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Abstract: In recent years, many motor fault diagnosis methods have been proposed by analyzing
vibration, sound, electrical signals, etc. To detect motor fault without additional sensors, in this study,
we developed a fault diagnosis methodology using the signals from a motor servo driver. Based on the
servo driver signals, the demagnetization fault diagnosis of permanent magnet synchronous motors
(PMSMs) was implemented using an autoencoder and K-means algorithm. In this study, the PMSM
demagnetization fault diagnosis was performed in three states: normal, mild demagnetization fault,
and severe demagnetization fault. The experimental results indicate that the proposed method can
achieve 96% accuracy to reveal the demagnetization of PMSMs.
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1. Introduction

Permanent magnet synchronous motors (PMSMs) are widely used for consumer products and in
industry. However, PMSMs often experience a significant temperature increase under high speed or
high load operation. The heat may lead to irreversible demagnetization and degrade the performance of
PMSMs. For the purpose of predictive maintenance, several studies on demagnetization fault diagnosis
of PMSMs were performed; signal analysis and intelligent learning algorithm are common methods.

Many signal analysis methods have been developed based on frequency-domain and
time-frequency domain analysis. Ishikawa [1] proposed a demagnetization fault diagnosis method
for PMSMs based on vibration signals, which were analyzed using a fast Fourier transform (FFT);
the demagnetization situation was determined by comparing the difference in the frequency and
amplitude between normal and demagnetization motors. Many physical signals can also be used
for fault diagnosis [1–6], but the additional installed sensors increase the cost. To reduce cost,
the demagnetization fault diagnosis using stator current signal analysis is also popular as it does not
require installation of additional sensors [7].

Given the ease of handling of nonlinear dynamic systems, machine learning algorithms have been
widely used in fault diagnosis fields such as photovoltaic arrays, marine diesel engines, and hydraulic
brake systems [8–10]. The dynamic PMSM model is also a nonlinear system [11], and thus several
recent studies used machine learning techniques for PMSM demagnetization fault diagnosis. Zhu [2]
proposed a PMSM demagnetization fault diagnosis method using a back propagation neural network
(BPNN) with acoustic noise data; however, an additional microphone must be used, which is more
expensive for data collection. Kao [12] developed PMSM fault classification with a convolutional neural
network model that predicts five failure modes. The abovementioned investigations were carried out
using a supervised learning model, which has been a popular method for fault diagnosis research
in recent years [12–19]. However, it is hard to accurately label different demagnetization states from
numerous experimental data. To simplify label engineering, in this paper, a PMSM demagnetization
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fault diagnosis method is proposed using an unsupervised learning model. No additional sensor is
required in the data collection process, and five different physical signals (current, voltage, speed,
power, and torque) are captured directly from the motor driver. Using multiple physical signals
simultaneously is helpful for reducing the influence of data noise instead of using only a single
physical signal. The proposed fault diagnosis method is divided to two parts: the autoencoder and the
K-means algorithm. The autoencoder is used to confirm whether the motor is demagnetized, and the
demagnetization level is determined by K-means clustering. The flowchart of demagnetization fault
diagnosis is shown in Figure 1.
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Figure 1. Flowchart of demagnetization fault diagnosis.

This paper is organized as follows: In Section 2, the experimental setup and data processing
are introduced. In Section 3, the PMSM demagnetization state is detected by using the autoencoder.
In Section 4, the PMSM demagnetization level is obtained based on K-means clustering. Section 5
presents the experimental result. Finally, discussion and conclusions of the work are presented in
Section 6.

2. Experimental Setup and Data Processing

To establish a machine learning model, the first step was data collection and pre-processing.
This section introduces PMSM experimental setup with different demagnetization state, then the data
processing methods are outlined.

2.1. Demagnetization Fault Implementation

In this study, the experimental data were collected in healthy and demagnetization fault conditions.
To create a demagnetization fault in a PMSM, the PMSM was fixed by a dyno motor, and a reverse
excitation current was applied on d-axis to generate a reverse magnetic field [20], as shown in Figure 2.

The specifications of the test PMSMs used in this paper are shown in Table 1, which are divided into
three categories. The first is in the normal state; the second has 10% demagnetization, called the mild
demagnetization fault; and the third has 25% demagnetization, called the severe demagnetization fault.
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Table 1. Specification of test PMSM.

Model Number MA-750L

Rated Power 750 W
Rated Current 4.0 A
Rated Speed 2000 rpm
Frequency 60 Hz

Voltage 3 Phase 220 V
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2.2. Data Collection

Figure 3 shows the data collection experimental setup, the test PMSM with different
demagnetization degrees operated at the desired speed, and a smaller power PMSM (400 W) was
controlled to give a load to the test PMSM. Both motors were operated simultaneously to collect
training data.
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Data were acquired performed using the RS485 module for 1 s with a sampling frequency of
1000 Hz to comply with the Nyquist sampling theorem because the maximum speed of the motor
was 2000 rpm and the maximum electric angular frequency was 133.33 Hz. Five physical signals
(current, voltage, speed, power, and torque) were collected from the motor drive under different PMSM
operation conditions. Based on the T–N curve of the test PMSM provided by the vendor, the PMSM
operation is limited in the “continue duty” region during data collection, as shown in Figure 4.
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The data collection can be divided to two parts: training data and test data. The training data were
used to train the unsupervised model (auto-encoder); thus, the data were collected from normal PMSM
operation. A normal PMSM was operated at speeds between 200 and 2000 rpm and loads between
0.5 and 2.5 Nm. There was a total of 50 operation conditions, and the data collection was repeated
20 times in each operation condition; thus, 1000 datasets were obtained for training an unsupervised
model. Similarly, the test data were collected from normal and demagnetized PMSM in 10 random
operation conditions; thus, there were a total of 600 datasets, as shown in Table 2.

Table 2. Classification of data collection.

Motor State Number of Training Datasets Number of Test Datasets

Normal 1000 200
10% Demagnetization 0 200
25% Demagnetization 0 200

Total 1000 600

2.3. Data Processing

Initially, we obtained the five physical signals: current, voltage, speed, power, and torque, from the
motor drive through the RS485 module. Subsequently, we converted these five time-series signals into
root mean square (RMS). It was obtained from the following expression:

XRMS =

√
1
n

∑n

i=1
Xi2. (1)

where X means the five physical signals, Xi is the ith sampling data, and XRMS is the RMS of each
1000 sampling data.

Through the procedure of feature transformation, the original 5000 data points were compressed
into five data points for reducing the data capacity. Afterward, these data were normalized by dividing
the maximum current, maximum voltage, maximum speed, maximum power, and maximum torque,
respectively. It was obtained from the following expression:

XNOR =
XRMS
XMAX

, (2)

where XMAX means the maximum value in all XRMS, and XNOR is the normalization of the XRMS.
The equation excludes the limitation of data units and improved the convergence speed and accuracy
of the unsupervised learning model through normalization [21].

3. PMSM Demagnetization State Detection

This section introduces the training process of an autoencoder. Next, it describes how to fit a
normal surface. Finally, the anomaly detection is presented in detail.
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3.1. Autoencoder Training

We started with selecting an unsupervised learning model. The lack of need for prior labeling,
effective feature extraction of data, and filtering of noise are advantages of autoencoders [22]. Therefore,
we used the autoencoder as an unsupervised dimension reduction model. An autoencoder is a type
of artificial neural network, and the difference between the two is that the output layer has the same
number of nodes as the input layer, with the purpose of reconstructing its inputs instead of predicting
the target value given inputs. Therefore, the labeling process is not required to enable learning in
advance and is regarded as an unsupervised learning model. Its architecture is mainly divided into
two parts: the first is a decoder and the second is an encoder. To simplify, we assume a neural
network is composed of a single hidden layer. The encoder maps the input vector s ∈ RA in the hidden
representation h ∈ RB as follows:

h = f (W1s + b1), (3)

where f (·) is a non-linear activation function, W1 ∈ RB×A is a weight matrix, and b1 ∈ RB is a bias
vector. The decoder part tries to reconstruct the input by using the following expression:

s̃ = f (W2h + b2), (4)

where W2 ∈ RA×B is a weight matrix of the decoder and b2 ∈ RA is the decoder bias vector. Substituting
Equation (1) into Equation (2), the total autoencoder was obtained using the following expression:

s̃ = f (W2 f (W1s + b1) + b2). (5)

The autoencoder model was trained using a training dataset composed of only normal data and
minimizing the mean squared error (MSE) loss function:

L(p) =
∣∣∣∣∣∣̃s− s

∣∣∣∣∣∣
2, (6)

where p contains all the parameters of the autoencoder, i.e., the elements of W1, W2, b1, and b2.
The autoencoder previously presented is composed of only two layers: one for the encoder and one for
the decoder; their number was increased to create a deep autoencoder. In general, the feature space RB

has lower dimensionality than the input space RA, and the feature vector h is regarded as a compressed
representation of the input s. Hence, we performed the dimensionality reduction through the encoder
part. In this paper, the training process does not stop until the loss converges. We saved the encoder
part from the trained autoencoder and the feature vector h was extracted from the training dataset to
the next step. The feature vector h was set as three-dimensional vector to visualize the results.

In the training process, we trained the autoencoder through the normalized training dataset
composed of normal data only. The parameter settings of the proposed autoencoder are shown in
Table 3. The autoencoder was trained using the Adam algorithm [23] with the learning rate of 0.001,
with 100 epochs. In addition, the hyperbolic tangent function was selected as the activation function
and the mean squared error was chosen as the loss function. As shown in Figure 5a, the model loss
converged after training for 100 epochs. Therefore, it met the standard of completing the model
training, and the three-dimensional vectors of training dataset is displayed in Figure 5b.

Table 3. Parameter settings of the autoencoder.

Parameter Setting

Learning rate 0.001
Epochs 100

Activation function Hyperbolic tangent
Loss function MSE

Optimization method Adam
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3.2. Surface Fitting

Initially, we obtained the three-dimensional vector h from the training dataset. Subsequently,
we used the three-dimensional vector h to fit a surface called the “normal surface” because the training
dataset consisted of only normal data. The normal surface was obtained using the following expression:

z = p0 + p1x + p2y, (7)

where x, y, and z are the three-dimensional coordinates of the space RB, and p0, p1, and p2 are all the
parameters of the normal surface. Fitting the normal surface was performed using the linear least
squares method that minimized the sum of squared residuals [24]:

min
∑

(zi − p0 + p1xi + p2yi)
2, (8)

where xi, yi, and zi are from the three-dimensional vector h. In this paper, the fitting process did not stop
until the R-squared was higher than 0.9. We also saved the normal surface for the anomaly detection.

In the experiment, we fitted the normal surface with the three-dimensional vectors of training
dataset and calculated some statistical metrics to evaluate the fit. Figure 6 plots the normal surface.
The parameters of p0, p1, and p2 are presented and the common statistical metrics such as the sum of
squared error (SSE), root mean squared error (RMSE), and R-squared are also presented in Table 4.
SSE and RMSE were close to 0, and R-squared was greater than 0.9. Hence, it met the standard of
completing the surface fitting, and we saved the trained encoder and the normal surface for the purpose
of anomaly detection.
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Table 4. Parameter settings and metrics of the normal surface.

Parameter Setting Metric Result

p0 −3.16 SSE 0.00521
p1 1.895 RMSE 0.0072
p2 −0.246 R-squared 0.9982

3.3. Anomaly Detection

We started by loading the encoder that was trained during the autoencoder training stage.
Next, we used the preprocessed test data as the input of the encoder. Carrying out the encoder was the
last ste, to obtain the three-dimensional vector h from the test data.

Next, we loaded the normal surface that was fitted in the surface fitting stage, and obtained the
three-dimensional vector h from the test data. After, we computed the distance from the h to the
normal surface from the following Equation:

d =

∣∣∣p0 + p1xi + p2yi − zi
∣∣∣√

p1
2 + p22 + (−1)2

, (9)

where xi, yi, and zi are from the three-dimensional vector h; d is the distance from the h to the normal
surface; and p0, p1, and p2 are the parameters of the normal surface. Then, a judgement equation was
constructed to determine whether the data were abnormal. The judgement equation is expressed as:

state =

{
0 i f d ≤ ε
1 i f d > ε

, (10)

where ε is the threshold, d is the distance from the h to the normal surface. If the distance d is less
than or equal to the threshold ε, the motor state is 0, which means that the motor is under a normal
state; on the contrary, if the distance d is greater than the threshold ε, the motor state becomes one,
which means that the motor is under an abnormal state. The distance between h and the normal
surface can determine whether demagnetization has occurred. To determine the demagnetization
level, we needed to incorporate the next stage of clustering.

In the experiment, we used the preprocessed test data as the input, loaded the trained encoder,
and obtained the three-dimensional vectors of test data. Figure 7 shows the three-dimensional vectors
of test data.Energies 2020, 13, x FOR PEER REVIEW 8 of 13 

 

 

Figure 7. Three-dimensional vectors of test data. The distribution of three test PMSMs: blue circles 
represent data for the normal PMSM, green triangles represent data for the PMSM with 10% 

demagnetization fault, and red squares represent data for PMSM with 25% demagnetization fault 

We also plotted test points on a normal surface, as shown in Figure 8a. Since the normal surface 
was obtained by minimizing the sum of squared residuals from training data, the maximum residual 
was a threshold value to determine if demagnetization had occurred. In this study, the threshold ϵ 
was set to 0.00102 to distinguish between normal and abnormal data. Figure 8b shows the distance 
from each test point to the normal surface and the threshold. In this figure, blue bars represent the 
distance for the normal PMSM, green bars represent the distance for the PMSM with 10% 
demagnetization fault, red bars represent the distance for PMSM with 25% demagnetization fault, 
and the black horizontal line represents the threshold. This figure also illustrates that the more the 
PMSM was demagnetized, the farther the distance point to the normal surface. Therefore, we used 
the threshold to distinguish between normal and abnormal data. The confusion matrix of anomaly 
detection is displayed in Table 5. In the 600 test data, 576 predictions were correct and 24 were errors. 
Table 6 shows the accuracy of anomaly detection; the accuracy of the normal and abnormal were 
94.5%, and 96.8%, respectively. The overall accuracy of anomaly detection was 96%. 

 
(a) 

 
(b) 

  

Figure 8. Results of anomaly detection: (a) three-dimensional vectors of test data and the normal 
surface; (b) distance from the test data to the normal surface. 

Figure 7. Three-dimensional vectors of test data. The distribution of three test PMSMs: blue circles
represent data for the normal PMSM, green triangles represent data for the PMSM with 10%
demagnetization fault, and red squares represent data for PMSM with 25% demagnetization fault.



Energies 2020, 13, 4467 8 of 12

We also plotted test points on a normal surface, as shown in Figure 8a. Since the normal surface
was obtained by minimizing the sum of squared residuals from training data, the maximum residual
was a threshold value to determine if demagnetization had occurred. In this study, the threshold ε was
set to 0.00102 to distinguish between normal and abnormal data. Figure 8b shows the distance from
each test point to the normal surface and the threshold. In this figure, blue bars represent the distance
for the normal PMSM, green bars represent the distance for the PMSM with 10% demagnetization fault,
red bars represent the distance for PMSM with 25% demagnetization fault, and the black horizontal
line represents the threshold. This figure also illustrates that the more the PMSM was demagnetized,
the farther the distance point to the normal surface. Therefore, we used the threshold to distinguish
between normal and abnormal data. The confusion matrix of anomaly detection is displayed in Table 5.
In the 600 test data, 576 predictions were correct and 24 were errors. Table 6 shows the accuracy of
anomaly detection; the accuracy of the normal and abnormal were 94.5%, and 96.8%, respectively.
The overall accuracy of anomaly detection was 96%.
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Table 5. Confusion matrix of anomaly detection.

Test Data Type
Classification Result

Normal Abnormal

Normal 189 11

Abnormal 13 387

Table 6. Accuracy of anomaly detection.

Test Data Type
Classification Result

Normal Abnormal

Normal 94.5% 5.5%

Abnormal 3.2% 96.8%

4. PMSM Demagnetization Level Clustering

In this study, we chose the K-means clustering as an unsupervised clustering model. This algorithm
does not require prior labeling, is relatively simple to implement, scales to large datasets, and guarantees
convergence [25]. The K-means algorithm is an iterative algorithm that tries to partition the dataset
into K distinct non-overlapping clusters where each data point belongs to only one group. It tries to
make the inter-cluster data points as similar as possible while also keeping the clusters as different
as possible. It assigns data points to a cluster such that the sum of the squared distance between the
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data points and the cluster’s centroid is minimum. The less the variation within clusters, the more
homogeneous the data points within the same cluster.

Initially, we obtained the three-dimensional vector from the test data, surmising that the motor
state is abnormal from the anomaly detection. Subsequently, we used the three-dimensional vector
as the input of the K-means model. Next, the model classified if the demagnetization fault in PMSM
was severe. If the demagnetization fault was mild, the diagnosis system continued; however, if the
demagnetization fault was severe, the diagnosis system sent a warning signal.

It was difficult to choose the number of clusters in the K-means clustering. Therefore, a method
called elbow method was proposed by Robert in 1953. It uses the sum of squared errors (SSE) within
the cluster to measure the quality of the cluster. As the number of clusters increases, the SSE in the
cluster continues to decrease. This method contends that increasing the number of clusters will not
enhance the effect of clustering. Therefore, there is an “elbow”, which is the optimal number of clusters.

Applying the elbow method to the abnormal test data, the experimental results are shown in
Figure 9. The horizontal axis represents the number of clusters, and the vertical axis represents SSE.
We observed from the figure that the most severe stage of decline is from clusters 1 to 2, and followed
by a slow downward trend. Therefore, the number of clusters 2 is regarded as an elbow and also
becomes the number of clusters in the K-means clustering.Energies 2020, 13, x FOR PEER REVIEW 10 of 13 
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In the experiment, we obtained the three-dimensional vectors of test data considered abnormal
in anomaly detection, as shown in Figure 10a. Then, K-means clustering was used for clustering.
Figure 10b displayed the result of the K-means clustering, and we found that the abnormal data was
divided into two clusters: one cluster was mainly composed of the PMSM with 10% demagnetization
fault; the second cluster was mainly composed of the PMSM with 25% demagnetization fault.
The confusion matrix of clustering is displayed in Table 7. Of the 398 test data considered abnormal,
386 predictions were correct and 12 were errors. Table 8 shows the accuracy of clustering, the accuracies
of the PMSM with 10% demagnetization fault and the PMSM with 25% demagnetization fault were
99.5%, and 100%, respectively. The overall accuracy of clustering was 97%.

Table 7. Confusion matrix of clustering.

Test Data Type
Classification Result

10% Demagnetization 25% Demagnetization

Normal 11 0

10% demagnetization 186 1

25% demagnetization 0 200
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Table 8. Accuracy of clustering.

Test Data Type
Classification Result

10% Demagnetization 25% Demagnetization

Normal 100% 0%
10% demagnetization 99.5% 0.5%
25% demagnetization 0% 100%

5. Experimental Results

Combining the anomaly detection and clustering, the confusion matrix of the total test data
is summarized in Table 9. Of the 600 test data, 575 predictions were correct and 25 were
errors. Table 10 shows the accuracy of test dataset, the normal PMSM, the PMSM with 10%
demagnetization fault, and the PMSM with 25% demagnetization fault: 94.5%, 93%, and 100%,
respectively. The overall accuracy of our proposed method was 96%. The experimental results showed
that the proposed unsupervised demagnetization fault diagnosis system in PMSM can accurately
diagnose demagnetization faults in a real environment.

Table 9. Confusion matrix of test dataset.

Test Data Type
Classification Result

Normal 10% Demagnetization 25% Demagnetization

Normal 189 11 0

10% demagnetization 13 186 1

25% demagnetization 0 0 200

Table 10. Accuracy of test dataset.

Test Data Type
Classification Result

Normal 10% Demagnetization 25% Demagnetization

Normal 94.5% 5.5% 0%
10% demagnetization 6.5% 93% 0.5%
25% demagnetization 0% 0% 100%
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6. Conclusions

In this paper, an unsupervised demagnetization fault diagnosis method in PMSM was proposed.
The unsupervised learning method was adopted to help simplify label engineering in training process,
unlike recent research that often uses supervised learning methods. To reduce costs, five different
physical signals were captured directly from the motor driver as training data and test data as opposed
to the method used in the literature, [4] which only adopts a stator current signal. Multiple physical
signals were used simultaneously that reduced the influence of data noise compared to using single
physical signal.

In this study, the PMSM demagnetization fault diagnosis was performed in three states: normal,
10% demagnetization fault, and 25% demagnetization fault. More than 1000 training data points were
used for training the algorithm and 600 for testing. The experimental results showed that the accuracy
of anomaly detection was 96%, the accuracy of clustering was 97%, and the accuracy of total diagnosis
system was 96%. The experimental results confirmed that the proposed method is feasible for PMSM
demagnetization fault diagnosis.
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