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Abstract: A discrete vortex method is implemented with a hybrid control technique of vortex
shedding to solve the problem of the two-dimensional flow past a slightly rough circular cylinder in
the vicinity of a moving wall. In the present approach, the passive control technique is inspired on
the fundamental principle of surface roughness, promoting modifications on the cylinder geometry
to affect the vortex shedding formation. A relative roughness size of £*/d* = 0.001 (&* is the average
roughness and d* is the outer cylinder diameter) is chosen for the test cases. On the other hand,
the active control technique uses a wall plane, which runs at the same speed as the free stream
velocity to contribute with external energy affecting the fluid flow. The gap-to-diameter varies in
the range from h*/d* = 0.05 to 0.80 (h* is the gap between the moving wall and the cylinder bottom).
A detailed account of the time history of pressure distributions, simultaneously investigated with the
time evolution of forces, Strouhal number behavior, and boundary layer separation are reported at
upper-subcritical Reynolds number flows of Re = 1.0 X 10°. The saturation state of the numerical
simulations is demonstrated through the analysis of the Strouhal number behavior obtained from
temporal history of the aerodynamic loads. The present work provides an improvement in the
prediction of Strouhal number than other studies no using roughness model. The aerodynamic
characteristics of the cylinder, as well as the control of intermittence and complete interruption of von
Karman-type vortex shedding have been better clarified.

Keywords: bluff body; roughness model; Venturi effect; suppression hybrid control; Lagrangian
description

1. Introduction

In the literature, “bluff body” is defined as being a structure that when immerse in a fluid flow
will present significant proportion of its surface generating separated flow. This idea is also associated
with characteristics of the flow around the body, especially the two shear layers of opposite signals
formed from the separation points of the body [1]. Since 1900, numerous analytical, numerical,
and experimental investigations have been conducted to study bluff body aerodynamics on either
two-dimensional or axisymmetric shapes; the two most common bodies being the circular cylinder
and the sphere. The more relevant results have contributed to develop important researches in
aerospace/aeronautical, civil, marine, mechanical, and computer engineering.
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The present paper aims to contribute with more discussions concerning the surface roughness
effect on bluff body aerodynamics. An important practical engineering application of the flow around
cylindrical structures is that of the fluid-elastic interaction between the flow and the structure exciting
the body into flow-induced vibrations (FIV) [2-6]. Undoubtedly, the surface roughness effect must
be used to control this non-linear hydrodynamic phenomenon. This is one of important motivations
for future extension of our present research, which will also include the study of slender body
aerodynamics [7]. Another one is planned to investigate heat transfer behavior in mixed convection of
a fluid by a temperature particles method [8].

In the context of the present work, the literature has reported studies of surface roughness effect
on flow past a bluff body with low frequency [2,5,6,9-19]. It is important to mention that numerical
analysis of rough bluff body aerodynamics near a ground plane is very limited, which valorizes the
recent methodology proposed by Alcantara Pereira et al. [10] and classified such as “hybrid control
technique of vortex shedding” [20].

In fact, control and suppression of vortex shedding from a bluff body has been considered as one
of the most important research areas in the field of aerodynamics and hydrodynamics applications,
such as vibration of pipelines, interactions of currents and wave with offshore structures, suspension
bridges and chimneys near tall buildings.

There are different situations where the vortex shedding may cease, and, of particular interest here,
is that of a circular cylinder in the vicinity of a ground plane. To the best of our knowledge, the ground
effect is governed by three mechanisms [21-28]: (i) The wake interference because of the intertwine of
the body wake and the boundary layer formed on the ground, the latter is less influent despite several
intensive studies reported so far. (ii) The three-dimensional effect, which presents a momentum transfer
in the axial direction of the body leading to a lower drag force value as compared to the two-dimensional
results. (iii) The blockage effect (or Venturi effect), which contributes to appearing big and small peaks
during the temporal evolution of the drag curve. These peaks have been identified within the large-gap
regime, i.e., i*/d* > 0.40, by Bimbato et al. [22] using a discrete vortex method implemented with Large
Eddy Simulation (LES) theory. The large-gap regime is characterized by the presence of strong vortical
structures, which are generated at the rear part of a bluff body [25]. In Section 3.2, these peculiar
peaks’ behavior on the drag curve will be again studied, now using the present numerical method,
to contribute on discussion of the roughness model sensitivity. The applicability of the Venturi effect in
aerodynamic models has been discussed in the literature [29,30].

Within the scenario above described, Roshko et al. [26] reported the aerodynamic forces behavior
for the smooth circular cylinder in the vicinity of a fixed wall using a wind tunnel at high Reynolds
number flow of Re = 2.0 x 10%. As the cylinder came close to the ground plane, it was reported that the
drag force rapidly decreased; on the contrary, the lift force increased.

Zdravkovich [27] also reported aerodynamic forces behavior for the smooth circular cylinder near
a fixed ground at high Reynolds numbers flows in the range of 4.8 x 10* < Re < 3.0 x 10°. As the
gap-to-diameter ratio h*/d*, reduced to less than the thickness of the boundary layer 6*/d*(6* is the
boundary layer thickness) on the ground plane, it was identified a rapid decrease in the drag force.
The drag variation was dominated by /#*/6* and the ratio /*/d* was less dominant. It was observed that
the state of the boundary layer could interfere in the lift force, although the boundary layer thickness
was less influent.

In other relevant research, Zdravkovich [28] investigated the drag force behavior of the smooth
circular cylinder near a ground plane. The wall plane ran at the same speed as the free stream
velocity in an upper-subcritical Reynolds number flow of Re = 2.5 x 10° into the critical flow regime.
The experimental results showed contrast to all previous studies using fixed ground, e.g., [26,27],
because practically no boundary layer was generated from the moving wall. Interestingly, the expected
decrease of the drag force, as the ratio #*/d* decreased, did not appear. That behavior was attributed to
the non-existence of the boundary layer formed on the ground or the high Reynolds number, or any
other influencing factors, such as surface texture and structural vibration.
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Nishino [25] reported experimental results of the flow around the smooth circular cylinder with
an aspect ratio of 8.33 in a wind tunnel. Two upper-subcritical Reynolds numbers of Re = 0.4 x 10*
and 1.0 x 10° were investigated during his experiments. The cylinder with and without end plates
configurations were near and parallel to a wall plane running at the same speed as the free stream
velocity. The moving wall effect eliminated the less influent effects of boundary layer formed on the
ground and, therefore, the experimental results contributed to clarify the fundamental mechanisms
of ground effect in more details. The experimental study also produced new perceptions into the
physics of ground effect, and still nowadays serves as database to support numerical investigations.
Of importance for the present work, is that, for the cylinder with end plates, the oil flow patterns
were observed to be approximately two-dimensional. In contrast to the cylinder near a fixed ground
configuration [26], the drag force rapidly decreased, as the ratio h*/d*decreased to less than 0.50 and
became constant for h*/d*of less than 0.35.

Bimbato et al. [21,22] implemented an algorithm of the discrete vortex method with LES modeling
to study the two-dimensional flow around the circular cylinder near a moving wall. Their numerical
strategy was to represent the ground plane motion using a plane wall with no vorticity generation on
it. The numerical results for an upper-subcritical Reynolds number of Re = 1.0 x 10° presented a good
agreement with the experimental results reported by Nishino [25] using the cylinder with end plates
configuration. The authors concluded that the Venturi effect almost completely suppressed the vortex
shedding from the cylinder placed closer to the ground plane. Furthermore, the drag force decreased
as consequence of the suppression.

In a recent paper, Alcantara Pereira et al. [10] proposed a hybrid control technique of vortex
shedding, combining passive and active controls, to study the flow past the rough circular cylinder in
the vicinity of a moving wall at upper-subcritical Reynolds number of Re = 1.0 x 10°. They successfully
associated the methodologies developed by Bimbato et al. [11,21,22] focusing on the effect of higher
relative roughness sizes, namely, ¢*/d* = 0.0045 and 0.007, on flow dynamics of the cylinder at small-gap
regime, which was identified in past investigation by Bimbato et al. [22] at #*/d* < 0.20. The small-gap
regime is characterized by vortex shedding suppression. Their results shown an anticipation of the
vortex shedding suppression when using ¢*/d* = 0.007 at 1*/d* = 0.10. Of importance, the Strouhal
number completely vanished (5t = 0.0) and it was observed the formation of two nearly parallel
shear layers of opposite signals at the rear part of the cylinder. It is interesting to comment that
Bimbato et al. [22] did not capture the complete interruption of vortex shedding, even at h*/d* = 0.05.
This flow behavior will be investigated later in Section 3.2 to also contribute on discussion of the
roughness model effect on it.

It is important to observe that Alcantara Pereira et al. [10] only computed the form component
of the drag force. According to the discussions of Achenbach [9], the form (or pressure) component
dominates the drag force on the smooth cylinder contributing more than 98% of the total drag force.
On the other hand, the skin friction (or viscous) component of the drag force is responsible for the
remaining 1-2%. In the literature, it is expected neither component of the drag force of the rough
cylinder can be neglected. However, Achenbach [9] investigated the viscous drag force from a
sand-roughened surface (¢*/d* = 0.0011 and 0.0045) and concluded that it contributed about 2-3% of
the total drag force. That result showed a slight increase of the viscous drag force as compared as that
of the smooth cylinder. Alcantara Pereira et al. [10] have reported differences above 10% between the
smooth cylinder and other rough when integrating only static pressure, and, therefore, as discussed by
them, the surface roughness effect has been captured by their numerical approach.

The main contribution of the present paper is shown that the methodology proposed by Alcantara
Pereira et al. [10] also captures important changes in the flow dynamics of the slightly rough circular
cylinder in the vicinity of a moving wall. Thus, the effect of small relative roughness size, namely,
e*/d* = 0.001, on flow dynamics around the cylinder is investigated and compared to smooth cylinder
configurations. The chosen roughness size can be found, for example, in support columns of large
offshore floating structures after a few years of operation. Put in other words, the main goal here is to
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report understanding of the influence of surface roughness for control of vortex shedding frequency
reduction and wake destructive behavior behind the rough cylinder placed near a moving wall at
upper-subcritical Reynolds number of Re = 1.0 X 10°. Our highlight results are for temporal history of
aerodynamic loads, Strouhal number behavior and separation point prediction. The focus is to track
the Strouhal number behavior until it vanishes. Overall, the results are found agree with the physics
expected for this kind of vortical flow. The Section 4 will summarize the key findings of this study.

The rough circular cylinder aerodynamics has been reasonably reported in the literature [2,9,11,12,14,16,18],
however, very little attention has been paid to the problem of the flow around the rough cylinder near
a moving wall [10]. In recent past works [10,11], it has been reported that the effect of two-dimensional
roughness model is much more sensitive than single turbulence modeling.

In general, numerical simulations of high Reynolds number flows around two-dimensional
bluff bodies over predict aerodynamic forces behavior. However, the results are very important for
applications of conservative designs in practical engineering problems, where higher integrated loads
are computed, specially the drag force, in association with accurate vortex shedding frequencies. In the
last years, our research group has made an effort to develop the in-house code for future extension to
three-dimensional flows, and this research is integral part of the project.

2. Theory and Numerical Method

2.1. Physical Modeling

Figure 1 illustrates the smooth circular cylinder immersed in a semi-infinity fluid domain, (),
with a free stream velocity, U*, at infinity. The fluid is Newtonian with constant kinematic viscosity, v.
The flow is assumed to be unsteady, incompressible, and two-dimensional. The fluid domain can be
identified by a surface S = S1US,US3, being Sy the cylinder surface, S, the moving wall surface and S3
the far away boundary. The surface S is required to establish the boundary conditions of the physical
problem. The location of the separation points of the flow for the top (open) and the bottom (gap) sides
of the cylinder are defined by 6%, and 0™, respectively. The blockage effect is captured by reducing
the gap-to-diameter ratio, h*/d*.

positive shear layer

/

U S3
—

vortex blobs
/ Q

y o > ; v

h* Sa X
o = s = —— 5 > X
" Li"=3d" ~ L'=7d"

Figure 1. Schematic representation of the semi-infinity fluid domain.

To non-dimensionalize all the quantities of the problem, it is chosen the cylinder diameter, 4%, as
scale length. The dimensionless time is defined by #*U*/d*. In the general formulation, the symbol * is
used to identify dimensional quantities.

The Reynolds number is defined in the following form:

ux—d*
v

Re = (€))
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According to Bearman [1], the presence of two shear layers of opposite signals is primarily
responsible for vortex shedding, and the body merely modifies the mechanism by allowing feedback
between the viscous wake and the shedding of circulation at the separation points (Figure 1).
As consequence, the interaction between the two shear layers as a function of the free stream
velocity, U*, and the body diameter, d*, is the key factor to define the rate at which vortical structures are
cyclically detached at the rear part of the body. Thus, the dimensionless Strouhal number is defined as:

d*

St = f'F

)

being the frequency of vortex shedding, f*, related with the scales d* and U*.

The Strouhal number for the smooth cylinder with no wall confinement has been experimentally
measured in the literature and found close to S5t ~ 0.19 for an upper-subcritical Reynolds number of
Re =1.0 x 10° [31]. In Equation (2), the quantity f* is originally obtained from the temporal series of
the lift force curve.

2.2. Introduction of Source Singularity Elements and Nascent Vortex Blobs

In the present numerical method, the smoothed cylinder and moving wall surfaces (Figure 1)
are treated by an integral formulation of the potential component of the flow [32]. These surfaces
are discretized and represented by flat panels with distribution of source singularity elements with
constant density. Each flat panel has a center point, named pivotal point, where the impermeability
boundary condition must be satisfied. The impermeability condition is imposed on each pivotal point
and it establishes equality between the normal velocity component of a fluid particle and the normal
velocity component of each pivotal point. Of numerical importance is the fact that the impermeability
condition and the mass conservation of the problem are guaranteed by the source elements generation
in each temporal step.

In addition to this, the discrete vortex method engages in to discretize spatially the vorticity
field using an instantaneous vortex blobs collection, as illustrated in Figure 1. The vortex blobs are
represented by Lamb vortex elements, each one presenting a distribution of vorticity,c,,, (commonly
called the cut-off function), a circulation strength, I', a core size, 0y, and a spatial position, x [33,34].
The no-slip boundary condition is imposed on each pivotal point and it establishes equality between
the tangential velocity component of a fluid particle and the tangential velocity component of each
pivotal point. Of numerical importance is the fact that the no-slip condition and the global circulation
conservation of the problem are guaranteed by the vortex blobs generation in each temporal step.
The moving wall effect dispenses this boundary condition on the ground plane, being the vortex blobs
only generated on the cylinder surface [21,22,25]. Figure 2 illustrates as a vortex blob is introduced into
the fluid domain. In Lagrangian manner, the vorticity generated from a flat panel stay concentrated
inside blob vortex core, 0.

I eps;

Figure 2. Shedding of a vortex blob during one time stepping (co; is the pivotal point and eps;” defines
the “smooth shedding point” location of the vortex blob).

To satisfy the boundary conditions above mentioned are necessary two different kinds of
system of linear algebraic equations, which are solved iteratively using the method of least squares.
The simultaneous generation of sources elements and vortex blobs can also be coupled with the
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roughness model, when activated; details of the roughness model used in simulations of interest will
be presented in Section 2.4.

2.3. Discrete Vortex Method with LES Modeling

The motion of each vortex blob is governed by the vorticity transport equation, which is obtained
by taking the curl of the Navier—Stokes equations [33]. Chorin [35] proposed an algorithm that splits
the vorticity transport equation to separately solve the advection and diffusion problems. Alcantara
Pereira et al. [36] originally presented the solution of the two problems including LES modeling into
the two-dimensional discrete vortex method, such as, respectively:

Dw Jw _ _. _
Ff = E—i—(u-V)w—O (3)
0o (1 N\
E = (E +Vt)v w (4)
where
e U 5)
vt - ux—dx-

represents the local eddy viscosity coefficient and w = V X u defines the vorticity scalar field.

The vorticity generated from each flat panel in a time stepping is regarded “free” to undergo
advection and diffusion process satisfying Equations (3) and (4), respectively. The vortex blobs transport
by advection (Equation (3) is computed through the following expression:

t+aAt

LA xf—i—u(xi)H_aAtAt _ xlf-i—[(K*E)(x)‘i‘@(xi)"'l] At (6)

1

where 1(x;) ¢ &

represents the velocity vector of the filtered field, and a is the temporal integrating
parameter, such that 0 < @ <1, where a = 0 and a = 1 define an explicit and an implicit Euler scheme,
respectively. In this work, is adopted an explicit Euler scheme.

In Equation (6), the velocity vector is computed at the point occupied by the ith vortex blob
according to the Biot-Savart law (vortex—vortex interaction), panel method (vortex—panel interaction)
and free stream velocity (vortex-mainstream interaction) contributions, respectively. It is remarkable
that the Lagrangian manner [37] dispenses the need to explicitly treat advective derivatives into the
Equation (3).

Equation (4) is solved using to the random walk method [35], where is imposed a displacement
for each vortex blob in the following form [36]:

ci(t) = aAt ln(%)[eos(ZnQ)x + sin(ZHQ)y] 7)

Re,.

1

being p and Q random numbers generated between 0.0 and 1.0, and Re, the local Reynolds number
modified by the local eddy viscosity coefficient, such as [36]:

u-da

Re,(t) = —

®)

In Equation (7), p and Q define two random displacements with mean equal to zero and a variance
given by twice the product of the kinematic viscosity and the time. The vorticity diffusion process
through the random displacements of vortex blobs simulates the viscosity effect.

In the present formulation, the local turbulence effect is simulated during the vorticity diffusion
process. Therefore, the local eddy viscosity coefficient computation is necessary to include the effect of
the small scales through the concept of differences of velocity between vortex blobs [36]. The support
to the turbulence modeling success is that each vortex blob needs to move with the local fluid velocity



Energies 2020, 13, 4481 7 of 23

in a Lagrangian manner to simulate the vorticity advection process, and the velocity induced at each
vortex blob (see u(xi)t+“ Ain Equation (6)) is calculated before the vorticity diffusion process.

The average velocity differences are required to calculate the second-order velocity structure
function of the filtered field [38] for each vortex blob that constructs the viscous wake. Alcantara
Pereira et al. [36] proposed an adaption to compute the second-order velocity structure function in
two-dimensions, such as:

0Q; 2/3
) )

N
B = o W) o i3

where j defines the position of jth vortex blob, u; defines the velocity filtered field computed at each
vortex blob, N characterizes a special group of vortex blobs inside a circular crown idealized around
the jth vortex blob under analysis, and ry measures the distance between the jth and kth vortex blobs,
the latter necessarily belonging to that special group (for more details, please see Bimbato et al. [11]).

After the solution of Equation (9), the local eddy viscosity coefficient computation is obtained
through the following formula [38]:

vy, (t) = 0.105C;> %00, \/F2,(t) (10)

being C; = 1.4 the Kolmogorov constant.

It is important comment that use of two-dimensional LES-based turbulence modeling is necessary
to stabilize the numerical solution of the problem; furthermore, it also provides a basis for a future
three-dimensional turbulence modeling. Bimbato et al. [21,22] validated the LES modeling used in
this work.

As already mentioned in Section 2.2, the smoothed cylinder surface is represented by source flat
panels [32], being that each one also produces one vortex blob of strength I'; at every time stepping.
Over a period of time, the viscous boundary layer develops to take on the form of a cluster of several
thousand vortex blobs, as can be seen from the computer output shown in Figure 3. The separation that
occurs on the cylinder surface originates an unsteady flow with the presence of Von Karman large-scale
vortices downstream the body. The proximity of a moving wall (blockage effect) will certainly interfere
in any way with that vortex formation regime.

STEP 5 STEP 12 STEP 20

Figure 3. Starting flow around the smooth circular cylinder with no wall confinement.

It is remarkable that with the Lagrangian tracking of vortex blobs, one need not take into account
the far away boundary conditions, i.e., at S3 in Figure 1. In addition, the computations are only
concentrated on regions containing significant vorticity, which are the regions of high activities of
the flow. The Lagrangian formulation of the discrete vortex method indeed dispenses a grid for the
spatial discretization of the interest domain. Thus, numerical instabilities associated to high Reynolds
number flows do not require special care in contrast to the Eulerian schemes. In order to take care
of both advection and diffusion of the vorticity, one makes use of an advection-diffusion splitting
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algorithm [35]; according to it the advection of each vortex blob is carried out independently of the
diffusion (Equations (6) and (7)). In other cases, when vortex blobs migrate to the interior of a solid
surface, they are reflected from their paths.

2.4. The Roughness Model

The surface roughness effect is associated with the vortex blobs creation process, such that the
circulation strength, I's,001,, 0f €ach nascent vortex blob is increased by the amount of AI'. The value of
AT is defined by the turbulent activity around a “smooth shedding point” (Figure 2) and accounting
by changing the vorticity of the nascent vortex blob. Adjacent to each flat panel, used to represent the
cylinder surface, is simulated an inertial effect promoted by body roughness.

The key idea of the roughness model capturing changes in the vortex shedding frequency (Strouhal
number) is sketched in Figure 4a, where co; represents a pivotal point and eps;(t) defines the location
of a vortex blob, after its vorticity to be changed by surface roughness effect. The numerical effect of
the roughness model is to change the core size, 0y, of each nascent vortex blob, using the following
equation [21]:

At
o0, () = 1.41421 R—e(1+

Vti(t))

v

(11)

being At the temporal step estimated from velocity scale of the flow and Re the Reynolds number of
the flow, as defined in Equation (1).

r + AT

smooth

(a) (b)

Figure 4. (a,b) Shedding of a vortex blob during one time stepping (co; is the pivotal point and eps;(t)
defines the “rough shedding point” location of the vortex blob).

In Equation (11), the local eddy viscosity coefficient computation newly depends on the solution
of Equation (10). Therefore, the average velocity differences, required to calculate the second-order
velocity structure function of the filtered field and to simulate surface roughness effect, are evaluated
between the center of a semicircle with radius of b = 2¢ — ¢y and rough points, both placed near to
each pivotal point, as follow [11]:

NR
— 1 _ _
in(t) = ﬁ Z ||ut,. (xi, t) — U, (xl- +b, t)“zzu(l + E) (12)

w=1

where u; is the instantaneous velocity filtered field, NR defines twenty-one rough points adjacent
to each flat panel (Figure 4b), and (1 + ¢) characterizes the kinetic energy gain associated with the
average roughness effect, ¢ = &*/d” (for more details, please see Bimbato et al. [11]).

2.5. Aerodynamic Loads

As previously commented in Section 2.3, the only governing equation in the discrete vortex
method is the vorticity transport equation of the filtered field. It should be remarked that the pressure
is missing in the formulation, because the pressure term is eliminated when is applied the curl in the
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Navier-Stokes equations. The pressure filtered field is then recuperated by taking the divergence
operator to the Navier—Stokes equations. The procedure starts with the stagnation pressure definition,

such as: .

— [ TA
Y = P +—=—, u =
P 2
where p* defines the static pressure, p is the fluid density and u" represents the velocity.
Thus, a Poisson equation is derived, and the static pressure is obtained using an integral

formulation, such as [39,40]:

—

u

(13)

_ _ o 1 o
HY, - f YVE,-eudS = [[ VE,- (@x@)dO - = f (VE, x @) e,dS (14)
S1+S, 0 S
where p is the any point to compute pressure, H = 1 for points of the fluid domain, H = 0.5 for

pivotal points, Z represents the fundamental solution of Laplace equation, and e, defines the unit
vector normal to each solid boundary.
Finally, the drag and lift coefficients are calculated as, respectively [21]:

NP NP
Cp = Z Z(ﬁp - poo)ASpsenﬁp = Z Cp,ASpsenf, (15)
p=1 p=1
NP NP
L = - Z 2(p, - peo)ASy cospy = - Z Cp,ASp cos By (16)
p=1 p=1

where NP represents the total number of flat panels, p, represents the reference pressure at S3 (Figure 1),
AS, defines a flat panel length, and f, defines a flat panel angle.

2.6. Computational Sequence for Solution of the Navier-Stokes Equations

The numerical method described above is implemented to run sequentially according to the
followings steps: (i) simultaneous generation of source panels and nascent vortex blobs (including
the roughness model); (ii) calculation of the velocity vector at the point occupied by each vortex blob;
(iii) calculation of surface pressure distribution and hence drag and lift on the cylinder; (iv) advection
of the vortex blobs; (v) diffusion of the vortex blobs (including the LES modeling); (vi) reflection of the
vortex blobs that migrate into the cylinder or ground plane; (vii) calculation of the velocity induced by
vortex cloud at pivotal points; and (viii) advance by time At.

3. Results and Discussion

3.1. Simulation Setup

The chosen upper-subcritical Reynolds number for all computations was Re = 1.0 x 10°,
which allows comparisons with experimental results presented by Nishino [25], when possible.
Test cases were previously performed for the smooth circular cylinder aiming to find suitable values
for the following parameters [21,22]: dimensionless time, t = 75; dimensionless time step, At = 0.05;
number of nascent vortex blobs during each time step, M = 300; and initial displacement of each
nascent vortex blob adjacent to the flat panel, eps;” = o¢; = 0.001, as illustrated in Figure 2.

The dimensionless time step was estimated according to At = 2nK/N, being 0 < K < 1 and
N =300 [21,22] and it depends on the accuracy of the explicit Euler scheme; in this procedure N
represents the number of flat panels adopted to discretize the cylinder surface [32]. All obtained
values were computed in the interval 37.50 < t < 75.00 to compute time-averaged results. The chosen
dimensionless time step was found suitable to compute aerodynamic loads with accuracy reducing the
final time of the simulations.
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In Figure 1, the wall plane length was fixed as L*/d* = 10 and discretized using 950 flat panels.
A horizontal distance of L;*/d* = 3 allows to identify the cylinder front stagnation point, where the
reference starts from the origin of inertial frame of reference placed at (x*/d*; y*/d*) = (0.0; 0.0).
That horizontal distance was previously investigated, being the length of L;*/d* = 3 found suitable
to capture the wall confinement (blockage) effect [21,22]. The blockage effect was captured when the
gap-to-diameter ratio, h*/d*, was reduced from 0.80 to 0.05 (Tables 1 and 2). The relative roughness
size of €*/d* = 0.001 was chosen for the test cases, when the roughness model was activated. All the
numerical results with no roughness model were identified by ¢*/d* = 0.000 in Section 3.2.

Table 1. Experimental and numerical data of aerodynamic force coefficients for the circular cylinder in
the vicinity of a moving wall (Re = 1.0 X 10°).

Gap-to- Nishino [25] Nishino [25] Using Nishino [25] Using Present Present
Diameter with No End End Plates End Plates Simulation Simulation
Ratio Plates (y.*/d* = 0.00) (y.*/d* = 0.40) (e*/d* = 0.000) (e*/d* = 0.001)
n*/d* Cp Cy, Cp Cr, Cp Cy Cp Cy Cp Cr,
0.8 0.899 0.014 1.293 -0.02 1.385 0.024 1.38 0.092 1.284 0.04
0.6 0.92 0.039 1.302 0.001 1.373 0.038 1.408 0.105 1.437 0.103
0.5 0.924 0.045 1.282 0.034 1.323 0.09 1.474 0.104 1.459 0.104
0.45 0.926 0.06 1.242 0.054 1.311 0.102 1.443 0.108 1.392 0.105
0.4 0.922 0.074 1.145 0.084 - - 1.433 0.058 1.454 —-0.003
0.35 0.931 0.092 0.929 0.078 - - 1.44 0.029 1.393 —-0.002
0.3 0.93 0.117 0.941 0.111 - - 1.426 —-0.031 1.473 -0.026
0.25 0.933 0.144 0.951 0.154 - - 1.455 -0.016 1.339 —-0.041
0.2 0.939 0.177 0.954 0.188 - - 1.435 0.004 1.278 -0.015
0.15 0.952 0.231 0.957 0.247 - - 1.281 0.056 1.151 0.068
0.1 0.958 0.308 0.953 0.306 - - 1.081 0.411 0.897 0.301
0.05 0.965 0.429 0.941 0.477 - - 0.877 0.531 0.559 0.313

Table 2. Summary of data for the Strouhal number and position of separation for the circular cylinder
in the vicinity of a moving wall (Re = 1.0 x 10).

DGiZII::?;r Sillzzi::;:)n Siifﬁ?::‘i:)n Present Simulation Present Simulation Nishino [25] with No
Ratio  (¢*/d* =0.000) (¢*/d* = 0.001) (*/d" = 0.000) (%/d" = 0.001) End Plates
h*/d* St St 9+sep 6_58;7 6+sep 6_56;7 9+sep 6_58;7

0.8 0.213 0.202 83° 88° 85° 90° 78° 82°
0.6 0.204 0.212 81° 88° 82° 95° - -
0.5 0.204 0.216 79° 91° 85° 96° - -
0.45 0.205 0.208 80° 92° 84° 99° - -
0.4 0.199 0.212 79° 93° 85° 97° 72° 92°
0.35 0.199 0.201 79° 95° 86° 98° - -
0.3 0.198 0.199 78° 94° 82° 99° - -
0.25 0.195 0.189 76° 95° 83° 100° - -
0.2 0.174 0.166 75° 97° 83° 104° 64° 91°
0.15 0.143 0.129 72° 99° 79° 104° - -
0.1 0.113 0.087 69° 100° 82° 100° - -
0.05 0.107 0.0 70° 103° 76° 102° - -

3.2. Circular Cylinder in the Vicinity of a Moving Wall

This section presents simultaneous measurements of integrated aerodynamic loads and surface
pressure distributions for the circular cylinder, which are essentials to support all bellow discussions.
The main objective is to report that the roughness model associated with blockage effect captures
the full interruption of vortex shedding from the slightly rough cylinder surface placed closer to a
moving wall. Thus, the results of drag force reduction, positive lift force, Strouhal number behavior,
and location of the separations points of the flow around the cylinder will successfully support the
analyses in a very good physical sense.



Energies 2020, 13, 4481 11 of 23

Table 1 presents experimental and numerical results of the aerodynamic force coefficients for the
cylinder at upper-subcritical Reynolds number flows of Re = 1.0 X 10°. The experimental results are for
the smooth cylinder case at different gap-to-diameter ratios, #*/d*, being the uncertainties in the drag,
Cp, and lift, Cy, coefficients of +£0.016 and +0.011, respectively, with 95% confidence [25]. The goal is to
compare them to our numerical results, also presented in Table 1.

The experimental results presented in Table 1 and identified as “using end plates” were obtained
for the ratios of y,*/d* = 0.00 and 0.40. In the experiments of Nishino [25], the length y,*was defined as
the distance from the edge of the cylinder to the bottom border of the end plate. In the experimental
study, the bottom border of the end plate was placed below the cylinder, being the edge of the cylinder
its bottom side (0%, = 270° in Figure 1).

With reference to Table 1, the experiments of Nishino [25] revealed that the drag force increases
with the use of end plates for h*/d* > 0.45, i.e., the flow becomes more two-dimensional. The use of end
plates with y,*/d* = 0.40 revealed the flow closest to a two-dimensional pattern. The use of a pair of end
plates, especially at high Reynolds numbers flows, was justified by Nishino [25] since the effect of the
end condition of the cylinder cannot usually be large enough in practical investigations. As comparison,
the numerical results of drag force for the smooth cylinder (¢*/d* = 0.000) present a very good
agreement with the end plates configuration at y.*/d* = 0.40, being the difference of the drag coefficient
between them around 10%. When the small-gap regime is identified for /*/d* < 0.20, the drag force
significantly reduces, and this behavior occurs because of the surface roughness effect. Lei et al. [23]
observed that the critical drag behavior cannot be accurately determined, since experimental and
numerical investigations are carried out using discrete gap-to-diameter ratios, and the vortex shedding
suppression manifests as ratio 1*/d* is gradually reduced. In general, the numerical results show that
the lift force for the rough cylinder is slightly lower as compared as the smooth cylinder; that behavior
agrees with observations [2].

Table 2 summarizes results of the Strouhal number, St, and separation point prediction, 6+sgp
and 07, (Figure 1), for the same study cases shown in Table 1. There are no experimental data
available of Strouhal number for the flow around smooth and rough cylinders near a moving wall.
The experimental results for position of separation of the flow past the cylinder with no end plates [25]
were included for comparison purposes. Nishino [25] did not report experimental results of the
separation points prediction for the configuration of the cylinder using end plates at y,*/d* = 0.40.

As illustration, the temporal history of the drag and lift coefficients of the smooth cylinder and
other rough, both at h*/d* = 0.50 and 0.05, is shown in Figure 5.

I T I T 3 - ; | .
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Figure 5. Temporal history of the drag and lift coefficients for the circular cylinder in the vicinity of a
moving wall (Re = 1.0 x 10°).

Figure 6a,b present instantaneous pressure coefficient, Cp, distributions related to instants
represented by points A-E, marked in Figure 5a,b, for the cylinder at i*/d* = 0.50. In Figure 6a,b,
the separation angle on upper (open) side of the cylinder is identified as =0 .

In Figure 5a, the instant represented by point A characterizes a maximum value of the lift
coefficient, where a clockwise vortical structure detaches from the smooth cylinder upper surface and
moves toward the near wake (Figure 7a). That vortical structure grows and starts to attract the shear
layer of opposite signal (Figure 7b). As consequence, a low pressure region is created at the cylinder
upper surface (Figure 6a).

The instant represented by point C in Figure 5a indicates a minimum value of the lift coefficient,
where a counter-clockwise vortical structure detaches from the smooth cylinder lower surface and
moves toward the near wake. That vortical structure can be visualized in Figure 7c and it creates a low
pressure region at the cylinder lower surface (Figure 6a). The same counter-clockwise vortical structure
grows and starts to attract the shear layer of opposite signal (Figure 7d), the latter is feeding the
clockwise vortical structure causing its detachment. It is important to observe that a new upper vortical
structure will be born on the upper surface and will start to grow attracting the lower shear layer;
the latter also will feed the lower vortical structure causing its detachment. The complete incorporation
to the near wake of the lower and upper vortical structures is revealed at instants identified by points
B and D in Figure 7b,d, respectively. In Figure 6a, the instant defined by point E represents the same
event previously described for the point A.

The mechanism above reported is cyclic repeating alternatively on the upper and lower sides of
the smooth cylinder surface. Thus, an unsteady flow with the presence of von Karmén-type vortices
takes place downstream of the cylinder (Figure 8a). That phenomenon agrees to the classical vortex
shedding mechanism of the smooth cylinder with no ground effect [41]. In Figure 8a, the viscous wake
downstream takes the form of “mushroom-type” vortical structures, being that the blockage effect
will destroy them far from the cylinder. For the large-gap regime, antisymmetrical perturbations are
captured from the near wake region and they are felt near the cylinder surface. These perturbations
intrinsically relate to the Von Karman large-scale vortices formation mode.
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Figure 6. Instantaneous pressure distributions for the circular cylinder in the vicinity of a moving wall
at i*/d* = 0.50 (Re = 1.0 x 10°).

Gerrard [41] stated that a vortical structure shedding from bluff body surface continues to grow
(see, e.g., the upper vortical structure in Figure 7b), being fed by circulation originated of the connected
shear layer and that, when it is strong enough, draws the opposing shear layer across the near wake.
In this mechanism, the approximation of the shear layers of opposite signals is able to cut off further
supply of circulation to the growing vortical structure, the latter, then, sheds and moves downstream
the cylinder.

In this work, the mechanism of vortical structures formation at the rear part of the cylinder with
no wall confinement [41] has also been identified for the smooth cylinder at #*/d* = 0.50 (Figure 7a—d).
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Therefore, it can be concluded that the Venturi effect really redraws the lower vortical structure shed
downstream. Figure 7c gives us an idea of the Venturi effect acting on a nascent vortical structure and
deforming it.

The Venturi effect also contributes creating two different highest peaks for the drag coefficient
curve, which is synchronized with the lift coefficient curve (Figure 5a). The explication for this
interesting aerodynamic force behavior is that while the upper vortical structure finds total freedom to
grow at the rear part of the cylinder until to be incorporated by the viscous wake (Figure 7b), leading to
a bigger value in the drag coefficient (see approximately the drag coefficient value by projecting point C
in Figure 5a), the developing of the lower vortical structure is affected by the Venturi effect (Figure 7c).
This second event reflects the smaller peak in the drag curve (see approximately the drag coefficient
value by projecting point D in Figure 5a).

(a) £ = 56.15 (h*/d*= 0.50) (e) point A (h*/d* = 0.05)

(b) 13 = 57.45 (h*/d* = 0.50) (f) point B (h7d* = 0.05)

lower vortical
structure
i

(g) point C (h77d*=0.05)

Figure 7. Near wake patterns for the circular cylinder in the vicinity of a moving wall (¢*/d* = 0.000;
Re = 1.0 x 10°).
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(a) h*/d* = 0.50 for €*/d* = 0.00

(b) I*/d* = 0.05 for £*/d* = 0.000

.ﬁ_‘zm @f &

(c) B*/d* = 0.50 for £*/d* = 0.001

(d) */d* = 0.05 for €*/d* = 0.001

Figure 8. Final positions of clusters of vortex blobs for the circular cylinder in the vicinity of a moving
wall at t = 75 (Re = 1.0 x 10°).

The study case for the smooth cylinder at /*/d* = 0.50 forecasts the occurrence of a (mean)
stagnation point near the frontal part of the cylinder, where, at that position, the pressure coefficient
is around 1.0 at 6 ~ 0.6° (Figure 6a). It is important to observe that the front stagnation point of
the cylinder with no wall confinement is located at Ost5¢ = 0.6° because the discretization of the
cylinder surface using the panel method [32] initiates at 0 = 0°, with the first pivotal point located at
0 = 0.6°. The upper (open) separation angular position is identified at about 0%, ~ 79° (Table 2).
The experimental result for the smooth cylinder with no wall confinement at Re = 1.0 x 10° is predicted
around 6 ~ 82° [31]. The separation angle at bottom (gap) side is about 67,y ~ 91° (Table 2). This result
is consistent with the expected physics for the problem because the wall confinement (blockage) effect
really changes downstream the separation angle at cylinder bottom side. The experimental result
of Nishino [25] for the cylinder with no end plates at /*/d* = 0.40 is predicted to occur about 0~ s
~ 92° (Table 2). It is important to observe that a lower rear pressure (Figure 6a), identified for the
cylinder in ground effect, reflects a higher value for the drag coefficient (Cp ~ 1.474 in Table 1) as
compared to the experimental value reported by Blevins [31], that is Cp = 1.2, with 10% uncertainty.
As additional information, a numerical result available in the literature [10] for smooth cylinder with
no wall confinement is about Cp =~ 1.198.
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The numerical result of the mean lift coefficient for the smooth cylinder at #*/d* = 0.50 is predicted
around Cj, = 0.104 (Table 1). The appearance of lift force pointing away from the moving wall is
because of the viscosity effect, which definitively contributes to move the cylinder front stagnation
point downstream and, as consequence, it is created an additional positive circulation with increasing
of the lift force. This change on the front stagnation point is captured through the temporal history of
points A-E in Figure 6a, in which a slight change can be identified (i.e., Cp is not more equal to 1.0
at 6 = 0.6°). For the smooth cylinder with no wall confinement, the lift force oscillates around mean
value of zero [10].

The numerical result of the Strouhal number for the cylinder at #*/d* = 0.50 seems insensitive
to blockage effect, being predicted around St ~ 0.204 (Table 2). This conclusion is supported by the
experimental value available in the literature for the smooth cylinder with no wall confinement at
upper-subcritical flow regime of Re = 1.0 X 10°, that is around St ~ 0.19 [31], and also with 10%
uncertainty. In accordance, the vortices formation mechanism [41] is not delayed, which justifies the
Strouhal number value does not change. The latter conclusion is substantiated by defining the period
tg — tp corresponding to the detachment of a pair of vortical structures from cylinder surface and
connected to each other by a vortex sheet, which rotate in opposite directions until they be completely
incorporated into the viscous wake. The period computed is of tf — t4 = 61.15 — 56.15 = 5.0 for the
smooth cylinder at h*/d* = 0.50 (Figure 6a) and of tr — f4 = 4.7 for the smooth cylinder with no wall
confinement [10], being the difference between them around 6.0%.

The saturation state of a typical numerical simulation at dimensionless time of t = 75 can be
demonstrated through of the difference around 2%between the Strouhal number, obtained from the
inverse of the period tg — t4 = 0.20 (Figure 6a), and other one of St = 0.204, which was computed from
a Fast Fourier Transformation of the lift curve between 37.5 < t < 75 (Figure 5a).

On the other hand, the temporal history of the drag and lift coefficients for the smooth cylinder at
h*/d* = 0.05 can be seen in Figure 5c. The drag reduction is about 40.5% as compared as the smooth
cylinder at 1*/d* = 0.50 (Table 1). Figure 7e-h sketch the near wake pattern for the smooth cylinder at
h*/d* = 0.05, being the instants defined by respective points A-D in Figure 9a. The Strouhal number
reduces to St ~ 0.107 (Table 2), which characterizes intermittency on the von Kdrman large-scale vortex
formation mode (Figure 8b).

It is of great importance for the present work that the moving wall control demonstrates the
efficiency of the roughness model to reduce the drag force of the rough cylinder, when the passive
control technique of vortex shedding is activated, for the chosen relative roughness size of £*/d* = 0.001
(Figure 5b,d can be compared). The hybrid control technique is therefore able to reduce the drag force
of the smooth cylinder at #*/d* = 0.50 around 62.1% as compared as the rough cylinder at #*/d* = 0.05
(from Cp ~ 1.474 to 0.559 in Table 1). It is interesting to comment that Alcantara Pereira et al. [10] also
identified a strong reduction on the drag force when using the relative roughness size of ¢*/d* = 0.007
at */d* < 0.20 (small-gap regime). In their numerical experiment, the drag force of the rougher cylinder
at h*/d* = 0.05 reduced around 60.2% as compared as the smooth cylinder near a moving wall at
h*/d* = 0.50. In both numerical studies, the higher drag reduction is because of the passive control
technique promoting the full interruption on the von Karman large-scale vortices formation mode.
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Figure 9. Instantaneous pressure distributions for the circular cylinder in the vicinity of a moving wall

at h*/d* = 0.05; Re = 1.0 x 10°.

The rough cylinder at #*/d* = 0.05 configuration is strongly sensitive to interfere to the Venturi
effect, which controls the smooth cylinder aerodynamics when submitted to ground effect. The surface
roughness effect also participates to control the flow dynamics of the cylinder. The lift coefficient

reduces of Cy = 0.531 (smooth case) for C; = 0.313 (rough case), a reduction of 41.1% (Table 1).

Figure 5b shows that the surface roughness effect interferes on the orderly behavior of the big and
small peaks previously identified in the drag curve for the smooth cylinder at i*/d* = 0.50 (Figure 5a).
Now, in Figure 5b, there are no more single big and small peaks as the dimensionless time runs from
t = 40 on, approximately. In Figure 5b, it is until difficult to identify the big and small peaks in the
drag curve because of noise increasing originated from roughness effect. The period tr — t4 is of 5.0 in
Figure 6b, and of tg — t4 = 4.7 for the cylinder with no wall confinement [10]. Once again, the difference
between them is around 6.0%, and the suppression of vortex shedding cannot be promoted when

using &*/d* = 0.001 at #*/d* = 0.50 (Figure 8c).
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Figure 9b presents instants randomly chosen and represented by points A-E for instantaneous
pressure distributions of the rough cylinder at */d* = 0.05. The simulation also predict the appearing of
a (mean) stagnation point near the cylinder frontal part, where, at that position, the pressure coefficient,
Cp, is not more 1.0 at 0 = 0.6° (Figure 9b). In Figure 5d, is more difficult to identify points A-E as
compared as the Figure 5a.

The Strouhal number completely vanishes, St = 0.0, for the cylinder with roughness model at
h*/d* = 0.05 (Table 2). Bimbato et al. [22] also identified a decrease of the Strouhal number for the
smooth cylinder at #*/d* = 0.05, however, in their numerical experiment, the Strouhal number did not
vanish (St = 0.080). In the present simulation, the correspondent computed value was of St ~ 0.107
(Table 2). An important conclusion is that for the smooth cylinder placed too close of the moving wall,
i.e., at h*/d* = 0.05, the full interruption of von Karman-type vortex shedding is not captured only using
the active control technique by moving wall (Figure 7e-h).

The Strouhal number behavior was reported by Buresti and Lanciotti [12] for smooth and rough
cylinders near a fixed ground at Reynolds numbers in the range from Re = 8.5 x 10* to 3.0 x 10°.
The boundary layer thickness on the ground was about 6*/d* = 0.1 at cylinder location. For the flow
around the smooth cylinder, within the subcritical and critical regimes (Re < 1.9 x 10°), the critical
gap-to-diameter ratio, h*/d*, was identified at 0.40, and the Strouhal number was estimated around
of 0.20 for all ratios h*/d* greater than 0.40. The same results were obtained within the subcritical
and critical regimes (in this situation, Re < 1.4 x 10° because of the surface roughness effect) also for
the rough cylinder. Although there is a lack of experimental data of Strouhal number for the flow
around the smooth and rough cylinders near a moving wall, our numerical results agree basically with
an experimental result of St ~ 0.20 for the cylinder near a fixed ground at large-gap regime. For the
small-gap regime at i*/d* < 0.20, the Strouhal number decreases, and the boundary layer separation is
delayed because of the combined effects of surface roughness and wall confinement (Table 2).

Figure 10a-h can be accompanied in sequence to better understand both interferences of surface
roughness and wall confinement, which combined, completely destroy the orderly von Karman vortex
street. Instead, the Venturi effect interferes redrawing the negative shear layer parallel to ground plane
behind the rough cylinder at i*/d* = 0.05. Figures 8d and 10e-h sketch the near wake pattern of the
rough cylinder at #*/d* = 0.05, being the instants defined by points A-D in Figure 9b.

The difference of drag reduction between the study cases at h*/d* = 0.05 is explained because the
base pressure increases for the rough cylinder (Figure 11b). It can be identified a lesser increase in the
base pressure of the smooth cylinder (Figure 11a), which explains the difference about 36.3% in the
drag force between them (Table 1).

Further numerical investigation will be carried out elsewhere to fully understand the relationship
of the instantaneous surface pressure behavior with the mutual interaction between the two layers
of opposite signals, when the complete interruption of vortex shedding is anticipated, for the rough
cylinder at h*/d* = 0.05. Figures 8d and 10e-h give us some hints. Some small vortical structures
observed in Figure 8d has been formed because of the two shear layers of opposite signals injecting
vorticity at the rear part of the cylinder. As captured in our animations, the advection of vorticity of
signals positive and negative creates those small vortical structures.
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(e) point A (h7/d”= 0.05)

(b) 15 = 55.25 (h*/d" = 0.50) () point B (h*/d* = 0.05)

(d) tp = 57.65 (h”/d" = 0.50) (h) point D (h/d"= 0.05)

Figure 10. Near wake patterns for the slightly rough circular cylinder in the vicinity of a moving wall
(e*/d* = 0.001; Re = 1.0 x 10°).
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Figure 11. Time-averaged pressure distributions for the circular cylinder in the vicinity of a moving
wall (i*/d* = 0.05; Re = 1.0 x 10°).

4. Conclusions

The present numerical study was addressed for the control and suppression of vortex shedding
from a slightly rough bluff body in the vicinity of moving wall. A discrete vortex method implemented
with a hybrid control technique of vortex shedding was employed. The association of active and
passive control techniques of vortex shedding to study the two-dimensional flow past the rough
circular cylinder placed too close to a moving wall (i.e., for the gap spacing of 1*/d* = 0.05 in Figure 1)
successfully captured the complete interruption of von Karman-type vortex shedding (Figure 8d).
The philosophy of our research line is to attain supercritical Reynolds number flow patterns starting
from subcritical flows [11]. Achenbach [9] presented a classical Cp x Re diagram (being Cp the
mean drag coefficient) for the circular cylinder, and divided it into four flow regimes, i.e., subcritical
(Re < 2.0 x 10° — 5.0 X 10°), critical (Re = 2.0 x 10° — 5.0 x 10°), supercritical (2.0 x 10° — 5.0 X 10° < Re <
3.5 x 10°) and transcritical (Re > 3.5 x 10°), being the latter nowadays called post-critical. The numerical
results reported in the present work have been substantiated by experimental data of the flow past
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the smooth cylinder in the vicinity of a moving wall at upper-subcritical Reynolds number flow of
Re = 1.0 x 10° [25]. The key findings of the present study are summarized below.

(a)

(b)

(©

(d)

(e)

(f)

(8)

The most important result obtained for the rough cylinder is the decrease in its drag force and,
as consequence, the delay in the boundary layer separation as the ratio #*/d* reduces (Table 2).
The drag reduction is substantiated by an increase in the base pressure of the cylinder as compared
as the smooth cylinder configuration (Figure 11a,b).

The appearance of lift force pointing away from the moving wall is identified as the ratio h*/d*
reduces (Table 1). This result is because of viscosity effect, which moves the cylinder front
stagnation point downstream and creates an additional positive circulation contributing to
increase the lift force (e.g., Figure 11a,b).

The surface roughness effect on the cylinder at /*/d* = 0.05 is the key factor to anticipate the
complete interruption of vortex shedding suppression, and, thus, the Strouhal number completely
vanishes (S5t = 0.0 in Table 2); also two nearly parallel shear layers of opposite signals are created
at the rear part of the cylinder (Figure 10e-h), being that the Venturi effect definitively contributes
to redraw the negative shear layer parallel to the wall plane.

The critical Strouhal number behavior for the rough cylinder at /*/d* = 0.05 is directly connected
to a global change in its viscous wake structure (Figure 8d). In past work by Bimbato et al. [22],
the full interruption of the formation of Von Karman large-scale vortices was not captured for the
flow past the smooth cylinder in the vicinity of a moving wall at #*/d* = 0.05 (Figure 8b,d can be
used to comparison between test cases). Alcantara Pereira et al. [10] reported that the complete
interruption of vortex shedding for the cylinder can be anticipated using a relative roughness
size of £*/d* = 0.007 at h*/d* = 0.10. Therefore, the present work also completes the past study
of Alcantara Pereira et al. [10], now including discussions for the slightly rough cylinder with
relative roughness size of ¢*/d* = 0.001.

The saturation state of a typical numerical simulation at dimensionless time of t = 75 is
demonstrated through of the difference about 2% between Strouhal number values, one of
them obtained from the inverse of the period tr — t4 (Figure 6a,b and Figure 9a,b), and other one
computed from a Fast Fourier Transformation of the lift curve between 37.5 <t <75 (Figure 5a,d).
The work also highlights vortex shedding partial suppression with representative reduction of
both the Strouhal number (Table 1) and fluctuating drag and lift forces (Figure 5a,b).

The present results suggest the applicability of the discrete vortex method with two-dimensional
roughness model to study flows involving vortex shedding, and its control and suppression,
from a bluff body in many practical problems, such as vibration of pipelines, transmission lines,
suspension bridges, buildings, (semi-) submerged oil platform columns, heat exchangers tubes,
periscopes and so on.

The physical interpretations that have been presented in the present approach also contribute to
report the sensitivity of the roughness model. It can be pointed that it is successfully captured
and numerical simulations with acceptable accuracy for practical engineering applications can
be performed.
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