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Abstract: Mixed Integer Linear Programming (MILP) optimization algorithms provide accurate and
clear solutions for Microgrid and Distributed Energy Resources projects. Full-scale optimization
approaches optimize all time-steps of data sets (e.g., 8760 time-step and higher resolutions), incurring
extreme and unpredictable run-times, often prohibiting such approaches for effective Microgrid
designs. To reduce run-times down-sampling approaches exist. Given that the literature evaluates
the full-scale and down-sampling approaches only for limited numbers of case studies, there is
a lack of a more comprehensive study involving multiple Microgrids. This paper closes this gap
by comparing results and run-times of a full-scale 8760 h time-series MILP to a peak preserving
day-type MILP for 13 real Microgrid projects. The day-type approach reduces the computational
time between 85% and almost 100% (from 2 h computational time to less than 1 min). At the same
time the day-type approach keeps the objective function (OF) differences below 1.5% for 77% of the
Microgrids. The other cases show OF differences between 6% and 13%, which can be reduced to 1.5%
or less by applying a two-stage hybrid approach that designs the Microgrid based on down-sampled
data and then performs a full-scale dispatch algorithm. This two stage approach results in 20–99%
run-time savings.

Keywords: Microgrid; DER; planning; MILP; optimization; run-time; full time-series optimization;
data reduction; DER-CAM; XENDEE

1. Introduction

Microgrid deployment is accelerating rapidly and roughly 2300 Microgrids were operational or
planned worldwide in 2018 [1]. In the last 6 months of 2018, 240 additional Microgrid projects were
added to the Navigant database, demonstrating a steady increase in Microgrid projects. More impressive
is the increase in 2019. As of June 2019, Navigant identifies 4475 Microgrid projects worldwide [2].
Microgrid Knowledge [3] estimates that the Microgrid market will reach US$31 billion by the year
2027, underscoring the need for effective, fast Microgrid design and planning tools to keep up with the
increasing number of projects.

The research community provides several different methodologies to plan a Microgrid from an
economic perspective. All methodologies need to match energy supply with Microgrid demand to
determine the annual energy costs, Net Present Value (NPV), or emissions from Microgrid adoption.
Investment costs, operation and maintenance costs, subsidies, tax incentives or carbon costs among
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others are considered in this calculation [4]. The goal of these approaches is to determine the optimal
combination of Distributed Energy Resources (DER) and their sizes to meet the demand, subject to
constraints and inputs.

In simulation or trial and error approaches, the user changes input data (e.g., investment
costs for DER) to analyze the impact on the results (e.g., adopted technologies in a Microgrid) [5].
While simulation approaches are helpful to understand a complex system by running multiple iterations
in a manual fashion, simulation approaches do not have built-in mechanisms (i.e., mathematical
solvers) to find the best or optimal solution (e.g., optimal DER capacity). Since there are often millions
of combinations for technology choices and operational levels, simulation approaches can require
enormous numbers of iterations to find the optimal technology combinations. Optimal operational
dispatches (e.g., unit commitment for multiple DERs) are also elusive for simulation approaches,
and will significantly increase runtimes. Fescioglu-Unver et al. [6] conclude that rule-based, i.e.,
assumption-based simulation approaches are not viable to guarantee optimal dispatch results; instead
optimization techniques should be used to increase the profitability of Microgrids.

Mixed Integer Linear Programming (MILP) optimization algorithms and associated mathematical
solvers can overcome the limitations of simulation approaches and deliver optimal economic and/or
green house gas solutions in a single run, creating a viable path to identify the best DER portfolio
and dispatch.

As indicated in [7] the process of designing a Microgrid, which comprises conceptual design,
technical design, electrical analysis, power flow analysis, and implementation, can be very time
consuming. Thus, any economic optimization algorithm attempting to deliver the optimal DER
portfolio, lowest costs, and optimal dispatch must be fast while maintaining accuracy. Examples for
such optimization tools are REopt [8] and DER-CAM [9]. These tools are already actively used in
the Microgrid industry for real Microgrid design. Reopt uses a full-scale MILP approach optimizing
each hour of the year explicitly while DER-CAM relies on a peak-preserving day-type approach to
reduce run-times.

Other examples for economic Microgrid optimization algorithms can be found in [10–12].
A common challenge for these optimization algorithms is run-time, which ranges between 0.1
and 280 h, depending on the considered technologies in a Microgrid and optimization approach
(see Figure 1). Each optimization approach using a full annual dataset of 8760 hourly data points
exhibits run-times above 2.8 h, rendering such approaches impractical for real-world Microgrid design
projects since dozen or even hundreds of sensitivity runs might be needed. [10,11] demonstrate
that down-sampling the data to representative days can reduce the run-time below 1 h. However,
down-sampling impacts on the objective function and technology adoption need to be analyzed for
multiple Microgrid and DER projects. Schütz et al. in [11] perform a comparison for two test cases
between an 8760 optimization and different k-means down-sampling approaches. Gabrielli et al.
in [10] test different optimization methods to address the issue of discontinuity between representative
periods when modeling seasonal storage in energy systems, but for only two test cases.
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Fahy et al. [13] demonstrate a peak load preserving down-sampling method and compare the
technology selection as well as the Objective Function (OF) to a full-scale time-series optimization
approach (FSO). For a single example, the results show OF differences below 1% and no technology
adoption difference, but run-time savings of 90%. The authors of [13] also show that clustering with
k-means always delivers worse OF results than the peak-preserving day-type approach selected for
this study.

The literature review and our research indicate that traditional FSO approaches might be
prohibitive for wide-spread Microgrid design, unless special hybrid optimization (HO) approaches are
used. Typically, such HO approaches use two stages, in which the first stage optimizes the Microgrid
technology adoption based on down-sampled representative day optimization (RO) [14]. Technology
adoption results from the first stage are used to inform the second stage for dispatch optimization.
Pecenak et al. [15] introduce a new HO approach that applies a minimum DER constraint, derived
from the first HO stage, to the second stage. This approach also guarantees robust Microgrid outage
modeling solutions by combining the peak preserving day-type approach with a FSO approach.

Down-sampling methodologies and HO approaches show great potential for industry
applications, but an extensive performance comparison involving more than two test sites is lacking.
Thus, this research compares the peak load preserving down-sampling RO approach from [13] and the
FSO approach for 13 real Microgrid projects in the US. We address how the Microgrid setup and input
data drive OF differences between the RO and FSO, as well as the impact of DER sizing deviations in
the two models. Additionally, we research how the embedded MILP dispatch modeling of the second
(dispatch) stage in an HO reduces the OF differences between RO and FSO.

2. Model Description and Used Data Down-Sampling

The mathematical optimization model has been documented in the literature numerous times and
is based on the Distributed Energy Resources Customer Adoption Model (DER-CAM) [9]. Several
studies have expanded on DER-CAM. Mashayekh et al. [16] added power flow and multi-node
capabilities, allowing for optimal placement of DER technologies in a distribution network. To keep
run-times low for such a power flow version the RO is needed. Cardoso et al. [17] describe an Ancillary
Service market MILP extension for DER-CAM and show how such markets impact the Microgrid
design. Milan et al. [18] introduce nonlinear efficiency modeling for CHP systems and describe the
MILP in detail. Especially the modelling of nonlinear behavior increases the run-times considerably
and call for RO approaches. A DER-CAM version with considerations of passive building measures
is established in [19], which allows DER and building technology optimization to create zero carbon
solutions. Another version considers electric vehicle (EV) modeling under uncertainty [20] and has
been applied to assess the impact of EV interconnections on optimal DER solutions. The authors
of [21] consider outage modeling in DER-CAM by adding a particle swarm optimization to determine
the optimal investment and operation of DER equipment. Solar variability has been incorporated
by [22] and the impact on Microgrid design has been studied. The most recent version of DER-CAM
implements also an efficient multi-year optimization [23] based on a RO. In this paper we use DER-CAM,
implemented in XENDEE [24], as basis for the peak load preserving down-sampling RO runs for the
13 Microgrid projects.

The process of solving the MILP based on Figure 2 can be very time consuming since the amount
(represented as arrow width) of each energy flow is not static over the modeled time horizon, but can
change considerably with each time-step, because of, e.g., available solar radiation or changes in
electric rates. Solving such a MILP with full time-series data sets, each containing 8760 data points for
hourly resolution or 35,040 for 15 min resolution (or even more data points in a multi-year setting),
can take hundreds of hours. Thus, down-sampling methodologies are used to reduce the run-time.
We refer to this down-sampling representative day optimization as RO.
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Figure 2. Sankey diagram for the Microgrid DER-CAM/XENDEE MILP. The five energy end-uses
on the right hand side need to be supplied with energy at minimized annual energy costs or CO2

emissions. The MILP analyzes the energy flows (different arrows) in each time-step and decides on the
optimal investment capacities and technologies as well as energy flows in each time-step, constituting
an optimal dispatch profile.

2.1. Peak Preserving Day-Types Representative Optimization (RO)

The peak preserving RO is a special data reduction method that preserves both total annual
energy demand and demand peaks. The peak preserving approach reduces annual hourly demand
data into typical weekday and weekend profiles as well as peak demand day profiles. For each month
m, one 24 h profile of each day-type is constructed with an hourly resolution. The total annual energy
consumption is calculated using multipliers to scale up typical weekday, weekend, and peak demand
day-type profiles, with the multipliers ND representing the number of times each day-type d occurs in
a given month m (NDm,d).

The peak demand day profile for each month is constructed by selecting at each hour the maximum
demand across any given day in the month. The resulting peak day profile represents both peak daily
consumption and peak monthly demand. An example of the peak demand profile is shown in Figure 3.Energies 2020, 13, x FOR PEER REVIEW 5 of 24 
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+ ∑
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Figure 3. Daily demand for each day in an example March month and peak demand day profile
constructed from selecting maximum hourly demand across all days.

The representative weekday and weekend demand profiles must both represent the average
weekday and weekend demand behavior, while also maintaining the monthly total energy consumption.
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Therefore, the average weekday and weekend profiles are adjusted to account for the energy contained
in the peak demand profiles. The monthly demand data are separated into sets of weekday and
weekend data. The sets are summed to calculate the total weekday demand and weekend demand for
each hour in the day. The total weekday demand data for month m is modified by subtracting the peak
demand, multiplied by the number of peak days expected to occur in the month, from the weekday
consumption at each hour the peak occurred on a weekday. As indicated by [13] the number of peak
days is not crucial and just using one peak day profile in the optimization is sufficient. The same
approach is used to modify the weekend consumption data, based on peaks occurring on weekends.
The modified total weekday and weekend demand data sets are averaged into 24-h representative
weekday and weekend demand profiles.

RO MILP

The energy end-uses (u) are grouped into three characteristic groups d: weekdays, weekend
days, and peak days for each month. The MILP approach is solved for the entire year, resulting in
36 daily profiles and 864 hourly data points. A brief overview of the MILP is given in what follows
and additional selected constraints are given in Figure 4.

The objective function minimizes the total costs C
=
∑
m

MFixm +
∑

u,m,d,h
u ∼u,m,d,h ·Cu,m,d,h·NDm,d

+
∑

u,m,p
maxu ∼∼u,p,m ·Du,p,m

+
∑
g

numg·IFixg·ANNg +
∑
c∪s

(purc∪s·IFixc∪s + capc∪s·IVarc∪s)·ANNc∪s

+
∑

j,u,m,d,h

genj,u,m,d,h
ηj

·GENCj,u,m,d,h·NDm,d +
∑

u,m,d,h
dru,m,d,h·DRCu,m,d,h·NDm,d

−
∑

i,m,d,h
selli,m,d,h·Sm,d,h·NDm,d

(1)

Major constraint Energy Balance :∑
u,m,d,h

LOADu,m,d,h +
∑

i,m,d,h
selli,m,d,h +

∑
s,m,d,h

sins,m,d,h +
∑

u,m,d,h
dru,m,d,h

=
∑

u,m,d,h
u ∼u,m,d,h +

∑
i,u,m,d,h

geni,u,m,d,h +
∑

s,u,m,d,h
souts,u,m,d,h

(2)
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Indices
c continuous generation technologies (assumed to be available in any size), c ∈ C =

{photovoltaic panels, solar thermal panels, and absorption chillers}
d day-types, d ∈ D = {week, peak, weekend}
g discrete generation technologies (explicitly modeled in discrete sizes), internal combustion

engines (ICE), micro turbines (MT), fuel cells (FC), and gas turbines (GT), with and without
heat exchangers (HX), g ∈ G = {ICE, ICEHX, MT, MTHX, FC, FCHX, GT, GTHX}.
All discrete technologies without HX are referred to as DG, DG with HX as CHP

h hours in a day h ∈ H = {1, 2, . . . , 24}
i DER technologies, i ∈ I = J∪ S
j generation technologies, j ∈ J = G∪C
m months in a year, m ∈M = {1, 2, . . . , 12}
p utility demand periods, p ∈ P = {coincident, on peak, mid peak, off peak}
s energy storage technologies, stationary storage and heat storage, s ∈ S = {electric energy

storage systems, heat storage}
u energy end-uses for each day-type (d), including electricity-only (eo), cooling (cl), space

heating (sh), water heating (wh), and natural gas loads (ng), u ∈ U = {eo, cl, sh, wh, ng}
Parameters
ANNi annuity rate of investing in DER technology i
NDm,d number of days of type d in month m
Cu,m,d,h volumetric electricity charges
Du,p,m charges applied to peak power demand for end-use u during period p, and month m
DRCu,m,d,h volumetric demand response costs
GENCj,u,m,d,h fuel costs, maintenance costs
IFixi fixed investment cost of DER technology i

IVarc∪s
variable investment cost of continuous energy conversion technology c, or storage
technology s

LOADu,m,d,h Microgrid energy demand for end-use u, in month m, day-type d, and hour h
MFixm fixed monthly utility charges/contract demand charges
Sm,d,h electricity sales price in month m, day-type d, and hour h
ηi energy conversion efficiency for i
Decision Variables
capc∪s installed capacity of continuous generation technology c, or storage technology s
dru,m,d,h energy demand of end-use u removed by demand response measures in month m, day d,

and hour h
genj,u,m,d,h useful (e.g., electric output) energy provided by generation technology j for end-use u in

month m, day-type d, and hour h
numg number of installed units of discrete generation technology g
purc∪s binary purchase decision for continuous generation technology c, or storage technology s
selli,u,m,d,h energy sales from technology i that is exported in month m, day-type d, and hour h
sins,m,d,h energy input to storage technology s, in month m, day-type d, and hour h
souts,u,m,d,h energy output from storage technology s for end-use u, in month m, day-type d, and hour h
u ∼u,m,d,h utility purchase for end-use u, during month m, day-type d, and hour h

2.2. Full-Scale Time-Series Optimization (FSO)

Since DER-CAM was programmed as a RO model, the FSO requires some adjustment of the
day-type framework to emulate an FSO. The FSO MILP model is derived from the RO model
by modifying NDm,d to represent the real number of days in a month instead of the number of
representative day-types. Thus, instead of e.g., using 22 representative weekdays, eight weekend days,
and one peak profile for the RO, we convert NDm,d into a binary matrix containing ones to identify the
real days observed in each month. In the case of January 2020, the matrix consists of ones from 1 to 31.
For February 2020 it consists of ones from 1 to 29 and zeros for 30 and 31, etc. Days must be linked in
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time to allow energy to shift between consecutive days, creating a real seasonal model. The authors
of [15] describe the changes needed to create an FSO model in detail.

Additionally, we link the RO and FSO to create a Hybrid Optimization (HO) approach. In such an
HO approach the sizing (e.g., DER capacity) solution from the down-sampled RO will be used as fixed
input for the FSO. In other words, the FSO just optimizes the dispatch of the RO-designed Microgrid
using the full time-series data which preserves short run-times. To differentiate between a real FSO,
which also sizes DERs, and the full time-series dispatch optimization within the HO, we call the latter
TSO. The second part of this paper will compare the OF and run-time results of a simple RO with those
of an HO, utilizing a TSO as a second stage.

3. Microgrid Projects

3.1. General Description of Microgrid Projects

Table 1 presents an overview of the Microgrid projects. Cases were selected to represent a
diverse variety of host types, geographic locations, tariff characteristics, and total load consumption.
These Microgrid projects have been modeled by the authors in detail. All the projects are optimized
using the RO, FSO, and HO models, and results are assessed from an economic perspective.

All Microgrids are grid connected without grid outages considered, except for Mil2, for which we
modeled a 24-h outage on the day with the highest electric peak demand, which in this case constitutes
also the highest daily energy consumption. None of the Microgrids are allowed to sell electricity to the
utility, except for Un1, which is on a net-metering tariff and can export surplus electricity to the utility.
To analyze effects of electricity sales we will show hypothetical sensitivity runs for selected sites in
Section 4.2.

The tariffs and technology data are summarized in the Appendices A and B.

3.2. Electric Load Data

For each case except Un4, hourly metered load data for one year was used in this analysis
(8760 data points per case for FSO and HO). In the absence of metered load data, for Un4, data from the
Commercial and Residential Hourly Load Profile database for a hospital was used since the modeled
site is a medical University [25]. Segments of the time-series electric load data for Un3 and Un4 are
provided in Figure 5.
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Table 1. Overview of considered Microgrid projects for this research. FER: Flat energy rate, FSER: Flat seasonal energy rate, FER-winter: Flat energy rate just for
winter months, TOUER: Time-Of-Use energy rate, TOUER-summer: Time-Of-Use energy rate just for summer months, NCDC: Non-coincident demand charge,
PDC: Peak demand charge, MPDC: Mid peak demand charge. PV: Photovoltaics, EES: Electric Energy Storage, CHP: Combined Heat and Power, DG: Distributed
Generation as natural gas or diesel fired backup systems. All Microgrid projects are in the US, due to confidentiality reasons the exact locations cannot be revealed.

Case Type State/Territory Techn. Modeled Tariff Characteristics Annual Electrical Cons. (MWh) Annual Heating Cons. (MWh) Electric Peak Load (MW)

Ind Industrial/Pharmaceutical Puerto Rico PV, EES FER, NCDC, PDC, MPDC 22,642 n/a 3.96
Res Residential/Public Connecticut PV, EES, DG TOUER, NCDC 1640 n/a 0.37
Man Industrial/Materials Puerto Rico PV, EES, CHP FER, NCDC 78,400 41,854 12.48
Com Commercial/Public Washington State PV, EES, CHP FER, NCDC 4263 667 0.93
Un1 University Colorado PV, EES, DG TOUER-summer, FER-winter, PDC 12,076 n/a 2.85
Un2 University Hawai’i PV, EES FER, NCDC 3338 n/a 0.97
Un3 University California PV, EES, DG TOUER, NCDC, PDC 825 n/a 0.20
Un4 University Vermont PV, EES, DG FER, NCDC 26,713 6817 5.00
Mil1 Military Texas PV, EES, DG TOUER, NCDC 330,648 n/a 67.61
Mil2 Military New Mexico PV, EES, DG TOUER, NCDC 78,878 n/a 15.99
Mil3 Military Maryland PV, EES, DG FSER, NCDC 187,645 n/a 33.96
Mil4 Military California PV, EES, DG TOUER, NCDC 86,349 n/a 15.00
Mil5 Military Massachusetts PV, EES, DG TOUER, NCDC 16,564 n/a 3.41
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Figure 6 summarizes the electric load data statistics. Total annual electric load is the sum of the
hourly electric load profile over the entire year. Annual load variability is the sum of the absolute value
of hourly energy ramp rates (ERRn) normalized by the total annual electric load to ensure that load
volatilities can be compared between sites (Equation (3)).

Annual Load Variability =
Σ(abs(ERRn))

Σm,d,hloadm,d,h
=
∑
m,d,h

loadm,d,h − loadm,d,h−1

Σm,d,hloadm,d,h
(3)
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Figure 6. Summary of electric load data for all cases as a function of annual electric load (GWh) and
load variability (-) expressed as the sum of the absolute values of all 1 h power changes normalized by
the total annual load.

For example, the Un3 metered data is more volatile, with severe late afternoon ramps and a total
variability equal to 12.4% of its annual load. Un4, on the other hand, is relatively smooth, and therefore,
shows low variability numbers of 4.2% in Figure 6, which also can be attributed to the load modeling.
Overall, the two industrial sites (Ind and Man) have the lowest variability. The military sites Mil1 and
Mil3 have significantly larger annual loads than the other cases.

3.3. Solar Radiation Data

Several sources of solar radiation data were used for the different Microgrid projects as input for
the RO, FSO, and TSO MILP: real measurements of solar radiation (two projects), Helioscope [26] data
(six projects), and PVWatts data based on the NREL National Solar Radiation Database from satellite
data (NSRDB, five projects) [27]. While the FSO and TSO use the 8760 PV Watts output directly, the RO
uses an average daily profile for each month constructed from the 8760 time-series.

Similar to Figure 6, Figure 7 compares the solar production data across all sites via the capacity
factors and total variability. Similar to the demand, total solar variability is calculated by summing
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over the absolute values of solar production ramp rates (SRRn) and normalizing them by the total
energy production (Equation (4)).

Annual Solar Variability =
Σ(abs(SRRn))

Σm,d,hPVm,d,h
=
∑
m,d,h

PVm,d,h − PVm,d,h−1

Σm,d,hPVm,d,h
(4)
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Figure 7. Solar production summary for all cases expressed through the annual capacity factor and the
normalized annual solar variability.

Figure 7 is useful to infer case-by-case differences in the solar resource. For example, Mil1, Mil2,
and Mil4 are located in sunny locations with little variability due to clouds. As such, variability is low
and total solar production and capacity factors are high. Conversely, Com is in a region with low total
solar production and high variability, indicating frequent cloud cover and ramp events.

4. Results

4.1. Representative Optimization (RO) versus Full-Scale Time-Series Optimization (FSO)

Table 2, Figures 8 and 9 present the high level results for all 13 Microgrid cases, comparing the
objective functions of RO and FSO, technology adoptions, and run-times. The run-time savings for the
analyzed cases can range between almost 100% and 85%.

In total, 10 cases out of the 13 show OF differences below 1.5%. Un4, with a very high solar
variability (see Figure 7) and small load variability shows the highest OF difference. This could explain
the 97.4% difference in PV adoption between the RO and FSO. Some cases show very similar OFs for
the RO and FSO models despite significant changes in the technology adoption, which is expected for
MILP approaches. Examples are the Ind case with a −32% difference in EES adoption, but only a −0.5%
OF difference or the Res case with a 56.9% difference in EES adoption, but only a −0.3% difference in
the OF (see also Figure 9).
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It is worth noting that the Ind and Res cases experience opposite solar and load volatilities: Ind has
a relative high solar variability compared to the Res case (see Figure 7) and a small load variability
compared to the Res case (see Figure 6). Note that in the Ind and Res case the available PV space is
fully utilized, explaining the exact same PV sizes in both optimization models.

Un3 with the highest load variability experiences one of the highest run-time savings between the
two MILP models (99.8%), a very low OF difference of −0.8%, moderate PV difference (16%), very small
EES differences (2%), and no difference in fuel fired DG adoption.

The Mil2 includes a 24 h outage and the possibility to install DG units. Since the RO model
preserves the peak loads from the full time-series load data and the DG units contribute to the worst
case outage modeling (highest power demand and electric energy consumption in a day in this case),
the installed fuel fired DG units in the FSO and RO model match. The differences in the PV (24.3%)
and EES (−21.4%) adoptions are influenced by the different granularity of the solar radiation modeling
in the RO and FSO—the RO uses an average monthly solar production profile, while the FSO uses the
full-scale time-series. However, the OF (e.g., project cost) differs by only 0.4%.

Com and Un4 show significant OF differences with higher costs in the RO model (i.e., ∆OF >0),
which creates a budget cushion for these projects when modeled with RO, but could also render
these projects economically unattractive. Their technology selection in the RO is higher except for the
smaller EES numbers in the RO model for Un4 (Figure 9). Un2, on the other hand, shows significant
lower costs in the RO model, indicating that there is no clear trend on whether the RO is over- or
underestimating OFs.
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Figure 9 also shows that if sizing of several technologies differ for a Microgrid (seven cases),
then RO oversizing of one technology is usually balanced by undersizing of another. In four of
those seven cases RO oversizes PV and undersizes storage compared to the FSO, indicating that the
technologies could be to some extent interchangeable.

Among these 13 Microgrid designs, there is no clear relationship between the solar variability
and the deviation in the OF solution (Figure 10). Com, Un4, and Un2 tend to have higher solar
variability and are the three cases which exhibit OF deviations greater than 1.5%. However, sites Man,
Ind, and Mil5 also have high solar variability and small OF differences. However, for Mil5 no DER
investments are optimal and installed. On the other hand, the load variability seems to have no
significant impact on the OF differences, indicating that the peak-preserving down-sampling is an
effective method to capture load spikes.
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4.2. Sensitivity to Electricity Sales

A limitation of the Microgrid projects is that only site Un1 is explicitly considering energy sales to
the utility, which inherently limits the economic viability and sizing for DERs, especially for solar PV.
Thus, sensitivity scenarios are performed to assess the impact of electricity sales on OF differences as
well as DER technology selections. For these sensitivities, two cases were selected, one with a minor
OF difference of −1.2% (Mil4) and one with a considerable difference of −6.8% (Un2). These sites
are representative as universities and military sites are prime Microgrid candidates considering their
abundance in the set of real Microgrid projects in Table 1.

The sales prices are assumed to be the same as the energy purchase prices from the utility during
the same time period. Capacity bidding or Ancillary Service market participation is not considered.

For the Un2 case, including energy sales the OF difference is reduced to −2.0% (see column 1
in Table 3 for the Un2 cases). In this particular case, the OF deviation reduction may be explained
by identical PV capacity investments. When sales are considered, PV is attractive enough that both
algorithms invest in PV to its spatial limit. However, the Un2 sales with FSO case shows less EES,
which causes the Microgrid to import and export more energy on an annual basis compared to the RO
approach (see Table 4 cells Un2 sales/A/B/D/E).
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Table 2. Overview results for the 13 modeled Microgrids. OF: Objective Function; R-time: Run-time; RO: Down-sampled representative day-types optimization.

Case
1 2 3 4 5 6 7 8 9 10 11 12 13

∆ OF (%) R-Time RO
(mins)

R-Time FSO
(mins)

∆ R-Time
(%)

PV RO
(kW)

PV FSO
(kW)

∆ PV Compared
to FSO (%)

EES RO
(kWh)

EES FSO
(kWh)

∆ EES Compared
to FSO (%)

DG/CHP RO
(kW)

DG/CHP FSO
(kW)

∆ DG/CHP Compared
to FSO (%)

Ind −0.5 0.2 1.6 −89 1568 1568 0.0 396 582 −32.0 0 0 n/a
Res −0.3 0.3 121.0 −100 715 715 0.0 1048 668 56.9 100 160 −37.5
Man 0.0 0.3 7.4 −97 358 328 9.1 0 0 n/a 9975 9975 0
Com 5.7 0.2 1.7 −87 182 0 100.0 *) 0 0 n/a 0 0 n/a
Un1 1.3 1.0 121.1 −99 8969 9211 −2.6 8243 8909 −7.5 500 600 −16.7
Un2 −6.8 0.0 0.5 −92 1627 1501 8.4 2242 2573 −12.9 0 0 n/a
Un3 −0.8 0.2 88.5 −100 257 222 15.8 320 314 1.9 100 100 0
Un4 13.2 0.2 2.4 −91 995 504 97.4 2227 2400 −7.2 3000 2900 3.4
Mil1 0.3 0.2 1.5 −86 0 0 n/a 0 0 n/a 0 0 n/a
Mil2 0.4 0.3 2.2 −89 6107 4913 24.3 6600 8400 −21.4 12,000 12,000 0
Mil3 −0.1 0.2 1.4 −85 0 0 n/a 0 0 n/a 0 0 n/a
Mil4 −1.2 0.2 1.2 −85 13,053 11,600 12.5 7800 8400 −7.1 0 0 n/a
Mil5 −0.2 0.2 1.1 −85 0 0 n/a 0 0 n/a 0 0 n/a

*) Differences (∆) are calculated as (RO data-FSO data)/FSO data, except for ∆ PV adoption compared to the FSO approach to avoid an undefined in the Com case. Only in this case we use
(RO data-FSO data)/RO data.

Table 3. Overview results for the sensitivity runs considering energy sales to the utility. OF: Objective Function; R-time: Run-time; RO: Representative Optimization
approach; FSO: Full Scale Time-Series Optimization.

Case
1 2 3 4 5 6 7 8 9 10 11 12 13

∆ OF (%) R-Time RO
(mins)

R-Time FSO
(mins)

∆ R-Time
(%)

PV RO
(kW)

PV FSO
(kW)

∆ PV Compared
to FSO (%)

EES RO
(kWh)

EES FSO
(kWh)

∆ EES Compared
to FSO (%)

DG/CHP RO
(kW)

DG/CHP
8FSO (kW)

∆ DG/CHP Compared
to FSO (%)

Un2 no sales −6.8 0.0 0.5 −92 1627 1501 8.4 2242 2573 −12.9 0 0 n/a
Un2 sales −2.0 0.0 0.6 −92 2994 *) 2994 *) 0 1412 1358 4 0 0 n/a

Mil4 no sales −1.2 0.2 1.2 −85 13,053 11,600 12.5 7800 8400 −7.1 0 0 n/a
Mil4 sales −1.1 0.1 0.8 −88 18,945 16,856 12.4 9000 9600 −6.3 0 0 n/a

*) In the Un2 case with sales the PV adoption is reaching the maximum available space at the site.
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The Mil4 sales case does not show significant changes compared to the case without sales. The OF
differences change from −1.2% to −1.1% and the PV/EES adoptions show slightly smaller differences
compared to the Mil4 no sales case (see Table 4).

However, as indicated by Mil4 sales in Table 4, reduced differences in the technology adoption
do not necessarily lead to a reduced difference in the imported energy. For Mil4, ∆ PV changes from
−12.5% to −12.4% and ∆ EES from −7.1% to −6.3%, but ∆ import decreases from −5.2% to −7.2%
(Table 4).

These results underscore the complexity of such modelling problems and that similar technology
adoption capacities can result in similar OFs, but different parts of the result can change in
different directions.

Table 4. Import and export balance for the energy sale sensitivity runs as well as the original runs
without sales.

Case
A B C D E F

Annual Export
RO (MWh)

Annual Export
FSO (MWh)

∆ Export Compared to
FSO (%)

Annual Import
RO (MWh)

Annual Import
FSO (MWh)

∆ Import Compared to
FSO (%)

Un2 no sales 0 0 n/a 962 1237 −22.2
Un2 sales 2720 2801 −2.9 1276 1366 −6.6

Mil4 no sales 0 0 n/a 58,694 61,920 −5.2
Mil4 sales 5088 4456 14.2 5138 5538 −7.2

4.3. The Influence of Optimal Dispatch Modeling—The Hybrid Optimization (HO)

The large OF differences for Com and Un4 and the connection to extreme relative capacity
deviations will be analyzed.

In both Com and Un4, RO modeling delivers higher optimal capacities of PV and DG/CHP.
In particular, the RO almost doubles the PV capacity for Un4 and invests in 182 kW of PV for Com,
while FSO does not select any PV in Com. Only the optimal EES in the Un4 FSO is slightly higher
than for the RO. We hypothesize that the OF differences resulting from large capacity deviations in
the RO can be mitigated by dispatch optimization. To test this, optimal dispatch modeling in the
FSO, based on optimal capacities from the RO, is performed. This approach constitutes a two stage
Hybrid Optimization (HO) approach, in which we refer to the FSO as TSO to indicate that the full-scale
time-series optimization of the second state will optimize the operational planning (i.e., dispatch),
but not the capacities. The HO approach allows assessing the impact of dispatch on the OF differences.
Additionally, the HO allows assessing the feasibility of a Microgrid designed by an RO when modeled
using raw time-series data.

Taking the optimal investment capacity results from the RO and fixing them in the TSO model
while allowing for dispatch optimization, yields OFs that are very similar to the FSO, but with better
run-times as indicated in Table 5. The Com RO case shows a 5.7% OF deviation compared to the FSO
OF. Using the 2-stage HO process with TSO reduces the deviation to 1.4%. Similarly, the Un4 RO
deviation of 13.2% is reduced to a 0.6% difference with HO. Every other case also shows a reduction in
the OF difference compared to the FSO with better run-times than the FSO.

These results are important for Microgrid planning and operation since they indicate that even
though there occasionally are higher deviations between RO and FSO capacity results, the fast HO is
very viable and will result in a similar OF as the slower FSO. The unit dispatch optimization absorbs
OF deviations that arise from differences in the capacities between the models. Note that the TSO
dispatch optimization in the HO is similar to dispatch modeling in real Microgrids through Model
Predictive Controllers (MPC). Thus, actual Microgrid dispatch is economically robust (i.e., will achieve
similar revenues and costs) to capacity differences introduced by sub-optimal RO modeling during
Microgrid planning.
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Table 5. Objective function as well as run-time differences between the HO and FSO. OF: Objective
Function; R-time: Run-time; RO: Representative Optimization; HO: Hybrid Optimization; FSO:
Full-Scale Time-Series Optimization.

Case
1 1a 2 2a 3 4 4a

∆ OF RO
Versus FSO (%)

∆ OF HO
Versus FSO (%)

R-Time
RO (mins)

R-Time
HO (mins)

R-Time FSO
(mins)

∆ R-Time RO
Versus FSO (%)

∆ R-Time HO
Versus FSO (%)

Com 5.7 1.4 0.2 0.9 1.7 −87 −48
Un4 13.2 0.6 0.2 1.0 2.4 −91 −58
Ind −0.5 0.0 0.2 1.0 1.6 −89 −40
Res −0.3 0.3 0.3 1.1 121.0 −100 −99
Man 0.0 0.0 0.3 1.0 7.4 −97 −87
Un1 1.3 0.2 1.0 1.8 121.1 −99 −98
Un2 −6.8 0.8 0.0 0.3 0.4 −92 −23
Un3 −0.8 0.7 0.2 1.1 88.5 −100 −99
Mil1 0.3 0.0 0.2 1.2 1.5 −86 −25
Mil2 0.4 0.3 0.3 1.1 2.2 −89 −50
Mil3 −0.1 0.0 0.2 0.9 1.4 −85 −34
Mil4 −1.2 0.3 0.2 0.9 1.2 −85 −27
Mil5 −0.2 0.0 0.2 0.9 1.1 −85 −20

5. Conclusions

This paper advances the field of Microgrid planning and operation through a comprehensive
analysis of objective function and technology adoption results of peak preserving day-types
Representative Optimization (RO). Not only does the analysis include a large number of Microgrids
(13) with different load and renewable resource time-series, but also a great diversity of tariffs and
technology assumptions. The uniqueness of the paper also stems from industry relevance in that the
Microgrids are actually being considered for construction or are already being built and were analyzed
in commercial applications.

The results support the widespread application of RO in Microgrid planning. The special
peak-preserving day types approach represents a full time-series of 8760 h with 3 days in each month
or 864 time-steps. For all but three Microgrids the objective function differences are less than 1.5%,
yet run-time savings are from 85% to almost 100% compared to full-scale time-series optimization
(FSO). Such run-time savings enable more detailed analysis through sensitivity studies, probabilistic
parameter inputs (Monte Carlo Simulation) and decision-making, and multi-year horizon analysis.

Three analyzed Microgrids have larger OF differences at 5.7%, −6.8%, and 13.2% in the RO.
All these outliers experience higher solar variability than others. However, three other Microgrids
with similar or even higher solar variability experience very small OF differences of 0.0%, −0.2%,
and −0.5%, indicating that there is no clear trend on how solar variability impacts the results of both
models. The impact of load variability seems to be minimal, indicating that the peak-preserving
day-type RO is very effective. While such larger OF differences may still be tolerable given other
uncertainties in Microgrid planning, they can be mitigated through hybrid optimizations (HO) that
optimize technology dispatch in a second stage, using capacity results from the first stage RO and the
full time-series data in the second stage. HO still supports run-time savings of 20–99%, but reduces OF
differences to less than 1.5% across the board.

The choice of RO versus HO depends on individual preferences of prioritizing run-time or OF
accuracy and optimized dispatch might be one of the most important features in a Microgrid Design
tool since it provides the possibility to mitigate design problems and sub-optimal capacity selections.
This hypothesis will be tested in follow-on research, comparing different dispatch strategies for different
DER capacities in built Microgrids.

We would also like to acknowledge a limitation of this paper: the day-type approach cannot
simulate energy transfer between days and months and should not be used if seasonal storage is
anticipated to be part of the solution. In such cases the presented day-type MILP needs to be modified,
which will be discussed in future work.
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Appendix A Tariff Data

For each site, the proper utility tariff was collected or provided by the client and used in the
optimization. Table A1 summarizes this information.
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Table A1. Summary of electric tariffs and supporting documents.

Tariff Data

Case Type State Utility Name Tariff Name Source Document

Ind Industrial/Pharmaceutical Puerto Rico Puerto Rico Electric Power Authority (PREPA) LIS [28]

Res Residential/Public Connecticut Eversource Energy Rate 56—Intermediate Time of Day [29]

Man Industrial/Materials Puerto Rico PREPA GST [28]

Com Commercial/Public Washington State Seattle City Light MDC—Medium General Service: city [30]

Un1 University Colorado Black Hills Energy CO935—LPS-PTOU [31]

Un2 University Hawai’i HECO HECO-P [32]

Un3 University California SDGE AL-TOU [33]

Un4 University Vermont CBE Rate 08—General Service [34]

Mil1 Military Texas Confidential Confidential Confidential

Mil2 Military New Mexico Confidential Confidential Confidential

Mil3 Military Maryland Confidential Large Power Schedule Confidential

Mil4 Military California Confidential Confidential Confidential

Mil5 Military Massachusetts Confidential Industrial Service Confidential
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Appendix B Technology Data

PV technology costs are presented in Table A2. Costs are based on client input or literature data.
The PV costs include soft costs (e.g., labor costs) and inverter costs. The PV costs as well as Operation
and Maintenance (O&M) costs are generally within the ranges reported by [35]. Per client request the
O&M costs for Res and the PV costs for Un2 are outside of the range reported by [35].

Table A2. PV technology assumptions used in the Microgrid projects. “Max. space for PV” represents
the maximum available onsite space for PV generation.

Case
PV Technology Assumptions

PV Costs
($/kWDC)

O&M Costs
($/kW and Month) Lifetime (yrs.) Electric

Efficiency (%)
Tilt

(Degrees/Confidential)

Orientation
(South/North, West,
East, Confidential)

Max. Space for
PV (m2)

Ind 2150 0 30 16% 20 South 10,000

Res 2100 2.2 30 19% Confidential Confidential 3760

Man 2100 1.4 30 16% 17 South 31,876

Com 1470 0 30 16% 35 South Unrestricted

Un1 1969 0.8 25 19% Confidential Confidential Unrestricted

Un2 5000 0.8 25 15% 22 South east 20,000

Un3 1700 1.4 30 16% Confidential Confidential 40,000

Un4 2400 0 30 19% 30 South 41,806

Mil1 1470 1.5 20 15% Confidential Confidential Unrestricted

Mil2 1470 1.5 20 15% Confidential Confidential Unrestricted

Mil3 1700 1.4 20 15% Confidential Confidential Unrestricted

Mil4 1700 1.4 20 15% Confidential Confidential Unrestricted

Mil5 1700 1.4 20 15% Confidential Confidential Unrestricted

Effective Electric Energy Storage (EES) costs and assumptions are shown in Table A3. Effective
EES costs consider incentives and are, therefore, low compared to [36]. Lifetime numbers can also
vary significantly depending on allowed operational conditions, meaning allowed max charging or
discharging rates or minimum levels of the state of charge.

Table A4 summarizes the natural gas and diesel fired DG and CHP assets. For most cases, multiple
options have been provided, mostly distinguished by different unit sizes, unit costs, electric efficiencies
or the heat to power ratios. The heat to power ratio specifies the amount of heat generated from 1 kWh
electricity. The data is based on vendor data and inputs from the project partners. DG and CHP
capacity costs, electric efficiencies, and heat to power ratios broadly agree with the assumptions for the
commercial demand model from the Annual Energy Outlook 2020 report [37]. The lifetime numbers
seem to be more conservative (smaller) compared to EIA, with the exception of the microturbine
lifetimes, which are higher than reported by EIA. The diesel genset costs are in line with [38].

The maximum annual operating hours are based on project constraints such as air regulation or
technical constraints.
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Table A3. Electric Energy Storage (EES) technology assumptions. The max. allowed charging and discharging rates are constraints within the MILP. Max allowed
charge and discharge rates are defined as a function of the EES power capacity.

Case
EES Technology Assumptions

Effective EES
Costs ($/kWh)

O&M Cost
($/kW Month) Lifetime (yrs.) Charging/Respectively

Discharge Efficiency (%)
Max. Allowed
Charge Rate (-)

Max. Allowed
Discharge Rate (-) Min. SOC (-) Max. SOC (-) Maximum Allowed

Cycles Per Year (-)
Self-Discharge

Per Hour (-)

Ind 250 0 5 90% 0.3 0.3 0.3 1 n/a 0.001
Res 350 0 15 90% 0.3 1 0.1 1 n/a 0.0001
Man 500 0 20 94% 0.2 0.2 0.1 1 n/a 0
Com 350 0 20 94% 0.2 0.2 0.1 1 n/a 0.001
Un1 675 0.2 25 92% 0.3 0.3 0.1 1 110 0
Un2 566 0.2 25 90% 0.3 0.3 0.1 1 n/a 0.0001
Un3 500 0 20 94% 0.2 0.2 0.1 1 n/a 0
Un4 350 0 20 90% 0.5 0.3 0.1 1 n/a 0.0001
Mil1 212 0.3 18 87% 0.3 0.3 0 1 n/a 0.01
Mil2 212 0.3 18 87% 0.3 0.3 0 1 n/a 0.01
Mil3 212 0.3 18 87% 0.3 0.3 0 1 n/a 0.01
Mil4 212 0.3 18 87% 0.3 0.3 0 1 n/a 0.01
Mil5 212 0.3 18 87% 0.3 0.3 0 1 n/a 0.01

Table A4. Summary Fuel fired Distributed Generation (DG) and Combined Heat and Power (CHP) data.

DG/CHP Assumptions

Case Type (/) Unit Capacity (kW) Lifetime (yrs.) Capacity Costs
Installed ($/kW)

O&M Fixed Costs
($/kW/year)

O&M Variable
Cost ($/kWh) Efficiency (%) Heat to Power

Ratio (%)
Max. Annual Operating

Hours (hrs.) Backup Only (Yes/No)

Ind n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Res
Microturbine 60 15 3220 0.0 0.001 25% n/a 8760 no
Microturbine 100 15 3500 0.0 0.002 40% n/a 8760 no

Man

CHP 3304 20 3281 0.0 0.009 24% 175% 8760 no
CHP 3325 20 3750 0.0 0.009 44% 94% 8760 no
CHP 5670 20 3750 0.0 0.009 28% 135% 8760 no
CHP 7480 20 3705 0.0 0.009 45% 33% 8760 no

Com

Microturbine CHP 61 15 3220 0.0 0.013 25% 189% 8760 no
Microturbine CHP 190 15 3150 0.0 0.016 28% 133% 8760 no
Microturbine CHP 242 15 2700 0.0 0.012 26% 145% 8760 no
Microturbine CHP 950 15 2500 0.0 0.012 28% 130% 8760 no

Un1
Distributed Generation 250 25 2191 0.0 0.022 23% n/a 160 no
Distributed Generation 250 25 2191 0.0 0.022 23% n/a 200 no

Un2 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Un3 Internal combustion engine 125 30 2000 0.0 0.020 26% n/a 8760 no

Un4 Microturbine 100 15 2900 0.0 0.002 30% n/a 8760 no

Mil1 Diesel genset 2000 20 600 10.0 0.000 32% n/a 8760 yes

Mil2
Diesel genset 750 20 750 9.3 0.000 28% n/a 8760 yes
Diesel genset 750 20 750 9.3 0.000 28% n/a 1091 no

Mil3 Diesel genset 750 20 750 9.3 0.000 28% n/a 8760 yes

Mil4 Diesel genset 750 20 750 9.3 0.000 28% n/a 8760 yes

Mil5 Diesel genset 750 20 750 9.3 0.000 28% n/a 8760 yes
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