50.5 points. Faced with this scenario, Brazil presents a low score, due to
the minimal effort in policies to tackle energy consumption [36]. Although Brazil has an effective and
mandatory policy for equipment labeling, determined by an energy efficiency Law n. 10.295/2001 [42],
it does not obligatorily comply with buildings, which are very inefficient. The building labelling is
still voluntary and, therefore, has a low impact on the market. In addition, Brazilian industries benefit
from the label policy for electric induction motors, but there is no policy for better energy management
of the industrial park (ISO 50001, for example). It is also worth mentioning that the transport sector
is quite inefficient, despite some policies for the use of ethanol and biodiesel. Thus, there are still
challenges to be pursued in this country, although there are already imposing policies that provide for
greater energy efficiency.

In the last three editions of ACEEE, the European countries have made constant improvements
in their scores: Germany and Italy. In the case of Brazil, one can observe that the scores have slightly
improved a over the years (2014: 30; 2016: 32.5 and 2018: 36.5), though it is still far from those of the
developed countries [36].

3. Demand Side Bidding—Proposal

3.1. DSB in Brazil

In this section, a proposal for the DSB model adapted to the situation of Brazil is developed.
DSB allows for an active participation of energy consumers (demand) in the process pricing while
maintaining the quality of the power supply. Side management of the demand has important implications
for the overall efficiency of the electricity supply, both economically and environmentally [43]. In the long
term, it also implies postponing or even avoiding the need for expensive investments in power plants.

It may also involve reducing both the size of the transmission lines and the construction of hydro
and thermal power plants. This is quite important, as the total cost could be considerably reduced.
In most cases, the level of CO2 emissions could be reduced with the DSB mechanism.

The DSB mechanism will not occur unless each one of the different participants (a: Regulation,
legislation, government; b: Transmission system operators; c: Energy Conservation Service Companies;
d: Sellers; e: Consumers) benefits from it. The Brazilian National Electric System Operator is responsible
for maintaining the system’s security and power supply quality. The virtual power generation would
be another power source available to ensure system reliability. Generally, in competitive markets,
suppliers must buy enough energy to always meet the needs of theirs customers to avoid possible
financial penalties [44].

Customers have greater flexibility in their electricity usage patterns, which is particularly valuable
for suppliers, as it can help suppliers avoid periods of maximum energy demand. Electricity consumers
are naturally interested in buying electricity at the lowest cost, and demand side management can
help in this case [45]. In fact, some consumers can change their consumption habits without harming
seriously their way of life. In addition, in most cases, residential consumers use low amounts of energy,
which makes them not eligible to participate in the DSB mechanism [46].

Having examined the actors to participate in the DSB mechanism, the concepts are defined based
on expert opinion [23]. In addition, the steps include an attempt to adapt and use technology to
facilitate some points. These steps are shown in Figure 2.
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Figure 2. Steps to create the mechanisms.

The first step in developing a DSB system is to establish standards/governance processes of
the market. In addition, pricing mechanisms must be well defined, since before fixing the price and
establishing its sales policies, a market must have knowledge of the elements of the establishment of
the sale price of the product.

Currently, many markets seek excellence in production processes through quality. In the same way,
the mechanisms of the DSB involve the definition and guarantee of quality of the participants [47]. It is
also important to have a demand side product that is well adjusted. With respect to this, the design of
a methodology for measurement and verification will convey reliability among its participants. In this
context, it is essential to mention the regulation, as it becomes an instrument that the regulator can rely
on to establish rules (rights and obligations) for all participants. In addition to the regulator, there is
a mechanism that can monitor the overall process [23]. It is essential that efficiency and effectiveness
be evaluated, and alternatives to solve problems and the best solution are selected and implemented.

3.2. Operation of the DSB

To contextualize the operation, a Brazilian example of the energy market will be taken into account
in the occurrence of a possible DSB, which will be composed of three free consumers and three energy
distributors, both consuming a total of 2000 megawatt average (MW avg) in a year t. The market
will have six hydroelectric generators that supply the consumers (free consumers and distributors).
Figure 3 shows the example in a time t. The losses in the network (technical and commercial) were not
considered. In addition, to standardize the notation of operation, the following abbreviations were
used, GE: Generated Energy, HE: Hydroelectric, FC: Free Consumer, DB: Distributor [5,23].

Thus, the energy prices that the demand market will pay will be set by the energy prices that each
generator decides to sell through established contracts. Likewise, the contracts will be established
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between the generators and the demand market matching the energy demanded and the energy
supplied, as shown in Figure 3.

Figure 3. Specification of the case study.

Figure 4 shows that the energy market grew in time t + 1, that is, the consumption energy
increased. Consumption went from 2000 MW avg to 2100 MW avg, whereas the market observed in
the Figure 4 does not make use of energy efficiency.

In addition, the FC 1 went from 100 MW avg to 120 MW avg (20% growth), the FC 3, went from
300 MW avg to 330 MW avg (10% growth), DB 1 passed of 800 MW avg to 820 MW avg (2.5% growth),
and DB 2 went from 600 MW avg to 630 MW avg (5% growth). Meanwhile, to meet the new need
for energy, without the use of energy efficiency, two new generators were built (Generators 7 and 8).
In addition, the price of energy also increases when compared to other generators.

Figure 4. Details of the transition from time t to time t + 1.

Furthermore, the different contracts established between generators and consumers are observed,
matching the amount of energy and the price that both parties require. Thus, one can see that the
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average price in Brazilian real (R$), has an increase of 1.2% compared to the average price in year t
(price year t = 107.50 R$/MWh, price year t + 1 = 108.76 R$/MWh). In general terms, the market in
t + 1 increased by 5% compared to the time market t.

After analyzing the market without energy efficiency, Figure 5 presents the same market, but with
the use of energy efficiency. In this context, two DSB scenarios are proposed: real environment and
virtual environment. In the following figure, one can check the behavior of the participants in the
real environment.

Figure 5. Evolution from time t to time t + 1 considering DSB.

At the same time t + 1, FC 2 managed to reduce its consumption of energy up to 160 MW
avg, that is, decreased 40 MW avg from the original 200 MW avg, with the use of energy efficiency
measures. It is important to note that the difference of this market in relation to the market without
energy efficiency, is that the construction of the generator was avoided, as shown in Figure 6.
In addition, the average price decreased (108.16 R$/MWh) compared to the market without efficiency
(108.76 R$/MWh), thus showing that there is a gain with energy efficiency. This is expected to happen
in the real market proposed by the DSB. Furthermore, the contracts are matched according to the
energy demanded and the energy supplied by the different participants.

Thus, the market will be analyzed using energy efficiency in the virtual environment, which is
the environment that contemplates how the consumer who manages to save energy can sell it to
other consumers.

As seen in Figure 6, the FC 2 reduces its consumption to 160 MW avg, saving 40 MW avg, which could
be sold to both FC 1 and DB 1. Both have increased their energy consumption. Considering the contract
that FC 2 had with generator 2 still continues, this has not been modified despite the reduction of
consumption. Therefore, the FC 2 must take into account the price to use at the time of selling the energy
that it has managed to save. One will have to analyze that the ideal price that could be used to sell energy
must be greater than the price set for generator 2 (flat price of 110.00 R$/MWh) and should also consider
that the price it tries to use must be less than the price required to build generator 7 (140.00 R$/MWh).
In this way, FC 2 will make a profit when selling energy. In this scenario, the price that FC 2 is using is
125.00 R$/MWh (energy value between 110.00 R$/MWh and 140.00 R$/MWh). It can also be seen that the
average price decreased to 108.48 R$/MWh compared to average market price without the use of energy
efficiency (108.76 R$/MWh). Everything indicates that the use of energy efficiency, as proposed by the
DSB, brings profit to society, not only in economic terms, but also in environmental aspects, considering
the energy efficiency measures translated as a virtual power plant in an environment of extreme energy



Energies 2020, 13, 4544 9 of 19

expansion of the system as in developing countries. As a result, investments in the construction of new
generation plants (solar, wind, hydro, thermal, etc.) and new transmission and distribution networks
would have been postponed.

Figure 6. Results of the simulation.

4. Methodology

With the aid of the proposed methodology, the conditions are created for planners and controllers
to better manage DSB prices. Depending on how the price behaves over time, the proposed
methodology provides the conditions for adaptation. The methodology is presented in what follows:
first, a method is described to approach a proper density function to the behavior of the original data
(Energy Efficiency Auction prices). Then, the MCMC method, which generates samples from the
distribution of interest, is presented.

The MCMC methods are simulation methods to generate samples of the a posteriori distributions
and estimate statistics of interest of this posteriori distribution within a Bayesian framework. Values of an
auxiliary density are successively simulated, which do not necessarily have to be similar to the density
a posteriori. Each generated value depends only on the previous simulated value, hence the notion of
Markov chain. They can be used to simulate values of a distribution that is difficult to generate samples
directly from it. The MCMC algorithm used was the Metropolis—Hastings, which allows for different
samples to analyze different price scenarios.

4.1. Estimation of the Density: The Kernel Method and Gaussian Mixture Models

The histogram is one of the most used non-parametric method for density estimation. Generally,
the idea is based on dividing the interval of variation of the data into intervals of size h and count the
number of observations that exist in each interval [48].

Considering the interval [−h/2, h/2), the probability that an observation X belongs to the interval,
is given by:

P(X ∈ [−h/2, h/2)) =
∫ h/2

−h/2
f (x)dx, (1)

where f is the density of X. Typically, an estimate of the density f can be defined as the count of the
amount of observations that are in each interval, divided by the total of observations.

Note that the estimate f̂h(x) depends strongly on the choice of h, called the smoothing parameter.
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4.1.1. Estimation by the Kernel Method

The main idea, previously presented on the histogram, suggests a generalization [48], considering
the following function:

K(x) =

{
1
2 , if |x| < 1
0, otherwise

(2)

Therefore, a new estimate for f can be:

f̂ (x) =
1

nh

n

∑
i=1

K
(

x− Xi
h

)
(3)

Clearly, this new estimate makes a generalization of the notation based on the histogram. Likewise,
it is observed that f̂ is not a continuous function and has a derivative equal to zero at all points, except at
jump points Xi ± h. Furthermore, the estimate is strongly influenced by the choice of h. The smaller the
size of h, the less softened the estimate will be. Conversely, the higher h, the smoother the final estimate.

Data for Energy Efficiency Auctions of price negotiations are taken from previous auctions,
from 2005 to 2014. The objective of this research is to evaluate the behavior of energy prices between
110.00 R$/MWh and 140.00 R$/MWh, following the suggestions of [23].

The data distribution in the range of interest is unknown. Therefore, the nonparametric kernel
method was used to obtain the estimated density function of the data energy prices. The method can
be interpreted as a generalization of the histogram. An estimated density function provided by the
kernel method was then approximated by a polynomial of order 17. The polynomial coefficients were
obtained using the method of least squares.

4.1.2. The Gaussian Mixture Model

According to [49], a Gaussian mixture model density with parameters (µ1, σ1, µ2, σ2) was assumed
and defined by

g(x; µ1, σ1, µ2, σ2, γ) = γ f (x; µ1, σ1) + (1− γ) f (x; µ1, σ1) (4)

where f (x; µ, σ) is the normal density with mean µ and standard deviation σ, and 0 < γ < 1.
The parameters (γ, µ1, σ1, µ2, σ2) are often estimated by the maximum likelihood method.

Generally, the optimization of this function is intractable. Therefore, the Expectation—Maximization
algorithm [50] was used.

4.2. Simulations

4.2.1. The Markov Chain

A Markov chain is a sequence of variables Θ0, Θ1, Θ2, . . ., such that the distribution of Θt given
the previous values Θ0, Θ1, Θ2, . . . , Θt−1 only depends on Θt−1.

On the previous definition, the probability is recognized with the following notation:

Pr (Θt ∈ A|Θ0 = θ0, Θ1 = θ1, . . . , Θt−1 = θt−1) = Pr (Θt ∈ A|Θt−1 = θt−1) (5)

A Markov chain (homogeneous in time) is defined by its initial state, θ0, and the nucleus of transition:

Pr (Θt+1 = θ2|Θt = θ1) (6)

Under certain conditions, a Markov chain converges to its stationary distribution:

lim
t→∞

Pr (Θt = θ|Θ0 = θ0) = π(θ) (7)
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4.2.2. MCMC

The MCMC methods are based on the creation of a suitable Markov chain [51,52]. Suppose one
wants to simulate values of a posterior distribution π(θ|x). The idea of MCMC consists of simulating
a Markov chain θ1, θ2, . . . , whose stationary distribution is π(θ|x). Each simulated value θt depends
only on its predecessor θt−1. If the algorithm is implemented correctly, the convergence of the chain is
guaranteed regardless of the initial values [30].

It is necessary to simulate the string for a large number of iterations, so that it approaches the
stationary distribution. The first simulated values (burn-in iterations) are eliminated because they are
not yet in the steady state.

Considering the estimated density obtained by the kernel method from the approximation
polynomial and Gaussian mixture model, the alleged distribution of interest and the MCMC method
can be used to generate samples.

The MCMC method can generate samples from any distribution of interest. The MCMC
algorithm used was Metropolis–Hastings and the interest distribution was obtained by the polynomial
approximation and Gaussian mixture model. In fact, random energy price values were generated
through the probability distribution obtained by the Kernel method and Gaussian mixture model.

4.2.3. The Metropolis—Hastings Algorithm

The Metropolis–Hastings algorithm was initially developed by Metropolis [53] and generalized
by Hastings [48]. Indeed, the idea of the algorithm is to obtain the desired distribution, through
a proposed approximate distribution. The Metropolis–Hastings algorithm can be considered as one of
the most general algorithms of the MCMC.

This algorithm simulates a Markov chain whose stationary distribution is π(θ). It starts with
an initial value θ0. Given the current value θt, a candidate value θ̃ of a proposed density q

(
θ̃|θt

)
is

generated. Therefore, the probability of accepting the generated value is calculated:

α = min

{
1,

π(θ̃)q
(
θt|θ̃

)
π (θt) q

(
θ̃|θt

)} (8)

Subsequently, a uniform distribution U(0, 1) is simulated. The decision rule is: if u < α,
take θt+1 = θ̃. Otherwise, it is rejected and θt+1 = θt. Finally, it returns to the beginning of the
process. The probability of accepting α, does not depends on the integration constant of the posterior
distribution. In this case, the distribution data used to generate an achievement depends on the
previous simulation. The distribution proposal adopted in this study was the normal distribution.

The algorithm was able to perform simulations and create scenarios with different sample
sizes. The generated samples follow the behavior of the original data. Therefore, these samples can be
used to understand the behavior of the distribution of energy prices. They have also allowed to know
the probability distribution of the proposed price of DSB between 110.00 R$/MWh and 140.00 R$/MWh.

5. Results and Discussion

The results of energy efficiency auction prices in Brazil are presented in two stages. First the
summary statistics results are shown, followed by the results to the MCMC method.

Table 1 shows the prices after having applied the inflation index. In addition, a descriptive analysis
of the energy prices was carried out and this will allow for obtaining the different simulations to
evaluate the behavior of a possible DSB price. In Table 2, the results obtained can be observed.

Table 1. Summary statistics—Prices.

Data Sale Price—(R$/MWh) Total

16.12.2005–06.06.2014 79.24–223.01 322



Energies 2020, 13, 4544 12 of 19

Table 2. Summary statistics of price with inflation index.

Statistics Price

Min. 79.24
Median 165.92
Mean 162.08
Max. 223.01
Std. Deviation 38.02
skewness −0.10
kurtosis −1.63

Therefore, Table 3 shows those prices in which inflation has been applied since the year in which
the different auctions began, and the behavior of the classified data is also represented. A frequency
distribution was made to analyze and identify auction prices that would be between 110.00 R$/MWh
and 140.00 R$/MWh (with an 37.26%) according to the proposal of [23].

Table 3. Frequency distribution table—Prices.

Class Frequency Probability Percentage

79.24 1 0.0031 0.31%
95 2 0.0062 0.62%

110 3 0.0093 0.93%
115 23 0.0714 7.14%
120 21 0.0652 6.52%
125 67 0.2081 20.81%
130 5 0.0155 1.55%
135 0 0.0000 0.00%
140 4 0.0124 1.24%
170 43 0.1335 13.35%
200 65 0.2019 20.19%
224 88 0.2733 27.33%

322 1 100%

Through the non-parametric kernel method, it was possible to adjust a density via an order
17 polynomial function (Figure 7). This figure the density obtained by the Gaussian mixture model
with two components.

With the achieved estimation, it is possible to generate simulations following the order of the
polynomial and Gaussian mixture model. Thus, several samples were generated with different sizes.
The larger the sample, the better is the approximation to the original data.

In this respect, it is worth mentioning that using the kernel and the MCMC methods is crucial to
provide approximations of the original data and clearly analyze its impact. Next, the behavior of the
data in each histogram with 500, 1000, 5000 and 10,000 (Figure 8) samples is observed, considering
only one scenario.
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Figure 7. Density estimated by: (a) Kernel method. (b) Gaussian mixture model.
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a) 1000 iterations
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c)
10000 iterations
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Figure 8. Histograms of the samples generated by the MCMC from the density obtained by the kernel
method: (a) 500 iterations. (b) 1000 iterations. (c) 5000 iterations. (d) 10,000 iterations.
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The samples generated by the MCMC through a Gaussian mixture model can capture the trajectory
of the density curve when the size of the samples increases (Figure 9).

500 iterations
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5000 iterations
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c)
10000 iterations
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Figure 9. Histograms of the samples generated by MCMC from the density obtained by the Gaussian
mixture model: (a) 500 iterations. (b) 1000 iterations. (c) 5000 iterations. (d) 10,000 iterations.

Notice that the sample which best approximates the original data in accordance with the generated
histograms is the 10,000 size, having had consistently followed the behavior of the data.

Moreover, once achieved the best-fitted curve, the analysis of each scenario with each sample
was carried out to find the probability of prices staying within the range 110.00 R$/MWh and
140.00 R$/MWh. The following table presents the different results obtained with each probability.

According to the reports obtained in Tables 4 and 5, it is observed that the sales price averages
were close to the original average proposed by [23], after carrying out different iterations. In addition,
there is a minimal decrease in the variation. From the above, Table 4 shows that the variation has
a minimal decrease, as the coefficient of variation in the different iterations confirms this.

Finally, as shown in Tables 6 and 7, and now considering in terms of percentages for the ten scenarios,
the probability of the price fall in the range of 110.00 R$/MWh and 140.00 R$/MWh is evaluated in each
simulated scenario. In fact, the probabilities range between 26% and 35%, the minimum is displayed in
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scenario 1 with 1000 iterations, and the maximum is displayed in scenario 5 with 500 iterations (Table 6).
Table 7 shows that, with the increase in the number of iterations, the results are more stable.

Table 4. Statistical summary of the samples (500, 1000, 5000, and 10,000 iterations) generated via
MCMC using the Kernel method.

Statistics 500 1000 5000 10,000

Min. 79.61 60.59 74.69 57.68
1st Qu. 124.31 124.39 127.73 124.93
Mean 158.68 161.66 163.33 162.74
3rd Qu. 195.67 197.63 197.18 197.43
Max. 228.92 247.32 235.08 249.29
Std. Deviation 39.19 39.15 38.53 38.48
Coefficient of variation 0.247 0.242 0.236 0.236

Table 5. Statistical summary of the samples (500, 1000, 5000, and 10,000 iterations) generated via
MCMC using the Gaussian mixture model.

Statistics 500 1000 5000 10,000

Min. 92.31 87.69 83.2 72.01
1st Qu. 124.78 124.37 124.5 124.93
Mean 158.39 158.61 160.1 160.73
3rd Qu. 189.17 191.98 194.8 194.09
Max. 231.04 231.85 246.9 243.73
Std. Deviation 36.23 36.69 37.66 37.23
Coefficient of variation 0.229 0.231 0.235 0.231

Table 6. Probabilities in ten scenarios (Kernel method).

Size of Sample 1 2 3 4 5 6 7 8 9 10

500 28% 29% 32% 26% 35% 28% 35% 28% 30% 28%
1000 26% 31% 29% 31% 28% 31% 32% 30% 26% 33%
5000 30% 30% 31% 31% 30% 31% 29% 29% 30% 30%

10,000 31% 32% 30% 30% 32% 31% 29% 29% 31% 32%

Table 7. Probabilities in ten scenarios (Gaussian mixture model).

Size of Sample 1 2 3 4 5 6 7 8 9 10

500 35% 32% 34% 40% 38% 36% 36% 36% 29% 37%
1000 35% 35% 36% 33% 36% 36% 35% 34% 38% 36%
5000 38% 37% 34% 40% 35% 36% 38% 37% 36% 36%

10,000 38% 36% 38% 36% 38% 36% 37% 36% 36% 37%

Likewise, regarding the Kernel method, a percentage average of 29.9% is obtained for the possible
sale of saved energy using 500 iterations; 29.7% with 1000 iterations; 30.1% with 5000 and 30.7% with
10,000. An increase is observed with a greater number of iterations. In parallel, with respect to the
Gaussian mixture model, a percentage average of 35.3% is obtained with 500 iterations; 35.4% with
1000 iterations; 36.7% with 5000 iterations and 36.8% with 10,000 iterations. The initial proposal makes
sense in relation to the sale price of the energy saved using energy efficiency, since it is possible to
achieve a 30.1% probability with the kernel method, and 36.05% with the Gaussian mixture model,
for the price in the range between 110.00 R$/MWh and 140.00 R$/MWh.
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Through the numerical scenarios, as proposed in [23], the contracting environment and the
possible formation of sales prices in the energy efficiency auction were observed. However, the energy
balance and financial settlement that DSB proposes within the real and virtual energy market were
analyzed, with the purpose of simulating, using the methods proposed and developed in this study,
the formation of prices that would be accepted within the Brazilian electricity market, taking into
account both buyers and sellers who use different energy efficiency measures.

6. Concluding Remarks

This research addressed the simulation of energy prices in the Brazilian electricity market
considering a possible DSB mechanism. The simulation provided experimentation, considering policy
proposals using statistical theory. Considerable simulation processing has been required to obtain
statistically significant results. For the approximation of the density distribution of the energy prices of
a possible power DSB, the Kernel method and the Gaussian mixture model with two components were
used. With the estimation carried out, it was possible to generate simulations following the order of
the polynomial and the Gaussian mixture model. These were carried out through the MCMC, and the
use of the Metropolis–Hastings algorithm generated samples to allow for the analysis of the behavior
of the prices.

Considering the threshold proposed in the work, in which it is preferable to invest in energy
efficiency policies rather than build power plants, we suggest studying the various investment options
in energy efficiency. This would originate the study of other renewable energy resources. A real
approach could help the Brazilian government in making decisions on better energy efficiency policies
at certain time intervals, taking into account existing uncertainties.

One of the policies, such as the white certificate, which is to be used in some European countries,
such as Germany and Italy, may be necessary to increase the energy saving. This is characterized by
three main components: an obligation imposed on energy companies to achieve a quantified energy
savings target (including limitations on non-compliance); certified energy savings using standardized
calculations that minimize analysis costs; and the certified energy savings that could be commercialized
to allow the obligated party to meet its purpose [5,54].

In this work, the main contribution is related to a methodology for generating energy prices
that can contribute to energy planning in the sale of energy and in the decision making of the
bodies involved and, consequently, with energy efficiency. Besides, countries with a large volume
of investment targets at construction of new power plants, and new transmission and distribution
networks would benefit from this policy. The methods presented were able to capture the characteristics
of the data presented in this study and, consequently, allowed for the simulation of energy prices.

Another fundamental point of this research was to establish a methodology, made up of the different
steps defined in general for the implementation of a possible energy efficiency auction in Brazil.

Likewise, future studies should focus on finding another methodology to obtain the different
scenarios that were generated in the Brazilian electricity market in order to be considered as a possible
alternative to the proposed approach adopted in this paper.
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Abbreviations

The following abbreviations are used in this manuscript:

DSB Demand Side Bidding
MCMC Markov Chain Monte Carlo
US United States
ACEEE American Council for an Energy-Efficient Economy
GE Generated Energy
HE Hydroelectric
FC Free Consumer
DB Distributor
R$ Brazilian real
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