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Abstract: In order to combat climate change, many countries have promised to bolster Renewable
Energy (RE) production following the Paris Agreement with some countries even setting a goal
of 100% by 2025. The reasons are twofold: capitalizing on carbon emissions whilst concomitantly
benefiting from reduced fossil fuel dependence and the fluctuations associated with imported fuel
prices. However, numerous countries have not yet made preparations to increase RE production and
integration. In many instances, this reluctance seems to be predominant in energy-rich countries,
which typically provide heavy subsidies on electricity prices. With such subsidies, there is no incentive
to invest in RE since the time taken to recoup such investments would be significant. We develop a
model using a Neural Network (NN) regression algorithm to quantitatively illustrate this conjecture
and also use it to predict the reduction in electricity price subsidies required to achieve a specified
RE production target. The model was trained using 10 leading metrics from 53 countries. It is
envisaged that policymakers and researchers can use this model to plan future RE targets to satisfy
the Nationally Determined Contributions (NDC) and determine the required electricity subsidy
reductions. The model can easily be modified to predict what changes in other country factors can be
made to stimulate growth in RE production. We illustrate this approach with a sample use case.

Keywords: renewable energy; electricity pricing; machine learning; energy policy; regression;
neural network

1. Introduction

In recent times, many countries have set targets for Renewable Energy (RE) production and their
Nationally Determined Contributions (NDCs). The need to reduce carbon emissions and their effect
on climate change is a major driving force in the NDC value. Pledges were made under international
agreements such as the Paris Agreement and Kyoto Protocol to reduce carbon emissions by targeting
fossil fuel-based electricity generation and the transportation sector. Energy-importing Small Island
Developing States (SIDS) may face major challenges with reducing fossil fuel dependence due to high
transport costs and continual fluctuations in energy commodity prices.

The integration of RE is likely to lead to an environmentally friendly, sustainable, and stable energy
production environment, more so as storage technologies become less expensive with improved energy
and power densities. To invest in RE, countries must implement strategies to reduce their dependence
on fossil fuels. This is more so as consumers are unlikely to invest in RE sources if electricity prices
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are low since the payback period can be quite long or not at all [1]. Compounding this situation,
electricity is subsidized in many fossil fuel-rich countries, thus taking its price well below market
value. Investment in RE tends to be low in these scenarios. Whereas [1] investigated and illustrated
the correlation between electricity prices and RE production, we investigate this dependence on
12 additional features. The outputs of this Machine Learning (ML) model can be used by policymakers
in energy-rich countries to determine what subsidies should be adjusted to achieve a specific RE
production target. The model developed in this paper can also be used by researchers to investigate
what other correlations exist that affect RE investment. A use case for one particular SIDS is provided.

2. Contributions and Related Work

The “20/20/20 Directive” plans to reduce greenhouse gas emissions by 20% and increase the share
of renewable energy by 20% in the EU’s total energy consumption by the year 2020 [2]. As such, there is
research on the correlation between RE and electricity prices particularly in European countries as they
are driven by updated financial incentives and environmental policies. However, the focus is usually
on implied causality between RE measures and observed electricity prices. For example, reference [3]
used daily wind speed readings and sunshine intensity data in the Netherlands to estimate whether
increased RE production capacity contributed to variability in daily electricity prices.

Reference [4] argued that, although electricity markets are increasingly becoming deregulated,
a greater contribution of RE to overall production should lead to a mitigation of price variability.
Lower price volatility benefits RE investors and consumers who would benefit from lower prices and
risk. Reference [5] also performed an empirical exploration of Danish and German wind and solar
examples to estimate the impact of renewable sources on electricity price levels and volatility.

Germany has experienced significant growth in RE electricity generation over the past 15 years.
Reference [6] attributed this growth mainly to the guaranteed feed-in-tariff implemented in 1991. In this
setting, the merit order effect has been studied extensively and observed in several other electricity
markets. This effect can be described as the event where a large amount of installed RE capacity
pushes higher marginal cost units out, thereby reducing electricity prices. The analysis performed
in [6] investigated the merit order effect on spot market prices in Germany, thereby demonstrating that
a relationship exists.

The authors of [7] developed an electricity spot market dispatch and investment model to analyze
the increasing share of variable renewable energy sources on the electricity price. This paper analyzed
the effects on both the average electricity price and price variance. It is noted that as RE shares grow,
the market value of wind and PV (Photo-Voltaic) capacity decreases. The developed model reveals
that as wind capacity is developed, price variance increases. The price variance is a result of wind
curtailment activities. In Denmark, the frequency of peak prices has declined because of higher RE
shares [7].

Ireland has access to a bountiful wind resource and, as such, has been incorporating more wind
energy into its system. The government has indicated a target of 40% by 2020 [8]. To facilitate
this, price based Demand Side Management (DSM) is considered. The authors of [9] observed a
strong correlation between financial savings, wind energy demand, and conventional energy demand,
with price based DSM consistently promoting installed RE sources.

The above studies were performed for countries possessing dynamic electricity prices.
Reference [10] investigated the impact of various electricity pricing policies, such as flat and peak
pricing, on RE investments. They found flat pricing to be more conducive to solar and wind energy
investments by utility providers. On the other hand, peak pricing encouraged greater investments in
solar energy technologies by distributed generators.

There is a line of research that examines the factors influencing a country’s level of investment
into RE Research and Development (R&D). As an example, reference [11] found that R&D into wind
energy is driven by electricity consumption. It was found that lower electricity prices caused higher
R&D investments, while R&D subsidies had a negligible impact. The majority of studies performed
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on this subject were done in countries that already possess grid integrated RE sources. The converse
is true where not much research has been done in countries that possess little to no integrated RE.
Small fossil fuel-rich countries will be reluctant to develop RE capacity, and so, it is useful for these
countries to have access to a tool that can predict the impact on increased RE penetration. The model
developed in this paper can be used by any country irrespective of RE penetration levels.

In recent years, ML has played a significant role in the development of smart grids and RE
systems, especially as RE sources are finding broader applications in the world both in distributed
and centralized grids. However, the ratio of RE to world production of electricity is still insignificant.
In 2017, RE accounted for only 10.1% of electric power [12]. One form of stimulating the RE sector is
by use of ML tools. In this regard, prediction of wind and solar energy supply is currently a popular
research topic for ML techniques.

The market share of solar energy production can be increased by improving short-term irradiance
forecasting capabilities. The study performed in [13] analyzed the performance of four ML algorithms
using spatially distributed irradiance sensors as inputs to achieve forecasting. The developed model
can predict forecast horizons of 10s up to a few hours. The results obtained in this study showed
that a Neural Network (NN) produced the best results amongst the four for shorter lead times and
dense spatio-temporal input data. Another study performed in [14] used sky images to obtain velocity
maps of clouds. These maps were then used to predict cloud movements over a network of sensors to
forecast solar irradiance.

Reference [15] utilized a Deep Neural Network (DNN) algorithm to extrapolate wind speeds
to high heights based on measured values at lower heights. The study facilitated more accurate
wind energy assessments at the hub height where measured data at that height are unavailable.
These modeling approaches significantly reduce the cost and complexity of acquiring measured data.
The results of the DNN algorithm were also compared with that of a classical feed-forward artificial
neural network using the Levenberg–Marquardt method for training. The study obtained a Mean
Absolute Percent Error (MAPE) of 9.65% for wind speeds at a height of 120m. ML initiatives must
be supported by reliable data sources to produce well-informed recommendations. These initiatives
should also be available for use by both industrial and small companies.

3. Datasets

The electricity price data used in this study are from June 2018. Data from only 53 countries
across 10 features are available, but these are adequate to illustrate the relationships in this paper.
Data on RE investment and other features were obtained from [16]. This source holds rich datasets for
production capacities per energy source. The data are provided as a percentage of the total production
capacity for nuclear power, fossil fuels, water power, RE, and other sources. In this paper, energy from
hydro-power is considered only partly as an RE. As such, hydro-power is not included in this analysis.
However, in some countries, hydro-power is significant, and so, in those countries, there is a lower
need to invest in RE. Those countries may not conform to this paper’s hypothesis. Table 1 provides the
full list of features used.

Table 1. Permutation feature importance scores.

Feature Score

Population growth/year 0.710288
Electricity price (USD per kWh) 0.495201

Daily max temperature (degrees Celsius) 0.113028
GDP per capita 0.090674

Education expenditure per capita (USD) 0.050768
Intelligence quotient 0.027817
Population (millions) 0.019825

Area km2 0.017498
CO2 emissions per capita 0.01183

Average annual income (USD) 0.001193
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4. Materials and Methods

4.1. Linear Regression Using Only Electricity Prices

Figure 1 plots the data points of RE contribution against electricity price for each country in the
dataset. Prices are all converted to USD to normalize all rows. The study performed in [1] developed a
Linear Regression (LR) model between electricity price data and RE capacity. This LR model is also
drawn in Figure 1. The LR model visually shows a loose relationship between both factors.

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35
0

4

8

12

16

20

24

28

32

Electricity Price (USD per kWh)

R
en

ew
ab

le
En

er
gy

(%
of

To
ta

lP
ro

du
ct

io
n

C
ap

ac
it

y)

Figure 1. Linear regression of renewable energy and electricity prices [1]. Reproduced from [1],
IEEE: 2018.

There are three outliers to the relationship shown in Figure 1. Denmark and Germany possess
high RE production values (53.6% and 49.9%, respectively). At these values, the conjecture does not
hold as the initial RE investment costs are recovered. It follows that dependence on fossil fuels is
reduced, and subsequently, electricity prices decline [1]. These two countries are still included in the
training dataset. Bermuda has a high electricity price of $0.387 per kWh with zero RE production
capacity. This is an example where RE production capacity data did not reflect observed investment.
One shortcoming of this model is a low coefficient of determination of 0.53.

4.2. Machine Learning with Multiple Features

The LR plot developed by [1] confirms that there is a relationship between electricity prices and RE
capacity. The following section investigates additional factors that may play a role in RE investment.

NNs are popular for modeling sophisticated problems, but can also be tailored to solve regression
problems as a supervised learning method. NN regression allows researchers to model the impact of
multiple independent variables on the dependent variable, thereby making it powerful for non-linear
regression. AML allows custom architectures using the Net# language for NNs to be built or the use of
template architectures. Note also that, at any point in the experiment, a custom Python code can be
injected, whether to perform a data operation or draw visuals.
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This paper develops an NN regression model utilizing 10 features to improve the accuracy of
predicting RE investment. Although the research focus is primarily on the impact of electricity prices
on RE, the influence of features such as population growth, Gross Domestic Product (GDP), quality of
life, intelligence quotient, carbon dioxide emissions, and other metrics are investigated with the NN
prediction model. The model was developed, trained, and deployed using Microsoft’s Azure Machine
Learning (AML) Studio. Figure 2 shows a flowchart of the ML process implemented.

Renewable
Energy Raw Data

Cleanse Data

Select Columns
in Dataset

Train Model
Permutation

Feature
Importance

Score Model

Neural Network
Regression

Evaluate Model

Figure 2. Overview of the process used with Azure Machine Learning Studio.

Figure 2 shows that the raw data are first cleansed. This involves removing rows with missing
values, removing duplicate rows, and editing metadata. Editing of metadata takes place in the form of
data conversion of cells to the data type specified for that column. Afterwards, the columns of interest
in model training are selected. The model is then trained using the selected data and an NN regression
algorithm. The trained model generates a Permutation Feature Importance (PFI) table that ranks the
importance of each feature to the predicted output. PFI is defined as a model-agnostic feature ranker
that quantifies the contribution of features to the predictive performance of a model. This is done in
terms of how much a chosen evaluation metric deviates after permuting the values of that feature [17].
The score model block then generates a set of predictions using the trained model. The evaluate model
block receives these predictions and computes a set of evaluation metrics.

NN regression in AML requires a tagged dataset with a labeled column. This regression model is
limited to predicting a numerical value. The NN regressor used had an initial node weight diameter of
0.1 and a learning rate of 0.005. A min-max data normalizer was applied, and the number of iterations
was set to 100. The min-max normalizer linearly resizes every feature to the [0, 1] interval. This is
carried out by shifting the dataset of each feature to the minimal value of 0, then dividing the dataset
by the new maximum value of the dataset. The dataset was also set to be shuffled between training
iterations. The regressor was configured as a fully-connected case. With this configuration, it had
exactly one (1) hidden layer. The hidden layer is intermediary, connected fully to both the output and
input layers. The number of nodes in the hidden layer was left at the default of 100. The learning rate
was set to a value of 0.005 after a series of tests. Using a larger value results in an overfitted model,
while using a lesser value requires more iterations to be run to train the model. The momentum value
that specifies a weight to be applied during learning to nodes was set to 0.0.
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5. Results

Table 1 provides the full list of features that were used and their respective importance scores
obtained from the output of the PFI block. The PFI block accepts a trained model, test dataset,
and evaluation metric to evaluate feature importance. The coefficient of determination was set as the
evaluation metric for this study.

Interestingly enough, population growth per year holds the highest importance score.
These results also support the hypothesis that electricity prices largely affect RE investment.
Within this list of features, electricity price is arguably the easiest factor that can be adjusted. The high
importance score of daily max temperature may be explained by investments in solar energy in
those countries.

Table 2 provides various performance metrics of the trained model. As mentioned previously,
these metrics are obtained from comparing predicted values to the actual values in the initial dataset.
The error metrics computed are low, indicating a high accuracy. The coefficient of determination (often
referred to as R2) represents the predictive power of the trained mode. It is a value between zero and
one, where one indicates a perfect fit. RE technologies seems to have experienced greater development
in countries that rely more heavily on energy imports and implement large-scale programs supported
by the state [12].

Table 2. Evaluation results of neural network regression.

Evaluation Metric Score

Negative Log Likelihood Infinity
Mean Absolute Error 0.665773

Root Mean Squared Error 1.169323
Relative Absolute Error 0.067183
Relative Squared Error 0.008557

Coefficient of Determination 0.991443

The Absolute Percentage Error (APE) for each country is computed and provided in Table 3 to
examine how well each approach performed. This is the absolute value of the difference between
actual and predicted RE investment divided by the actual RE investment value multiplied by 100.
Note that for most countries, this error is very small for NN regression. The NN approach provides
much higher accuracy than LR mainly because it takes into account 12 additional features. In fact,
the error is less than 10% for the vast majority of countries.

Table 3. Absolute percentage errors for each country.

Country APE (LR) APE (NN) Country APE (LR) APE (NN)

Argentina 392.372 2.8507 Luxembourg 33.9118 5.4487
Australia 39.4596 2.5862 Malaysia 29.3025 3.7823
Austria 25.7625 0.8656 Mexico 44.6364 2.8097

Bangladesh 59.1375 49.4726 Netherlands 18.00136 2.7328
Belgium 17.7669 0.264 New Zealand 17.0076 0.4832
Canada 37.3043 1.2517 Nigeria 2065.15 1052.4627

Chile 0.7832 1.0751 Norway 267.3939 13.3669
China 62.2233 0.8866 Pakistan 27.3245 4.0198

Colombia 675.3562 5.2668 Peru 262.7511 54.3189
Croatia 5.7283 0.8164 Philippines 5.4282 5.7157

Czech Republic 28.9448 0.2596 Poland 28.0186 4.8618
Denmark 39.7154 0.5794 Portugal 22.535 4.1574

Egypt 154.9909 4.2129 Russian Federation 449.5666 62.3755
Finland 34.8229 0.4869 Saudi Arabia 1507.2 1848.1694
France 11.5917 0.9375 Singapore 562.8157 15.845

Germany 39.9498 0.6905 South Africa 74.7281 17.3794
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Table 3. Cont.

Country APE (LR) APE (NN) Country APE (LR) APE (NN)

Greece 37.5929 21.6941 South Korea 12.3097 3.8784
Hungary 27.9992 23.9604 Spain 24.843 2.9067

India 69.0541 3.3218 Sweden 48.3186 1.9428
Indonesia 16.3661 4.2728 Switzerland 41.3711 0.4542

Iran 282.35 2.623415 Thailand 43.0542 2.0617
Ireland 21.8713 1.6142 Trinidad and Tobago 348.75 273.1092
Israel 137.8469 9.6998 Turkey 38.7 2.0391
Italy 31.0143 2.1261 United Arab Emirates 784.84 75.4234

Japan 47.1826 4.6452 United Kingdom 45.7077 0.1413

6. Sample Use Case

This section provides a use case scenario for Trinidad and Tobago. The Government of the
Republic of Trinidad and Tobago indicated an RE target of 10% by the year 2021. Reference [18] showed
that the electricity price is $0.047 USD per kWh with 0.4% of energy derived from RE sources [16].
This use case represents a fossil fuel-rich country with very little to no RE penetration.

The NN model predicts that an RE capacity target of 10% can be achieved by increasing electricity
prices from $0.047 US per kWh to $0.201 US per kWh, a drastic increase of 327%. This can be satisfied
by increasing the electricity price by five cents per kWh in the following three years. This price hike is
quite drastic (>100% in 2019) and may be politically challenging to implement. The additional revenue
from increased electricity prices is expected to be used to increase efforts in renewables.

The non-subsidized electricity cost of other Caribbean islands is significantly higher, for example
Barbados ($0.28), the Bahamas ($0.32), Jamaica ($0.32), St Lucia ($0.34), Antigua ($0.37), Dominica
($0.38), and Grenada ($0.43). These values are among the largest in the world. Conversely, in Trinidad
and Tobago, prices are heavily subsidized by the government [19]. The non-subsidized electricity
price in Trinidad and Tobago is estimated to be $0.12 per kWh. This implies that approximately 61%
of the true cost is subsidized. Increasing the electricity price by 15.4 cents per kWh to 20.1 cents per
kWh would entirely remove the electricity subsidy. Table 4 shows calculated rates for residential
electricity pricing to achieve an RE target of 10% in Trinidad and Tobago, based on the 2018 rate
schedule provided in [18] and the model output.

Table 4. Electricity prices predicted to achieve an RE target of 10% in Trinidad and Tobago.

Range 2018 2019 2020 2021

1–400 kWh 0.039 0.080 0.120 0.163
401–1000 kWh 0.048 0.098 0.148 0.201
Over 1000 kWh 0.055 0.113 0.171 0.233

Table 4 shows the trajectory at which electricity price subsidies are recommended to be reduced
to achieve an RE target of 10% in Trinidad and Tobago. The Caribbean countries mentioned previously
are net energy importers, whereas Trinidad and Tobago is a net energy exporter. The country data
reveals that net fossil fuel exporters possess the lowest electricity prices at the bottom quartile.
Such exporters include Mexico ($0.081), the United Arab Emirates ($0.078), Nigeria ($0.077),
Russia ($0.066), Malaysia ($0.061), Saudi Arabia ($0.048), Trinidad and Tobago ($0.047),
Algeria ($0.038), Iran ($0.027), Qatar ($0.026), Egypt ($0.018), and Iraq ($0.008). Exceptions to this trend
are very large countries in Asia such as China ($0.086), India ($0.079), Pakistan ($0.075),
and Bangladesh ($0.058).

The majority of fossil fuel exporting countries subsidize their electricity production heavily [19,20].
One exception to this is Norway, a fossil fuel exporting country with high electricity prices ($0.16),
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but still possessing a low RE capacity (3.3%), especially when compared to its neighbors Sweden (30%)
and Finland (23.5%).

7. Conclusions

This paper develops an ML model to predict RE investment based on several factors. It can be
used to develop multiple scenarios to determine what changes, in this case reduction of subsidies,
are to be made to reach a specified target. The developed ML model was compared against a previously
proposed LR model, and its significant improvement of the accuracy was demonstrated in the form of
the APE performance. At high levels of investment, the mature deployment of RE sources causes a
reduction in electricity prices. This study particularly investigated the effect of electricity pricing on
RE production. It is observed that as production levels increase, electricity prices are subsequently
decreased. This is due to reduced dependence on fossil fuels. In such cases, the linear regression
model presented in [1] begins to fail. NN regression was applied to address this weakness. The model
produced in this study operates purely on data and does not take into account country policies.
One shortcoming of this model is insufficient data to perform cross-validation across previous years.
A solution would be to perform the cross-validation with new data from subsequent years.
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