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Abstract: Clustering electric load curves is an important part of the load data mining process. In this
paper, we propose a clustering algorithm by combining singular value decomposition and KICIC
clustering algorithm (SVD-KICIC) for analyzing the characteristics of daily load curves to mitigate
some of the traditional clustering algorithm problems, such as only considering intra-class distance
and low computational efficiency when dealing with massive load data. Our method identifies
effective daily load curve characteristics using the singular value decomposition technique to improve
dimensionality reduction, which improves low computational efficiency by reducing the number of
dimensions inherent in big data. Additionally, the method performs SVD on the load data to obtain
singular values for determination of weight of the KICIC algorithm, which leverages intra-class
and inter-class distances of the load data and further improves the computational efficiency of the
algorithm. Finally, we perform a series of simulations of actual load curves from a certain city to
validate that the algorithm proposed in this paper has a short operation time, high clustering quality,
and solid robustness that improves the clustering performance of the load curves.

Keywords: classification of load curves; singular value decomposition; dimensionality reduction;
inter-class distance; weighted Euclidean distance; clustering validity

1. Introduction

In recent years, with growing demand for electricity and the popularized use of smart electricity
meters, electric power systems have accumulated increasingly massive load data [1,2]. However,
the load demand response has many characteristics such as complexity, randomness and high
non-linearity. By using load data mining and identifying electricity consumption modes, users’
electricity consumption characteristics can be obtained and used to provide an important reference for
the reliable operation of the power grids, to refine user partitioning and to personalize interactions
between the electric power systems and users [3–5].

Clustering algorithms are an effective approach to mining the electricity consumption
characteristics of users [6,7]. Common clustering algorithms are primarily hierarchical, partition-based,
grid-based or model-based [8]. In existing research, most of the clustering algorithms specific to
load curves use distance similarity for classification. In [9], the major characteristics of the daily
load curves are extracted for clustering by combining the principal component analysis method
and the K-means algorithm. In [10], a load classification method based on the Gaussian mixture
model and multi-dimensional analysis is developed. In this method, the load data are subject to
multi-dimensional analysis and dimensionality reduction; then, the resulting data are used with the
Gaussian mixture model clustering algorithm for the classification of large-scale load data sets. In [11],
an integrated clustering algorithm is developed by comparing the advantages and disadvantages of

Energies 2020, 13, 4476; doi:10.3390/en13174476 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-3732-7432
http://dx.doi.org/10.3390/en13174476
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/17/4476?type=check_update&version=2


Energies 2020, 13, 4476 2 of 15

multiple clustering algorithms. The resulting algorithm effectively combines the K-means algorithm
and the hierarchical clustering algorithm. In [12], major characteristics are obtained by singular value
decomposition (SVD) for dimensionality reduction and to perform weighted K-means clustering of
the load curves. In [13], six daily load characteristic indexes are selected as dimensionality reduction
indexes to express the original load curves before clustering, thus improving clustering efficiency.
However, these methods only consider minimizing intra-class distance for improving the intra-class
compactness and ignore the effects of the inter-class distance on the clustering results when they
use distance as the daily load curve similarity measure for clustering. The methods’ clustering
results tend to have a blurred boundary, and the load curves at various types of boundaries might be
categorized incorrectly, thus leading to lower clustering quality. In addition, the existence of blurred
samples might result in an increase in the number of iterations of the algorithm and a decrease in
computational efficiency.

In response to the decrease in clustering quality due to inter-class blurred samples, in [14],
the ESSC (enhanced soft subspace clustering) algorithm is proposed, which expands the inter-class
distance by maximizing the distance between various centers and the global center. However, this
method makes the shift of the class center unsatisfactory. Especially when inter-class distribution
in clustering samples is nonuniform, maximizing the distance between the global center and the
various class centers might cause several closer class centers to be more compact, which contradicts
the original purpose of maximizing the inter-class distance and weakens the clustering effect. In [15],
to further improve the clustering quality, the weighted K-means algorithm in combination with the
intra-cluster and inter-cluster distances (KICIC) is proposed. The algorithm adds inter-class distance
to the traditional weighted K-means algorithm and maximizes the distance between the class center
and samples of other classes, reducing the effects of boundary samples on the clustering results.
However, the method requires iteratively updating the weights of various dimensions, which occupies
large computational resources. In particular, its computational efficiency for massive data has to
be improved.

Comprehensively considering all the reviewed clustering methods, we propose a clustering
algorithm based on SVD-KICIC to deal with the problems of low clustering quality and poor efficiency
caused by blurred boundary samples in traditional clustering techniques for daily load curves.
Our method performs dimensionality reduction of the original data by applying a singular value
decomposition to the data then conducting a clustering analysis of the daily load curves by maximizing
inter-class distance with a KICIC algorithm. Our method considers data obtained by sampling at
each time point of the load curve as a dimension and extracts the dimensionality weighted via SVD
dimensionality reduction, thus forming samples with weights of various dimensions to be clustered.
The method establishes an objective function in combination with intra-class and inter-class distance,
guaranteeing the minimum intra-class distance and the maximum inter-class distance, achieving
effective and accurate clustering of load curves. The measured daily load data from a city are
used as a sample here. They is compared against three clustering algorithms that do not consider
inter-class distance, traditional K-means, SVD-weighted K-means, and KICIC algorithms, to verify the
effectiveness and accuracy of the algorithm proposed in this paper.

2. Basic Principles

2.1. Theory of Singular Value Decomposition

We assume X = [X1, X2, · · ·Xm] is a m× n-order real matrix containing m load curves, where the
ith load curve is denoted as Xi = [xi1, xi2, · · · , xin] and n is the number of sampling points of the load
curve. The number of load curves for clustering analysis, m, is generally larger than n, the number of
the sampling points. Thus, we let m > n in this work.
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The SVD technique decomposes the real matrix X into three matrices [16,17]: U, Λ, and VT


X = UΛVT

Λ =

[
Λ1

0

]
(1)

where the orthogonal matrix U = [u1, u2, · · · , um] is an m×m-order matrix with each column vector
being a mutually orthogonal unit vector. Meanwhile, the column vector is the characteristic vector of
the matrix XXT and called the left singular vector. The orthogonal matrix V = [v1, v2, · · · , vn] is an
n× n-order matrix, its column vector is also a mutually orthogonal unit vector. Meanwhile, it is the
characteristic vector of the matrix XXT and called the right singular vector. Λ1 = diag(λ1,λ2, · · · ,λn)

is a diagonal matrix such that its diagonal elements are the singular values of the matrix X, which are
decreasing in sequence (i.e., λ1 ≥ λ2 ≥ · · · ≥ λn). Equation (1) is expressed as

X = UΛVT

= [u1 u2 · · · um]

[
Λ1

0

]
[v1 v2 · · · vn]

T =

[λ1u1 λ2u2 · · · λnun]


vT

1
vT

2
...

vT
n

 =
n∑

j=1
λ ju jv j

T

(2)

We consider a load curve Xi in the matrix X as an example. From Equation (2), we can derive

Xi =
[
λ1u1i λ2u2i · · · λnuni

]
·[

v1
T v2

T
· · · vT

n

]T (3)

where u1i is the coordinate of the vector u1 at the first point and u2i is similarly defined.
Thus, the SVD method establishes a new orthogonal coordinate system with the vectors

v1, v2, · · · , vn as the coordinate axes. The singular value λ j denotes the scale from the vector u j
to the coordinate axis v j; λ ju j,i is the coordinate value of the load curve Xi on the coordinate axis
v j. In addition, the larger the singular value λ j, the greater the degree of data dispersion on the
coordinate axis v j, and the greater the variance of the data reflected, the better the coordinate axis can
indicate the variation direction of the data. As the singular values obtained from the SVD method are
arranged in descending order, the coordinate axes v1, v2, · · · , vq corresponding to the first q singular
values λ1,λ2, · · · ,λq are the q major variation directions of the matrix, and can best represent the
major characteristics of the original matrix. The matrix X and the load curve Xi can be approximately
denoted as

X ≈ Y·
[

v1
T v2

T
· · · vq

T
]T

=
[
λ1u1 λ2u2 · · · λquq

]
·[

v1
T v2

T
· · · vq

T
]T (4)

Xi ≈ Yi·
[

v1
T v2

T
· · · vq

T
]T

=
[
λ1u1i λ2u2i · · · λquqi

]
·[

v1
T v2

T
· · · vq

T
]T (5)

According to Equations (4) and (5), the major characteristics of the load curve Xi can be denoted
as Yi =

[
yi1, yi2, · · · , yiq

]
in a low dimension coordinate system by reducing inessential coordinate axes.
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2.2. Weighting K-Means Algorithm in Combination with the Intra-Class and Inter-Class Distance

The traditional K-means algorithm, and its derivative algorithms, generally use intra-class
Euclidean distance as an indicator for judging similarity among daily load curves. However, in actual
applications, the daily load curves usually have blurred inter-class samples. As shown in Figure 1,
the load curves at the boundaries of various classes might be assigned to other classes, thus leading to
low clustering quality. In addition, due to the existence of blurred samples, the number of algorithm
iterations increases, thus reducing the computational efficiency.
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Figure 1. Fuzzy boundary samples.

In response to this problem, [15] proposes the KICIC clustering algorithm. As the traditional
algorithm only considers the intra-class distance, this algorithm integrates inter-class distance,
and maximizes inter-class distance while minimizing intra-class distance. Therefore, a target function
is established:

P = P(U, W, Z)

=
k∑

p=1

m∑
i=1

uip
n∑

j=1
wpj(xi j − zpj)

2

−η
k∑

p=1

m∑
i=1

(1− uip)
n∑

j=1
wpj(xi j − zpj)

2

+γ
k∑

p=1

n∑
j=1

wpj log wpj

(6)

and constraint condition: 
k∑

p=1
uip = 1, uip ∈ {0, 1}

n∑
j=1

wpj = 1, 0 ≤ wpj ≤ 1
(7)

where Z = [Z1, Z2, · · · , Zk] is the k clustering centers with Zp =
[
zp1, zp2, · · · , zpq

]
being the pth clustering

center. W = [W1, W2, · · · , Wk] is the k weight vectors, with Wp =
[
wp1, wp2, · · · , wpn

]
being the weight

of each sampling point in the pth class. When the ith load curve is assigned to the pth class, let uip = 1,
otherwise uip = 0. Therefore, the m× k assignment matrix U is constituted.

Minimizing target function (6) is the optimization principle, and the analysis is conducted on the
basis of three items. The purpose of the first item is to minimize the intra-class distance of the sample
in its class; the role of the second item is to maximize the inter-class distance; the third item adjusts
the characteristic weight distribution via the entropy of weight. However, in actual applications,
the KICIC algorithm occupies large computational resources when solving for the weight matrix
W [15]. Thus, the curse of dimensionality arises from this high-dimensionality data and results in low
computational efficiency. In this work, we use the SVD technique for dimensionality reduction to
improve the computational efficiency of the KICIC algorithm.
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3. SVD-KICIC Algorithm

3.1. Data Preprocessing

3.1.1. Identification and Correction of Abnormal or Missing Data

As a series of problems may occur during the process of load data acquisition, such as
communication interruption, measurement equipment failures, interference of environmental factors,
and so on, the load data could be abnormal or even missing. When the amount of missing or
abnormal data exceeds 10% (included) of the number of samples, the invalid curves need to be rejected.
To improve the data quality, the load data need to be preprocessed prior to SVD. The load variation
rate δi, j of a certain load curve Xi = [xi,1, xi,2, · · · , xi,n] is set as the basis. The abnormal data are
evaluated using

δi, j =
xi, j+1 − xi, j

xi, j
(8)

where δi, j is the load variation rate of the load curve Xi at the jth sampling point. When the number of
sampling points n = 48, the threshold value ε generally ranges from 0.6 to 0.9. In other words, when
δi, j ≥ ε, the data at the sampling point are considered abnormal.

For abnormal data points, a smooth correction equation is used for correction and substitution:

x∗i, j =

g1∑
g=1

xi, j−g +
h1∑

h=1
xi, j+h

g1 + h1
(9)

where x∗i, j is the corrected value of the abnormal data point xi, j, g denotes a forward value assignment,
h denotes a backward value assignment, and values are assigned to g1, h1 according to the number of
sampling points in the actual case, generally 4~7.

3.1.2. Load Curve Normalization

The amplitude values of the load data collected from different users may differ substantially.
Direct clustering lacks objective accuracy, and the clustering results are unreliable if the load data does
have the same order of magnitude before clustering. In this research, we process load data using the
maximum value normalization principle. The processing method can be characterized by

x′i, j =
xi, j

max(Xi)
(10)

where x′i, j is the normalized data at the sampling point j of the ith load curve. Then a new normalized
matrix X′ is obtained with element x′i, j.

3.2. SVD-KICIC and Its Implementation

A traditional KICIC algorithm uses the complete information of the samples as its input. Because
of this, the computation is complex for larger sample sizes. In this work, we calculate the characteristic
information matrix Y using an SVD dimensionality reduction technique and use it as the input of the
KICIC algorithm. Meanwhile, based on the singular values obtained by the SVD method, we redefine
the weights of the KICIC algorithm and improve the overall clustering performance. The specific
method is described in Section 3.2.

3.2.1. Improving the Target Function

The weight matrix W = [W1, W2, · · · , Wk] in Equation (11) of the KICIC algorithm independently
assigns weight vectors to the load data of each class. The value wpj denotes the weight value of the
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jth sampling point in the pth class. The algorithm needs to solve the assignment matrix U, clustering
center matrix Z, and the weight matrix W, which consume large computational resources.

To improve the overall performance of the KICIC algorithm, we use the characteristic information
matrix Y obtained from SVD as the input, and use the weight vector W′ =

[
w′1, w′2, · · · , w′q

]
obtained

from normalization with the sum of the first q singular values being 1 as the dimensionality weight of
the information matrix, then propose the target function of the SVD-KICIC algorithm.

P = P(U, Z)

=
k∑

p=1

m∑
i=1

uip

q∑
j=1

w′j(yi j − zpj)
2

−η
k∑

p=1

m∑
i=1

(1− uip)
q∑

j=1
w′j(yi j − zpj)

2

(11)

constraint condition:
k∑

p=1

uip = 1, uip ∈ lim
x→∞
{0, 1} (12)

Compared with target function (6) of KICIC, target function (11) of the SVD-KICIC algorithm
proposed in this work only needs to solve the data object assignment matrix U and the class center
matrix Z via Equations (14) and (15), as the weight vector W′ is known. As a result, the computational
complexity is reduced. In addition, the SVD-KICIC algorithm uses the characteristic information matrix
Y as the input instead of complete data information, thus improving the capacity of the algorithm to
analyze massive data.

3.2.2. Determination of the Dimensionality of the Characteristic Information Matrix

The dimensionality of the characteristic information matrix Y has an important impact on the
effectiveness of the method proposed in this paper. To determine the dimensionality, the sum of
squares of singular values is defined to represent the information contained in the matrix. The amount
of information contained in matrix X′ is defined as F = λ2

1 + λ2
2 + · · ·+ λn

2; the amount of information
contained in matrix Y after dimensionality reduction is F1 = λ2

1 + λ2
2 + · · ·+ λq

2. The ratio of the

characteristic information matrix Y to the amount of information of the original matrix is A = F1
F .

In this research, a large number of experiments show that when A > 0.9, the characteristic information
matrix Y can effectively express the information contained by the matrix X′. The value of q is the
dimensionality of the characteristic information matrix Y.

3.2.3. Solving the Assignment Matrix U

When solving U, Equation (11) can be simplified to

P(U, Z) =
k∑

p=1

m∑
i=1

uip

q∑
j=1

w′j(yi j − zpj)
2 (13)

The target function P(U, Z) can be minimized if and only if

uip =


1, i f

q∑
j=1

w′j(yi j − zpj)
2
≤

q∑
j=1

w′j(yi j − zp′ j)
2

0, otherwise
(14)

where uip = 1 denotes that the ith load curve is assigned to the pth class. Therefore, we can find the
assignment matrix U. See [15] for specific demonstration details.
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3.2.4. Solving the Clustering Center Matrix Z

Assuming that the assignment matrix U obtained in Section 3.2.3 is fixed, the target function
P(U, Z)can be minimized if and only if

zpj =

(1 + η)
m∑

i=1
uipyi j − η

m∑
i=1

yi j

(1 + η)
m∑

i=1
uip − ηm

(15)

where zpj denotes the coordinate value of the jth dimension of the pth clustering center. Therefore,
we can get the clustering center matrix Z. See [18,19] for a specific demonstration process.

The algorithm process is shown in Figure 2. The characteristic information matrix Y and weight
matrix W′ are obtained by the SVD of matrix X′. Then, the object assignment matrix U and clustering
center Z are iteratively solved by Equations (14) and (15). Iteration is repeated until the value of target
function (11) is no longer decreasing.
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3.3. Clustering Effectiveness Indicator

The clustering effectiveness test is a process that assesses the clustering quality to determine the
optimal clustering data set [20–22].
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We assume that m load curves are divided into k classes. The Silhouette indicator ΩSil of the ith
sample in the pth class is defined as follows:

ΩSil(i) =
da(i) − db(i)

max(da(i), db(i))
(16)

The overall clustering quality could be assessed by the mean value of Silhouette indicator ΩSilM
of all load curves. A greater value denotes higher clustering quality. The clustering number p,
corresponding to the maximum value of ΩSilM, is used as the optimal clustering number.

The computational expression of ΩSilM is characterized by

ΩSilM =
1
m

m∑
i=1

Ωsil(i) (17)

At the same time, the clustering results are assessed with the Davies–Bouldin index (DBI). DBI
refers to the maximum value of the ratio of the sum of the average values of the intra-class distance
of any two classes to the distance of their two clustering centers. A smaller value represents a better
clustering result. The computational method is defined as follows:

IDB =
1
k

k∑
a=1

max
a,b

(
Ca + Cb

Mab
) (18)

where IDB is the numerical value derived from DBI, Ca and Cb are the mean values of the sum of the
distance from the two class samples to their clustering centers and Mi j is the distance between the two
clustering centers.

4. Analysis of Examples

The examples in this paper were realized on a PC configured with Inter(R) Core(TM) i5-8300H
CPU 2.50 GHz, RAM 16 GB. The operating system used was Windows 10. To verify the accuracy
and efficiency of the method proposed in this paper, the K-means algorithm, SVD-weighted K-means
algorithm, KICIC algorithm, and SVD-KICIC algorithm were used to independently study the actual
load curves of a certain city and the results, of the four algorithms are compared and analyzed.

4.1. Clustering of Actual Daily Load Curves

The experimental data in this paper are derived from the data of 5263 measured daily load curves
of a certain city. The sampling interval was 30 min, and each load curve had 48 sampling points.
Because some data were missing or abnormal after data preprocessing, 5158 daily load curves were
obtained, forming an initial matrix of 5158 × 48 orders.

After performing an exhaustive number of simulations, the clustering result with the highest
accuracy was associated with the parameter η = 0.07.

Singular value decomposition was performed for the matrix X′ to obtain a characteristic value
matrix (48 × 48). As shown in Figure 3, as the dimension of the feature information matrix increases,
the information ratio of the matrix Y gradually increases at a lower rate. As shown in Figure 3, when
the dimension of the characteristic information matrix is 5, the ratio of information is A = F1

F ≥ 0.9.
Thus, matrix X′ is expressed as a 5158 × 5 matrix Y. The weight vector corresponding to the five
[column] dimensions is W′ = [0.542, 0.225, 0.118, 0.096, 0.019].
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Figure 3. Proportion of information corresponding to dimensionality number.

The traditional K-means clustering, SVD-weighted K-means clustering algorithm, KICIC algorithm,
and SVD-KICIC clustering algorithm were compared to perform a clustering analysis of the load data.
The results are shown in Figure 4. In the case of setting different numbers of clusters, the validity test
demonstrated that when the number of clusters was 5, the average values of the silhouette of the four
clustering algorithms were all maximized. Therefore, we selected k = 5 as the fixed number of clusters.
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Figure 4. Determining the best clustering number based on validity index.

The clustering result based on our clustering algorithm in this paper is shown in Figure 5.
The numbers of various load curves were 1582, 1038, 1269, 845, and 424. The numbers of various load
curves corresponding to the KICIC algorithm were 1618, 1022, 1237, 829, and 452. The numbers of
various load curves of the SVD-weighted K-means clustering algorithm were 1650, 1015, 1217, 829,
and 447. The numbers of various load curves of the traditional K-means clustering algorithm were
1691, 1026, 1258, 807, and 376. The clustering results are shown in Figure 5, and detail a number of
load curves for a narrow time period as an example to make different load curves visible.
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Figure 5. Clustering results of load curves based on the SVD-KICIC algorithm.

Figure 6 shows that the four clustering algorithms extracted five typical load curves with similar
shapes to the load curve. There were four types: double peak, flat peak, single peak, and avoided
peak. Class 1 was at the peak of electricity consumption at 8:00 and 19:00, which is typically household
electricity, and Class 2 was at the peak of electricity consumption from 6:00 to 18:00, which is typically
commercial electricity. Class 3 and 1 were both the double peak load types, the difference being
that that Class 3 used less electricity than Class 1 from 23:00 to 6:00 the next morning. Additionally,
Class 3 used electricity for small industries, and the electricity consumption time was more regular.
Classes 1 and 3 were more likely to be misclassified. The clustering centers obtained by the SVD-KICIC
algorithm and the KICIC algorithm were basically consistent. The clustering centers obtained by the
K-means algorithm and the SVD-weighted K-means algorithm were relatively close, but the former
two were partially different from the latter two in the clustering centers. This is because the SVD-KICIC
algorithm and KICIC algorithm minimize the intra-class distance while maximizing the inter-class
distance, making the classification results more accurate. Class 4 had the lower power consumption
throughout the day but showed increased power consumption at night, which was a typical night
load. Class 5 was the peak avoidance load. The clustering results reflect the five actual power load
conditions and demonstrate the reliability of the SVD-KICIC algorithm.
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Figure 6. Comparison of typical load profiles between four algorithms.

Based on a comparative analysis of the average values of the clustering indexes obtained from
50 tests listed in Table 1, the SVD-KICIC algorithm can achieve better clustering quality when clustering
the load curves. The proposed algorithm fully considered the intra-class and inter-class distance,
thus making the intra-class distance of the load smallest and the inter-class distance the largest. The
clustering center and the non-class samples were far away from each other, which reduced the impact
of the non-class samples on the clustering accuracy and accelerated the clustering iteration process.
Therefore, our algorithm runs faster than the traditional K-means algorithm, SVD-weighted clustering
algorithm, and KICIC algorithm.

Table 1. Clustering property comparison between four methods.

Algorithm Best k ΩsilM DBI Running Time/s

K-means 5 0.574 1.283 61.32
SVD-weighted K-means 5 0.591 1.206 24.71

KICIC 5 0.609 1.127 45.83
SVD-KICIC 5 0.622 1.007 19.35

In order to further verify the stability of the algorithm, the standard deviation of the number of
various load curves in 10 experiments was compared and shown in Figure 7. It can be seen that the
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mean value of standard deviation of the SVD-KICIC algorithm was the smallest, and the stability of
this algorithm was better.
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Figure 7. Comparison of stability between four algorithms.

4.2. Simulation Examples

To verify the anti-interference ability and robustness of our algorithm, 5000 simulated load curves
with known clustering results were selected and the distribution of the curves was randomly disrupted
to perform clustering again. The results contained eight classes of typical load curves with different
shapes, each comprising 625 load curves. Noise interference of different degrees within the interval
of 5~40% was added to each sampling point of the simulated load curve to produce eight sets of
simulated data. The step size 5% was chosen to effectively show the changing trend of the clustering
results of the SVD-KICIC and K-means algorithms, so as to compare the clustering performance of the
two algorithms. The load data were processed through the proposed algorithm. Simulation of 5000
typical load curves with r = 30% is shown in Figure 8.

The effects of the noise of different degrees on the experimental results were tested and analyzed
with the best cluster number, classification accuracy, and the Silhouette index mean. Table 2 shows the
results of the comparison between the SVD-KICIC algorithm and the traditional K-means algorithm in
terms of clustering load curves under various noise interferences.

Table 2. Comparison of robustness between two algorithms.

r/%
SVD-KICIC K-means

Best k ΩsilM Acc/% Best k ΩsilM Acc/%

5 8 0.9516 100 8 0.9516 100
10 8 0.9233 100 8 0.9233 100
15 8 0.9085 100 8 0.8536 94.30
20 8 0.8860 100 8 0.8033 91.16
25 8 0.8649 100 7 0.7294 89.56
30 8 0.8327 99.85 7 0.6697 88.34
35 7 0.7638 90.63 7 0.6185 80.16
40 7 0.6079 78.41 6 0.5839 69.83
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Figure 8. Simulation of 5000 typical load curves (r = 30%).

Based on the comparative analysis of the average value of the clustering indexes obtained from
the 50 tests in Table 2, we find that, for the two algorithms, with an increase in the degree of noise
interference, the optimal number of clusters deviate. The mean value of Silhouette indexes and
classification accuracy show a decreasing trend, indicating that three indexes can be used to test the
robustness of the algorithm.

When the noise ratio is between 5% and 20%, the optimal number of clusters for both algorithms
is 8, and the classification accuracy is equal to or very close to 100%. When the noise ratio is between
25% and 30%, the optimal clustering number of the SVD-KICIC algorithm is always 8, the mean of
the Silhouette is greater than 0.85, and the classification accuracy is equal to or very close to 100%.
However, the optimal clustering number of the traditional K-means algorithm are changed to 7, and the
clustering accuracy and Silhouette mean greatly reduce. When the noise ratio reaches 35~40%, the
optimal clustering number of the two types of algorithms is not 8, and the classification accuracy
and Silhouette mean of the SVD-KICIC algorithm decrease somewhat, but the fluctuation is small.
Therefore, the SVD-KICIC algorithm is more robust than the traditional K-means algorithm.

5. Conclusions

In this work, we propose a clustering method of daily load curves based on SVD-KICIC by
combining the advantages of the SVD dimensionality reduction technique and the maximized inter-class
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distance of KICIC. This method uses an SVD dimensionality reduction technique to extract the effective
characteristics of load data and greatly reduce the data dimension; it also uses the singular value to
determine the weight coefficient of KICIC and reduce the number of iterative calculations. Compared
with traditional K-means, SVD-weighted K-means, and KICIC clustering methods, the simulation
studies show that the method can effectively use the intra- and inter-class distances of load data to
improve clustering quality, computational efficiency, and robustness.
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