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Abstract: The exploration of shale gas in Fuling area achieved great success, but the reservoir
characteristics and gas content of the lower Jurassic lacustrine in the northern Fuling areas remain
unknown. We conducted organic geochemical analyses, Field Emission Scanning Electron Microscope
(FE-SEM), X-ray diffraction (XRD) analysis, high-pressure mercury intrusion (MIP) and CH4adsorption
experimental methods, as well as NMR logging, to study mineral composition, geochemical,
pore structure characteristics of organic-rich shales and their effects on the methane adsorption
capacity. The Da’anzhai shale member is generally a set of relatively thick (avg. 75 m) and high
carbonate-content (avg. 56.89%) lacustrine sediments with moderate total organic carbon (TOC)
(avg. 1.12%) and thermal maturation (Vitrinite reflectance (VR): avg. 1.19%). Five types of lithofacies
can be classified: marl (ML), calcareous shale (CS), argillaceous shale (AS), muddy siltstone (MS),
and silty shale (SS). CS has good reservoir quality with a high porosity (avg. 4.72%). The small
pores with the transverse relaxation time of 0.6–1 ms and 1–3 ms comprised the major part of
the porosity in the most lithofacies from Nuclear magnetic resonance (NMR) data, while the large
pore (>300 ms) accounts for a small porosity proportion in the CS. The pores mainly constitute of
mesopores (avg. 23.2 nm). The clay minerals with a large number of interparticle pores in the SEM
contributes most to surface area in the shale lithofacies with a moderate TOC. The adsorption potential
of shale samples is huge with an average adsorption capacity of 4.38 mL/g and also has high gas
content (avg. 1.04 m3/t). The adsorption capacity of shale samples increases when TOC increases and
temperature decreases. Considered reservoir properties and gas properties, CS with the laminated
structures in the medium-upper section of the Da’anzhai member is the most advantage lithofacies
for shale gas exploitation.

Keywords: shale gas; reservoir characteristics; gas content; eastern Sichuan Basin; the Da’anzhai member

1. Introduction

A great success of shale gas exploration has been made in a Fuling gas field. Recently, many more
oil and gas discoveries in lacustrine shale of the Lower Jurassic succession (e.g., Da’anzhai member
shale) in the northern Fuling area gives a rise to the possibility of nonmarine shale gas accumulation in
neighboring areas [1,2]. Recent studies focus on the pore structure and geochemical characteristics
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of the Da’anzhai member lacustrine shale [3–5]. There is little research concerning the influence of
lacustrine shale reservoir characteristics on the adsorption capacity and total gas content. However,
gas content is not only a key factor of favorable shale gas area evaluation, but also controls whether
shale reservoir has a commercial exploration value or not [2,6].

In this study, we present a comprehensive approach of mineral composition and geochemical tests,
high-resolution imaging investigation, high-pressure mercury intrusion (MIP) and CH4adsorption
experiments, as well as NMR well logging, to (1) determine the mineral composition and geochemical,
pore structure and petrophysical characteristics of the different shale lithofacies in the Da’anzhai
members; (2) study the influence of continental reservoir characteristics on shale gas properties;
(3) optimize the advantageous shale lithofacies to provide guidance for selecting the target shale
gas layers.

2. Geological Setting

The study area is located in the eastern part of the Sichuan Basin, which is one of the major
petroliferous basins in China. This area is dominated by the huge thrust-fold belts with an NNE
or NE striking. It includes the narrow Datianchi, Huangnitang, Dachigan, Fangdoushan anticlines
and gentle Liangping, Bashansi synclines between these structures from east to west [7]. The North
Fuling gas field is located in the Bashansi Synclines (Figure 1A,B). The Ziliujing formation in the
Lower Jurassic is divided into Da’anzhai, Maanzhan, and Dongyuemiao members. The target layer
of theDa’anzhai member consists of three lithological members: the shell limestone in the lower
layer (J1zDa1); the interbed in the middle layer with black shale, silty shale, and shell limestone
(J1zDa2); and the shell limestone and marl in the top (J1zDa3) (Figure 1C). The middle part of the
Da’anzhai member (J1zDa2) is the most important source rock with a thickness of 30–80 m. This layer
was widely deposited when the lacustrine system was rapidly expanded and the water within the
lake was deepened [8], which produced a positive impact on the accumulation and preservation of
organic matter.
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3. Samples and Experiments

In this paper, all the samples in the Da’anzhai member were selected from fresh cores in five wells,
including FY1, FY4, FY5, FY3-2, and XL101 wells. Most of the samples were analyzed in the following
methods: Total organic carbon determination, Rock-Eval pyrolysis analyses, kerogen vitrinite reflectance
analysis, kerogen maceral composition microscopy, X-ray diffraction (XRD) testing, and high-pressure
mercury intrusion (MIP), that were performed by the Marine Geology Lab, PetroChina Jianghan Oilfield
Company. High-pressure intrusion experiments were conducted by AutoPore IV 9520 instruments,
which can obtain a pore size range of 0.003–1000 µm. The pore micromorphology of 15 samples were
determined at the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation of Chengdu
University of Technology. These samples were investigated using an “FEI Quanta model 200F from FEI
corporation, Netherlands” field-emission scanning electron microscopy (FE-SEM) under a working
condition of 20 kv and distance of 8–9 mm. The methane adsorption isotherm experiments of five
samples were conducted by the Shale Gas Lab, Sichuan Coal Geology Bureau.

Nuclear magnetic resonance (NMR) well logging is an approach that confirms the nuclear spin
states of hydrogen in water and oil within a thin annulus situated deeply into the formation with
several inches [9]. Under the pulsed and static magnetic field, the transverse relaxation time (T2) of
protons generally shows a positive relationship with the amount of hydrogen protons in the pore
fluid [10]. The NMR well logging curves generally shows 2 to 3 main peaks and the peaks becomes
larger with higher relaxation time: the first peak in the shale reservoir normally is the predominant one
indicating clay-bound water and capillary-bound water, while free-fluid volume and micro-fractures
are only revealed in some small peaks [11].

Field desorption is a relatively accurate method to directly obtain the data of gas content,
including desorption gas content, losing gas content and residual gas content. Desorption gas content
was measured by the ISO-300 system under a temperature of 80 ◦C (Figure 2) when the sealed shale
samples were placed in the desorption tank. Losing gas content was calculated by the United States
Bureau of Mine (USBM) [12]. The samples (100–200 g) were placed in the residual gas tank, and then
crushed for 30 min. Finally, residual gas content can be measured by the ISO-300 system (Figure 2).
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instruments of gas flow; 5-flexible pipe; 6-device for collecting gas; 7-pressure gauge; 8-thermometer;
9-data-processing system.

4. Results and Discussions

4.1. Organic Geochemical Characteristics

According to the TOC determination and Rock-Eval data of 143 samples in wells FY3-2 and
XL101, The TOC of the Da’anzhai member widely ranged from 0.05 wt.% to 3.08 wt.% (avg. 1.12%)
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(Figure 3 and Table 1). Some 65% of samples have a TOC value of more than (>0.5 wt.%). The TOC
level over 1.0 wt.% and 2.0 wt.% account for 45.1% and 8.9% of all samples, respectively. The variation
of TOC value in vertical is related to lithology (Figure 3). The laminated calcareous shale and massive
argillaceous shale in the upper part of the J1zDa2 have high TOC value of avg. 1.58 wt.% [13], while the
massive or bedded marl and silty mudstone in the J1zDa1 and J1zDa3 have a low TOC of <0.50 wt.%.
The potential yield (P), defined as the sum of Rock-Eval S1 and S2 values, is generally used to evaluate
the genetic potential of a source rock [14]. P (S1+S2) and TOC are the most important indicators of
organic matter abundance [15], and they show a good positive correlation (R2 = 0.82) for all samples
(Figure 3). P has a range of 1.03–6.84 mg/g (avg. 2.34 mg/g). The chloroform bitumen“A” content of
20 samples vary between 0.01% and 0.19% with an average value of 0.11% (Figure 3). Based on the
thresholds of nonmarine source rocks from [15], the Da’anzhai member shale is a fair-good source rock
and provides a good quality for hydrocarbon generation.

The kerogen composition analysis of 42 samples indicate all samples are dominated by sapropelinite
(65–74%), along with moderate vitrinite (25–51.7%) (Figure 4). The sapropel organic matter is mostly
correlated with initial production of algae or bacterial phytoplanktonic sources at the surface of lake [16].
The plot of HI vs. Tmax (Figure 4) indicates organic matter (OM) in the Da’anzhai member shale is
dominated by type II, mainly typeII2 [17]. The OM type in vertical transitioned from mainly typeII2

in J1zDa3 to typeII1 in the J1zDa2 and J1zDa1. This suggests the change of the OM origins in vertical
result in the diversity of kerogen compositions and OM types.
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Figure 3. The geochemical and mineralogy characteristics for well FY3-2 in the Jurassic Da’anzhai
member. Q: quartz; F: feldspar; M: mica. P = S1+S2; PI = S1/(S1+S2); HCl = S1/TOC × 100; HI =

S2/TOC × 100. The blue, orange, and red dash lines show the classification borders of general, good,
and excellent qualities of source rock.
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Table 1. The mineral composition and pore structure characteristics of shale samples.

Sample TOC
(wt.%)

Clay
(wt.%)

Carbonate
(wt.%)

Quartz
(wt.%)

Pyrite
(wt.%)

I/S
(wt.%)

Illite
(wt.%)

Kaolinite
(wt.%)

Chlorite
(wt.%)

Surface
Area

(m2/g)

Pore
Volume

(cm3/100g)

Porosity
(%)

Permeability
(mD)

Average
Pore Size

(nm)

Medium
Pore Size

(nm)

FY-1 0.56 8.7 75.6 7.4 1.6 2 3.04 1.83 1.83 1.76 1.09 0.8 0.103 62.50 41.7
FY-2 1.31 27.4 47.5 15.6 6.9 8.22 9.86 4.38 4.93 5.69 3.33 2.6 0.965 49.27 4.7
FY-3 1.89 22.7 55 15.7 3.8 6.13 6.81 5.22 4.54 3.80 2.55 2 0.097 49.80 36
FY-4 1.36 50.6 11.4 26.4 4.6 24.79 15.18 5.06 5.57 8.79 0.35 0.6 28.79 41.51 18
FY-5 0.81 9.5 79.5 6.8 2.7 2.57 3.61 1.52 1.81 2.19 2.09 1.6 0.083 80 22.5
FY-6 0.96 37.6 28.3 27 2.1 13.54 11.66 4.89 7.52 2.65 2.58 2 0.638 57.97 15.4
FY-7 1.23 22.8 54.8 15.8 2.2 6.384 9.58 3.88 2.96 3.36 2.72 2.1 0.961 170.21 102.3
FY-8 0.77 35.7 20.1 35.3 2.4 13.21 9.99 7.14 5.36 2.86 0.9 0.7 0.142 38.67 9.9
FY-9 1.21 50 19 24.5 1.4 15.5 15 10.5 9 3.71 4.44 3.5 9.79 35.00 7.2

FY-10 0.41 48.3 0 32.4 0 16.91 11.59 11.59 8.21 1.66 3.05 2.4 1.07 39.71 4.9
FY-11 0.33 12.7 76.1 11.2 0 3.18 2.54 3.05 3.94 1.42 2.16 1.7 0.565 31.06 9.7
FY-12 0.2 51.1 17.7 31.2 0 20.44 15.84 9.71 5.11 13.92 0.67 0.7 0.205 21.85 4.6
FY-13 0.61 46.3 10.3 40.5 0 19.45 15.28 6.95 4.63 12.62 1.12 0.9 0.073 17.78 4.2
FY-14 0.67 44.7 10.5 42.6 0 19.22 13.41 6.71 5.36 4.47 7.01 5.6 0.323 9 6.5
FY-15 0.49 45.3 18.6 32.2 1.8 19.48 16.31 5.44 4.08 9.47 4.7 5.9 9.02 163.73 100.9
FY-16 0.27 21.9 17.8 55.2 0 7.67 5.69 4.59 3.94 5.51 2.56 2 0.126 25 2.7
FY-17 0.26 48.3 18.6 31.4 0 18.84 14.97 9.66 4.83 11.91 2.25 1.7 0.154 27.44 4.5
FY-18 1.29 62.4 8.8 23.7 1.6 21.84 24.96 10.61 4.99 8.73 3.22 2.5 4.65 46.94 6.5
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index and Tmax showing the kerogen-type and source potential; (B) ternary chart of kerogen
maceral composition.

The vitrinite reflectance (Ro) values of 17 samples ranged from 1.0% to 1.46% and averaged 1.19%
(Figure 3). The temperature of maximum development of the S2 peak (Tmax) mainly ranges from
439 ◦C to 510 ◦C (avg. 452 ◦C). This indicates most of the samples reach a moderate-high maturity
with a high potential for shale gas generation [18].

4.2. Reservoir Characteristics

4.2.1. Mineral Composition and Reservoir Properties

X-ray diffraction analysis of core samples from the two wells showed that the Da’anzhai Member
shale is dominated by carbonate minerals (avg. 56.8%), followed by clay minerals (avg. 29.8%),
quartz and feldspars (avg. 19.6%), and pyrite (avg. 3.05%) (Figure 3 and Table 1). These kinds of
mineral compositions confirmed that the Da’anzhai member shale is not a typical shale of mainly
terrigenous origin (generally defined by clay contents greater than 75%). The brittle mineral content
(avg. 68.5%) of the Da’anzhai member shale has reached at the minimum standards of fracturing
feasibility (40%) [19]. Illite and mixed-layerillite/smectite (avg. 65.8%) are the predominant clay
minerals from the corresponding clay mineral data (Table 1) with comparatively small amounts of
chlorite (avg. 15.8%) and kaolinite (avg. 18.2%). According to the mineral compositions, sedimentary
genesis, and structure, the lithofacies of the Da’anzhai member can be classified as five groups:
marl (ML), calcareous shale (CS), argillaceous shale (AS), muddy siltstone (MS), and silty shale (SS).

Porosity and permeability analyses from MIP in well FY3-2 indicates that the differences of
reservoir properties between several lithofacies are dramatic. There is a weakly positive relationship
between Porosity and permeability (R2 = 0.31) (Figure 5). The permeability of different lithofacies
influenced by microfractures shows a wide range of 0.07–28.76 mD (Table 1). A permeability of
0.1–1 mD account for 66.7% in all samples. The permeability of CS with the laminated structures is
relatively high. Moreover, its porosity (avg. 4.72%) is also higher than AS (avg. 2.72%), followed by MS
(avg. 1.89%) and SS (avg. 1.75), whereas porosity of ML is relatively poor (avg. 1.02%). The information
of pore throat size, the sorting and connectivity within pores also can be obtained from the MIP data
and curves (Figure 6). The distribution of pore throat size indicates that AS, CS, and SS contains two
types of pores: small pores (8–100 nm) and large pores (1–15 µm) with a good connectivity (Figure 7).
But the tight ML and MS composed of a large number of small pores (<20 nm).
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NMR is also an effective tool to determine the probe reservoir characteristics, including bound
fluid, free fluid porosity, effective porosity, total porosity, and hydrocarbon existence [20]. The reservoir
evaluation results of the Da’anzhai member from NMR well logging were shown in Figure 8 and Table 2.
The heterogeneity of shale lithofacies strongly influenced the T2 spectrum and porosity characteristics
from NMR logging data. CS generally constitute of 2–3 peaks in the T2 spectrum: The first peak
(around 3 ms) is the largest peak, followed by a second peak (around 60 ms), while the third (1000 ms)
peak is generally missing or it is not significant. This indicates that the pore types mainly consist
of micropores and meso/macro pore. Sometimes, the fractures can be developed in these kinds of
lithofacies. This is consistent with the distribution of pore throat size from the MIP results. The porosity
of bound water is larger than that of free fluid. The T2 spectrum of AS, SS, and MS shows an amplitude
peak and a minor peak. However, the value of T2 in the AS is generally higher than that of SS and MS.
This indicates the AS has better reservoir quality. The T2 spectrum of ML differs significantly from
other lithofacies. It only has one peak around 1 ms, indicating that micropores prevail. Interestingly,
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free water volume does not exist in the ML because of high carbonate cementation. This is further
confirmed by the carbonate content from XRD results.
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Table 2. The reservoir evaluation results of five types of shale lithofacies in the Da’anzhai member
from NMR well logging data.

Lithfacies
Type

The Peak of T2
Distribution (ms)

Capillary Bound
Water Volume

(avg. %)

Movable
Water Volume

(avg. %)

Effective Porosity
(avg. %)

Total Porosity
(avg. %)

CS 3–30, 60–300, 1000 2.3 0.6 2.5 4.9
AS 3–30, 30–100 1.5 0.4 1.8 2.1
SS 1–3 3–30 1.2 0.3 1.3 1.8
MS 0.3–3, 3–10 0.6 0.2 0.9 1.2
ML 0.3–3 0.3 0 0.5 0.9

4.2.2. Pore Morphology and Pore Structure Analysis

FE-SEM images are the techniques that are generally used to qualitatively determine the pore
morphology characteristics of shales (e.g., the shapes, sizes, and distributions) [21–23]. The FE-SEM
images show that a large quantity of micro-nano pores and microfracture exits may occur in the
lacustrine shale samples. Based on the relationship between pores and minerals, pores can be classified
into the three groups: organic matter-hosted pores (OM pores), the pores in the framework minerals
(FM pores), and clay minerals-associated pores (CM pores). OM pores usually form during the thermal
evolution and hydrocarbon generation process of kerogen and other OM. They mainly have aspherical,
ellipsoidal-shape with a pore size of 2–100 nm (Figure 9A,B). Compared with the marine shale in the
Fuling areas [5], OM pores are scarce in the Da’anzhai Lacustrine shale because of a moderate maturity
(Ro: avg. 1.19%) and low TOC content. A large number of clay mineral pores was investigated in
the SEM. The intrapartical and interlayer pores were developed between the clay mineral. The pore
size of the observed wedge-shaped pore is 50 nm to 700 nm, and the length of the slits is up to 6 µm
(Figure 9C,E,F). These pores provide a large surface for adsorbed gas. FM pores are mostly a certain
amount of nano-scale pyrite framboids or calcite intercrystalline pores (Figure 9G,H). These pores are
generally irregular with poor connectivity. The FM pores also contain the nano-scale pores generated
by the dissolution of minerals (e.g., quartz and calcite) (Figure 9I). Moreover, a large number of
microcracks could be investigated in the CS and AS. These shrinkage cracks were generally caused by
dehydration of clay minerals and thermal pressurization of hydrocarbons [24,25], forming a crack-pore
network system (Figure 9A,D). The shrinkage crack and the edge of the mineral particle form a
bend-ridge-like distribution, with crack spacing of 20–30 nm and length of 8–40 µm. These microcracks
provide important channels for gas migration.

Pore structure parameters measured by MIP are shown in Table 1. The average pore size and
medium pore size show a main range of 17.8–57.9 nm and 2.7–18 nm, respectively. This indicates
the pore size in the Da’anzhai member shale is dominated by mesopores, which is in consistent
with the full pore-size distribution results of previous studies in Da’anzhai member shale of the
central or northeastern Sichuan Basin [3–5]. The specific surface area varies from 1.42 to 13.92 m2/g
(avg. 5.81 m2/g). The pore volume ranges from 0.35 to 7.01 cm3/100g (avg. 2.59 cm3/100g). Compared
with the marine Longmaxi Formation shale in the same area (i.e., Fuling area; [5]), the surface area and
pore volume is much lower because a lower TOC of lacustrine shale in Da’anzhai member contributes
less to the surface and pore volume than marine shale. In Figure 10, TOC values are positively
correlated with surface area and pore volume with a coefficient of 0.46 and 0.23, respectively. However,
this correlation is much poorer because of a low-medium TOC value (avg. 1.12 wt.%) and moderate
maturity. The clay mineral and surface area exit a strong positive correlation with a coefficient of 0.62.
This indicates clay mineral play a more important role on the surface area [26] and pore volume of
lacustrine shale with a low TOC (Figure 10). Many interparticle pores among clay minerals are also
investigated in the SEM (Figure 9C,E,F). On thecontrary, the carbonate content is negatively correlate
with surface area and pore volume, because high carbonate minerals (e.g., calcite) with a strong
cementation can greatly influence reservoir quality and usually have adverse impacts. The quartz
minerals show a weakly positive relationship with pore volume (R2 = 0.49). The total pore volume
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increases with quartz and feldspar content in the lacustrine shale due to the generation of pores by
dissolution and weakening of compaction [27].

Energies 2020, 13, x FOR PEER REVIEW 10 of 17 

 

classified into the three groups: organic matter-hosted pores (OM pores), the pores in the framework 
minerals (FM pores), and clay minerals-associated pores (CM pores). OM pores usually form during 
the thermal evolution and hydrocarbon generation process of kerogen and other OM. They mainly 
have aspherical, ellipsoidal-shape with a pore size of 2–100 nm (Figure 9A,B). Compared with the 
marine shale in the Fuling areas [5], OM pores are scarce in the Da’anzhai Lacustrine shale because 
of a moderate maturity (Ro: avg. 1.19%) and low TOC content. A large number of clay mineral pores 
was investigated in the SEM. The intrapartical and interlayer pores were developed between the clay 
mineral. The pore size of the observed wedge-shaped pore is 50 nm to 700 nm, and the length of the 
slits is up to 6 μm (Figure 9C,E,F). These pores provide a large surface for adsorbed gas. FM pores 
are mostly a certain amount of nano-scale pyrite framboids or calcite intercrystalline pores (Figure 
9G,H). These pores are generally irregular with poor connectivity. The FM pores also contain the 
nano-scale pores generated by the dissolution of minerals (e.g., quartz and calcite) (Figure 9I). 
Moreover, a large number of microcracks could be investigated in the CS and AS. These shrinkage 
cracks were generally caused by dehydration of clay minerals and thermal pressurization of 
hydrocarbons [24,25], forming a crack-pore network system (Figure 9A,D). The shrinkage crack and 
the edge of the mineral particle form a bend-ridge-like distribution, with crack spacing of 20–30 nm 
and length of 8–40 μm. These microcracks provide important channels for gas migration. 

 
Figure 9. Pore types of the Da’anzhai member shale in the FE-SEM images. (A) organic 
matters-hosted pores and microfractures, CS, 2599.95 m, Well FY1; (B) organic matters-hosted pores, 
AS, 1736.51 m, well FY4; (C) interparticle pores between clay minerals, AS, 2543.73 m, well FY5; (D) 
microfractures, 2615 m, CS, well FY1; (E) and (F) floccule intercrystal pores in flocculated clay 
microfabric, CS, 2544.36 m, well FY4; (G) intercrystalline pores in calcite mineral, ML, 2639.8 m, well 
FY1; (H) intercrystal pores in pyrite framboids, SS, 1736.51 m, well FY4; (I) dissolution pores in 
calcite minerals, MS, 2672.04 m, well 5. 

Pore structure parameters measured by MIP are shown in Table 1. The average pore size and 
medium pore size show a main range of 17.8–57.9 nm and 2.7–18 nm, respectively. This indicates the 

Figure 9. Pore types of the Da’anzhai member shale in the FE-SEM images. (A) organic matters-hosted
pores and microfractures, CS, 2599.95 m, Well FY1; (B) organic matters-hosted pores, AS, 1736.51 m,
well FY4; (C) interparticle pores between clay minerals, AS, 2543.73 m, well FY5; (D) microfractures,
2615 m, CS, well FY1; (E) and (F) floccule intercrystal pores in flocculated clay microfabric, CS, 2544.36 m,
well FY4; (G) intercrystalline pores in calcite mineral, ML, 2639.8 m, well FY1; (H) intercrystal pores
in pyrite framboids, SS, 1736.51 m, well FY4; (I) dissolution pores in calcite minerals, MS, 2672.04 m,
well 5.
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Figure 10. Correlation plots between specific surface area and pore volume and TOC and mineral
composition. (A) The relationship between TOC and surface area; (B) The relationship between TOC
and pore volume; (C) The relationship between clay and surface area; (D) The relationship between clay
and pore volume; (E) The relationship between carbonate and surface area; (F) The relationship between
carbonate and pore volume; (G) The relationship between Quartz and surface area; (H) The relationship
between Quartz and pore volume.

4.3. Methane Sorption and Adsorption Potential

The methane adsorption isotherms of five shale samples measured at different pressure and
temperatures are shown in Figure 11. We set a temperature group of 30 ◦C, 80 ◦C, 100 ◦C. The pressure
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values were measured at the 13 balance pressure points. The balancing time at each spot was set by
12.0 h. The amount of methane adsorbed into the shale at early stage of <5 MPa rapidly increased
under different temperature and reached 85% of the maximum adsorption capacity. However, the shale
with a high TOC content at same temperature (80 ◦C) has much faster methane adsorption rate with
a large gradient (Figure 11A), because a high TOC of organic-rich shale provide a large amount of
surface area for methane adsorption. The increased amount of methane adsorption became less from
5 MPa up to 12 MPa, because the methane adsorption reached equilibrium state. This process can be
described by the Langmuir isotherm equation [28]:

V =
VLbp
1 + bp

(1)

where V is the absorbed methane volume, cm3/g; VL is the Langmuir volume, cm3/g; b is the reciprocal
of Langmuir pressure, MPa−1; p is the pressure, MPa. Langmuir volume of Da’anzhai member
shale ranges from 1.34 mL/g to 2.28 mL/G (avg. 1.70 mL/g), indicating medium-high adsorbed
capacity (Table 3). However, shale with different TOC content has quite different VL value at the same
temperature (80 ◦C). When TOC content increased from 0.41 wt.% to 1.48 wt.%, the Langmuir volume
of shale changed from 1.34 mL/g to 1.77 mL/g (Figure 11). Even with a similar TOC level, the Langmuir
volume decreased rapidly at a high temperature. When the experimental temperature jumped from
30 ◦C to 100 ◦C, the Langmuir volume of shale decreased from 2.28 mL/g to 1.44 mL/g. This can be
interpreted by adsorption potential theory.
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Table 3. Methane adsorption results and field desorption results of shale samples.

Sample TOC
(wt.%)

Porosity
(%)

Langmuir
Volume
(mL/g)

Langmuir
Pressure

(MPa)

Desorption
Gas Content

(m3/t)

Lost Gas
Content

(m3/t)

Residual Gas
Content (m3/t)

Total Gas
Content (m3/t)

FY-1 0.56 0.8 / / 0.04 0.19 0 0.23
FY-3 1.89 2.0 / / 0.19 1.51 0.1 1.8
FY-4 1.48 0.6 1.77 2.01 0.19 1.27 0.12 1.58
FY-6 0.96 2.0 / / 0.14 0.11 0.09 0.34
FY-7 1.31 2.1 2.28 2.46 0.22 0.85 0.07 1.14
FY-8 0.77 0.7 1.66 2.39 0.1 0.06 0.08 0.24
FY-9 1.21 3.5 / / 0.11 0.02 0.01 0.14
FY-10 0.41 2.4 1.34 2.42 0.13 0.07 0.06 0.26
FY-13 0.61 0.9 / / 0.12 0.32 0.05 0.49
FY-14 0.67 5.6 / / 0.1 0.24 0.05 0.39
FY-15 0.49 5.9 / / 0.17 0.66 0.06 0.89
FY-16 0.27 2.0 / / 0.09 0.39 0.04 0.52
FY-17 0.26 1.7 / / 0.15 0.45 0 0.6
XL-1 1.44 4.6 / / 0.31 0.08 1.16 1.55
XL-2 1.87 8.2 / / 0.38 0.15 1.37 1.9
XL-3 3.06 3.8 / / 0.35 0.03 1.91 2.29
XL-4 1.41 7.6 / / 0.38 0.06 1.24 1.68
XL-5 1.22 4.8 / / 0.28 0.13 0.49 0.9

Note: /: no data.

Based on Polanyi’s theory of adsorption potential [29], the adsorption potential correlated with
pressure can be defined as:

ε =

P0∫
Pi

RT
P

dP = RT ln
P0
Pi

(2)

where ε is the adsorption potential, J/mol; Pi is the equilibrium pressure of methane at temperature
T, MPa; P0 is the saturated vapor pressure of methane at T, MPa; R is a constant value of 8.3114,
J/(mol·K); T is the thermodynamic temperature, K; P is the pressure, MPa; under a certain temperature,
the saturated vapor pressure of methane keeps constant. For example, the saturated vapor pressure
of methane is generally 15.8 MPa at 80 ◦C. So according to Equation (2), the adsorption potential
of shale samples can be easily determined from isothermal adsorption experiment (Figure 11B).
When the temperature increased under the same pressure, the adsorption potential obviously increased.
It indicates the result of an increase of temperature and gas molecular kinetic energy. The increase of
adsorption capacity cannot keep more gas molecules absorbed by the adsorbent, because the increasing
rate of energy change is much lower than the kinetic energy. Therefore, the adsorption capacity
increases with the decrease of temperature.

4.4. Gas Content of Field Desorption

Field desorption analysis of 18 samples indicates total gas content of the Da’anzhai member shale
range from 0.14 to 2.29 m3/t (avg. 1.04 m3/t). It is much greater than the minimum standard of 0.5 m3/t
for a favorable lacustrine shale gas [2]. Moreover, the CES in the medium-upper section of the J1zDa2

has high gas content with a range of 1.15–2.29 m3/t (avg. 1.57 m3/t). Desorption gas content accounts
for 10.56–60.44% (avg. 26.75%) of total gas content. This is much lower than the ratio of desorption
gas content to total gas content due to a moderate TOC and maturity. TOC is positively related to
the total gas content with a correlation coefficient of 0.71 (Figure 11C). It shows a strongly positive
relationship between TOC and desorption gas content (R2 = 0.83). This suggests OM contributes most
to desorption gas content. There is also a weakly positive correlation between porosity and total gas
content (Figure 11D), because shale with a high porosity can provide more sites for free gas.
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5. Conclusions

(1) The lacustrine Da’anzhai member shale in the north Fuling area has a medium-high OM content
(avg. TOC 1.12 wt.%). The laminated calcareous shale in the upper part of the J1zDa2 has high
TOC value of avg. 1.58 wt.%. The average potential yield P (S1 + S2) and chloroform bitumen
content “A” are 2.34 mg hydrocarbons per g TOC and 0.11% with a medium hydrogen generation
potential. The kerogen type of mainly typeII2 and a moderate OM maturity (VR = avg. 1.19)
indicate a huge potential of gas generation. The mineral content is dominated by calcite, clay and
quartz. The clay minerals mainly consist of illite and mixed-layerillite/smectite. The lithofacies of
the Da’anzhai member includes marl (ML), calcareous shale (CS), argillaceous shale (AS), muddy
siltstone (MS), and silty shale (SS).

(2) Heterogeneity of shale lithofacies strongly influences the reservoir quality. The porosity and
permeability of shale is overall low, but the laminated calcareous shale has good reservoir
properties with a high porosity (avg. 4.72%). The pore size is dominated by mesopores, and the
medium pore diameter is 23.2 nm. Better NMR data show that the small pores with the
transverse relaxation time of 0.6–1 ms and 1–3 ms comprised most of the porosity of the Da’anzhai
shale member, while the larger pores with a T2 value of 300–1000 ms and 1000–3000 ms only
accounts for a small porosity proportion. However, it is very important for gas migration and
generally showed a third peak in the NMR spectrum of CS, and this peak generally missed after
centrifuge processing.

(3) The clay minerals in Da’anzhai member shale contributes most to surface area. The average
Langmuir volume and total gas content is 1.7 mL/g and 1.04 m3/t. The adsorption capacity of
methane decreases with decreasing TOC and increasing temperature. The total gas content of
lacustrine shale is controlled by TOC and porosity. CS have the highest gas content (avg. 1.57 m3/t)
than other shale lithofacies. The reservoir properties, mineral composition and gas content data
suggest the laminated calcareous shale in the medium-upper section of the J1zDa2 are the most
advantage lithofacies for shale gas potential production.
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