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Abstract: In order to realize the low temperature and rapid cold start-up of a proton exchange
membrane fuel cell stack, a dynamic model containing 40 single proton exchange membrane fuel cells
is established to estimate the melting time of the proton exchange membrane fuel cell stack as well as
to analyze the melting process of the ice by using the obtained liquid–solid boundary. The methods
of proton exchange membrane electric heating and electrothermal film heating are utilized to achieve
cold start-up of the proton exchange membrane fuel cell (PEMFC). The fluid simulation software
fluent is used to simulate and analyze the process of melting ice. The solidification and melting
model and multi-phase flow model are introduced. The pressure-implicit with splitting of operators
algorithm is also adopted. The results show that both the proton exchange membrane electric heating
technology and the electrothermal film heating method can achieve rapid cold start-up. The interior
ice of the proton exchange membrane fuel cell stack melts first, while the first and 40th pieces melt
afterwards. The ice melting time of the proton exchange membrane fuel cell stack is 32.5 s and 36.5 s
with the two methods, respectively. In the end, the effect of different electrothermal film structures
on cold start-up performance is studied, and three types of pore diameter electrothermal films are
established. It is found that the electrothermal film with small holes melts completely first, and the
electrothermal film with large holes melts completely last.

Keywords: proton exchange membrane fuel cell; cold start-up; proton exchange membrane;
multi-phase flow; electrothermal film

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) are a novel power generation technology which
has a broad application prospect. Since its power generation reaction is not restricted by the Carnot
Cycle, so the theoretical power generation efficiency of the fuel cell could reach 80%. Considering the
internal resistance and fuel utilization (currently 80–85%) and other factors, the final direct power
generation efficiency can reach 45–60%. PEMFCs also have the advantages of low operating temperature,
fast start-up, simple structure, convenient operation and zero emissions, etc. Nowadays, PEMFC is
mainly used in large power generation equipment, household power stations, standby electric supply,
transportation and aerospace fields. At the same time, PEMFCs do not have technological shortcomings
such as a long charging time and the short range of lithium-ion battery electric vehicles [1]. Thus, it has
gradually attracted more attention in the field of new energy vehicles and is considered as an important
direction for the sustainable development of the future automobile industry. PEMFC, as vehicle power,
could work efficiently in the complex environments such as start-stop, cold start-up (or sub-zero
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start-up), high potential, voltage cycling, high current, air impurities and so on. As it is often inevitable
that a vehicle will drive below 0 ◦C, cold start-up conditions pose the biggest challenge to fuel cell
vehicles in the winter which is the serious bottleneck restricting the commercial use of fuel cells [2].
Therefore, the successful commercialization of PEMFCs in automotive applications must achieve the
goal of rapid start-up at low temperatures, that is, “cold start-up” of a PEMFC. The reason for the
start-up failure below zero is generally considered to be that the water of the reaction freezes inside the
catalyst layer which results in a decrease in the catalytic activity of the catalyst layer and impeded
oxygen transfer. The chemical reaction would stop because the reaction site is blocked. Moreover,
icing may lead to serious damage of the structure of the membrane electrode assembly (MEA) [3–5].
Therefore, the realization of the technology for cold start-up is an important factor for the application
of PEMFC in automobiles.

In 2010, the US Department of Energy proposed specific technical indicators for the fuel cells’ cold
start-up process. At −20 ◦C, the fuel cells reached 90% of their rated power within 30 s after start-up [6].
The US Energy Agency plans to realize the self-starting of the power system of PEMFCs at −30 ◦C in
2020 and reach 50% output power within 30 s. According to the “Thirteenth Five-Year Plan”, China
plans to break through −30 ◦C fuel cell storage and start-up technologies in 2020. On the other hand,
fuel cell vehicles from Toyota Motor Corporation and Honda Motor Corporation have achieved cold
start-up of −37 ◦C and −30 ◦C, respectively [7]. United Technologies Corporation (UTC) achieved 34%
of its power within 30 s at −30 ◦C [6]. The “Sequel” fuel cell vehicle launched by General Motors also
achieved a successful start-up at −20 ◦C, which can provide power after 30 s of start-up. In China,
the fuel cell units have only initially realized the fuel cell system storage and start-up at −10 ◦C [8].

In recent decades, a large number of numerical and experimental studies have been performed on
the cold start-up characteristics of PEMFC. At present, the main methods to solve the low temperature
cold start of the fuel cell vehicles are to adjust the intake parameters, DC resistance heating, coolant
heating, hot air purging hydrogen/oxygen catalytic reaction in the PEMFC, etc.

Du et al. [9] proposed the maximum power cold start-up method for accomplishing PEMFC
cold start-up. The results show that the maximum power cold start-up mode has a stronger starting
ability compared with the constant voltage and current modes when the maximum power cold start
method is utilized. Kim et al. [10] adopted the hydrogen-purge PEMFC method at cathode side
during cold start-up process. Their study results show that the hydrogen-purge method can effectively
remove the cathode water and enhance the cold start-up performance of a PEMFC. Hou et al. [5]
investigated the process of PEMFC freeze degradation utilizing 20 freeze/thaw cycles of two fuel cells;
gas purging was adopted immediately, which indicated that the risk of freezing/thawing cycle can
be reduced by reducing the water content of the catalyst. Moreover, to assist PEMFC start-up from
−20 ◦C, Guo et al. [11] adopted an anodic hydrogen–oxygen catalytic reaction, which was studied
by establishing a 3D heterogeneous cold start-up method of hydrogen–oxygen catalytic reaction.
The results show that the heating position of the electrode has no significant effect on the catalytic
reaction, and the starting current density is moderate. At the same time, the humidification of the
anode also reduces the ohmic potential of the film, which improves the cold start-up behavior. By
considering the influence of the different preheating methods and control strategies for PEMFC
stack cold start-up [12], Zhan et al. proposed a phase-in preheating method. It is found that the
corresponding optimal preheating method is to preheat the stack by air and end plates simultaneously.

Although these methods have achieved the cold start-up to some extent, the cold start-up time is
still too long, and there is still a lot of room for improvement.

Nanoscale carbon materials containing carbon nanotubes (CNTs) [13–19] and graphene [20–28]
have been widely used recently based on their outstanding electrical conductivity, relative structural
stability and high heating efficiency, which make it possible to realize cold start to PEMFC.

Li et al. [29] prepared graphene nanosheets and found that the steady-state temperature of
the films increases from 32 to 139 ◦C while the applied voltage rises from 5 to 30 V. Luo et al. [30]
prepared electrothermal films, which present sensitive electrothermal behavior, and a steady-state
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temperature of 140 ◦C at 10 V. Su et al. [31] prepared multiwalled carbon nanotubes (MWCNT) film
with electro-thermal effects, which exhibited excellent electrothermal effect and a high conductivity.
The temperature of film is up to 60 ◦C within 60 s under an applied voltage of 30 V to promote the fast
speed melting of ice within 34 s. Sun et al. [32] adopted a novel method to produce high performance
graphene films for heating applications. The films show excellent heating and defogging performances,
and reach a steady-state temperature of 127.5 ◦C when 40 V is exerted for 60 s.

So far, the studies on cold start-up of fuel cells only mainly focus on the single fuel cell, and there
are very few studies regarding the melting process of the internal ice of the PEMFC stack and the
method of electric heating to achieve cold start-up. In this paper, we introduce the constant power
density as the input condition and utilize two heating methods to achieve cold start-up: one is to
heat by the proton exchange membrane (PEM), and another is by the electrothermal membrane (ETF)
inserted between the gas diffusion layer and the flow channel. Numerical calculations are carried out
as follows: a two-phase non-steady-state model for cold start of a 40-layer two-dimensional PEMFC
stack is established to track the solid/liquid interface and analyze the melting process in a PEMFC stack.
Based on this model, the PEMFC stack heating and melting process is analyzed under the condition of
residual water in the reactor before the start-up and the melting time of the PEMFC stack is predicted.
Furthermore, a three-dimensional model of an actual single fuel cell is established and the ETF is
placed on the flow channel. At last, the effect of different ETF hole sizes is studied for the cold start-up.

2. Model

2.1. Model Equation

(1) The energy conservation equation in the solid region (such as end plates and gas flow channel)
within the PEMFC stack is expressed by

∂
∂t
(ρshs) = ∇·(ks∇Ts) (1)

where ρs, hs, ks, Ts are the density, enthalpy, thermal conductivity, and temperature of the solid
region material, respectively.

(2) The two liquid/solid phases in the fluid may coexist. Therefore, the volume of fluid (VOF) model
as well as the solidification and melting model are used to observe the water/ice boundary and
control the melting process.

The volume fraction of each kind of the fluids can be tracked by utilizing the VOF model.
A continuity equation for the volume fraction of one (or more) of the phases is adopted to monitor the
interface(s) between the phases. For the qth phase, this equation is given by

1
ρq

 ∂∂t

(
αqρq

)
+∇·

(
αqρq

→
vq

)
= Saq +

n∑
p=1

( .
mpq −

.
mqp

) (2)

where
.

mpq is the mass transfer from phase q to phase p,
.
mpq is the mass transfer from phase p to

phase q, and Saq is the source term. The volume fraction equation will not be used to solve for the
primary phase due to the reason that the volume fraction of the primary-phase will be calculated
according to the following constraints

n∑
q=1

aq = 1. (3)

The problem of solidification and melting fluid flow within a certain temperature or temperature
range can be solved by the solidification and melting model. Instead of tracking the liquid–solid
boundary, the liquid–solid mushy zone is considered porous and its porosity is equal to the
liquid fraction.



Energies 2020, 13, 4456 4 of 25

The energy equation in the liquid region is shown as

∂
∂t

(
ρqEq

)
= ∇·

(
kq∇Tq

)
,

Eq = hq −
p

pq
+ υ2

2 ,
(4)

where Eq, hq, ρq are the energy, enthalpy and density of q-phase water, respectively. The q-phase and
enthalpy hq can be represented by sensible enthalpy h and enthalpy variation ∆H in the solidification
and melting model, which is given by

hq = h + ∆H,

h = hre f +
∫ T

Tref
cpdT,

∆H = βL,

(5)

where hre f is the reference enthalpy, Tref is the reference temperature, cp is the specific heat, L represents
the latent heat of liquid water and β is the volume fraction of the liquid which is expressed by

β =


0 Tq < Tsolidus

Tq−Tsolidus
Tliquidus−Tsolidus

Tsolidus < Tq < Tliquidus

1 Tq > Tsolidus

, (6)

where Tsolidus is the temperature at which water starts to freeze, Tliquidus is the temperature at which
liquid begins to melt, Ki is the separation coefficient of solute i, which is the concentration ratio of the
solid to liquid interface, Yi is the mass fraction of solute i and mi is the liquid limit surface gradient
after considering the Yi. It is assumed that the last component of the mixture is a solvent and the other
components are solutes.

(3) The energy equation of the porous media (such as gas diffusion layer, proton exchange membrane,
and electrothermal membrane) in a PEMFC stack is as follows

∂
∂t
[γρfEf + (1− γ)ρsEs] = ∇·

keff∇Tfs −

∑
i

hi
→

ji


+ Sh,keff = γkf + (1− γ)ks, (7)

where the total energy of the fluid is defined as Ef, the total energy of the solid medium is defined
as Es, γ is the porosity of the porous medium, Tfs is the temperature of the porous medium
region, Sh is the source term, keff is the effective thermal conductivity of the medium, kf is the
thermal conductivity of the liquid phase and ks is the thermal conductivity of the solid phase.

All the above unit of variables are summarized in Appendix C.

2.2. Numerical Implementations

The commercial code ANSYS Fluent is used; all source terms of the governing equations S, thermal
conductivity K, heat transfer convection coefficient, are calculated based on the study of electrothermal
film [13]. Both the proton exchange membrane (PEM) and electrothermal film (ETF) of the volume
power density are 1 × 107 W/m3, the PEM thermal conductivity K is 0.18 W/m·K. The detailed
calculation procedure about thermal power density and thermal conductivity is shown in Appendix B.
The heat transfer convection coefficient is shown in Figure 1, where the hext−up, hext−down, hext−left,
hext−right represent the heat transfer convection coefficient in top side, bottom side, left sides and
right sides of the PEMFC stack, respectively. The corresponding values are 7.16 W/m3, 3.58 W/m3,
4.89 W/m3, 4.89 W/m3, respectively. The detailed calculation process of the heat transfer convection
coefficients are shown in Appendix A.
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Figure 1. The boundary of a proton exchange membrane fuel cell (PEMFC).

A pressure-based solver is adopted, which employs an algorithm belonging to the general method
category, called the projection method [33]. The detailed solving process is shown in Figure 2.

Figure 2. Pressure-based algorithm.

The pressure-implicit with splitting of operators (PISO) pressure–velocity coupling algorithm
is utilized, which is based on the higher degree of the approximate relation between the corrections
for pressure and velocity. In the iterative process, all the equations are solved for a given time-step,
until the convergence criteria are met. The detailed iteration process is shown in Figure 3.
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Figure 3. The pressure-implicit with splitting of operators (PISO) pressure–velocity coupling scheme.

2.2.1. PEMFC Stack Geometries and Properties

This paper establishes a two-dimensional PEMFC stack, which consists of 40 single PEMFCs
connected in series. Each PEMFC consists of a cathode/anode bipolar plate (BP), a cathode/anode gas
flow channel (GFC), a cathode/anode gas diffusion layer (GDL), a cathode/anode catalyst layer (CL),
and a proton exchange membrane (PEM). The melting process of the ice is assumed to occur in the
boundary area between the cathode/anode GFC and the GDL. The model structure of the PEMFC stack
is shown in Figure 4, where the structure dimensions and material parameters are given in Table 1.

Figure 4. The structure of a PEMFC stack.
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Table 1. The structure dimensions and material parameters [34].

Material Parameters Material Parameters

Density of GDL/(kg. m−3) 2200 Density of PEM/(kg. m−3) 1980

Specific heat capacity of GDL/(J.kg−1. K−1) 1050 Specific heat capacity of PEM/(J.kg−1. K−1) 1050

Thermal conductivity of GDL/(W.m−1. K−1) 1.5 Thermal conductivity of PEM/(W.m−1. K−1) 1.5/0.95

Porosity of GDL 0.5 Porosity of PEM 0.1

Densities of BP, GFC/(kg. m−3) 1900 Density of CL/(kg. m−3) 2000

Specific heat capacities of BP, GFC/(J.kg−1. K−1) 710 Specific heat capacity of CL/(J.kg−1. K−1) 833

Thermal conductivities of BP, GFC/(W.m−1. K−1) 20 Thermal conductivity of CL/(W.m−1. K−1) 1.2

Density of water/(kg. m−3) 998.2 Reference temperature of liquid water/K 298

Specific heat capacity of liquid water/(J.kg−1. K−1) 4182 Reference enthalpy of liquid water/(J. kg−1. mol−1) −2.858 × 108

Thermal conductivity of liquid water/(W.m−1. K−1) 0.6 Melting heat/(J.kg−1) 334,000

Solidus of liquid water/K 273.15 Liquidus of liquid water/K 273.15

Material Dimension Material Dimension

GDL (mm ×mm) 70 × 0.15 PEM (mm ×mm) 70 × 0.3

BP,GFC (mm ×mm) 70 × 0.8 CL (mm ×mm) 70 × 0.15

ICE (mm ×mm) 50 × 0.1 ETF (mm ×mm) 70 × 0.1

2.2.2. Meshing and Boundary

Due to an existing large number of meshing points, Figure 5a only shows the computational mesh
of two single PEMFCs, Figure 5b shows the half of one single fuel cell meshing points. As a sufficient
quantity of mesh is conducive to improve the calculation accuracy, several kinds of meshing size have
been designed, which are 200 µm, 100 µm, 50 µm, 40 µm, 35 µm, 30 µm, 10 µm, respectively. We took
ice melting time as the research object, and finally found that the meshing sizes of 200 µm, 100 µm,
and 50 µm were quite different; the minimum difference between them reached up to 20%, while the
results for 40 µm, 35 µm, 30 µm, and 10 µm were almost the same. We finally chose a meshing edge
length of 40 µm for improving calculation efficiency. In order to simplify the model and reduce the
calculation time, 1/2 model is adopted and a geometric/symmetric condition is applied at the bottom
surface of the PEMFC stack. On the other hand, convection heat transfer coefficient is used to the
all external surfaces of the PEMFC stack, and the detailed boundary conditions are represented in
Appendix A.

Figure 5. (a) The meshing points of two single PEMFCs. (b) The meshing points of half of one
single PEMFC.
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The boundary conditions for the numerical simulation are as follows

k
∂Tw

∂n
= hext(Text − Tw), (8)

where k is the thermal conductivity of the material, hext is the heat exchange coefficient of the outer
surface of the material to air, Text is the external ambient temperature, and Tw is the outer surface
temperature of the material.

3. Results and Discussions

3.1. The Results of PEMFC Stack Heating with Proton Exchange Membrane

The water in the gas flow channel (GFC) freezes easily. In order to study the melting process,
the ice with a thickness of 0.1 mm is built on the gas flow channel. This part of the article takes the
PEM as a heat source and applies a constant thermal power density of 1 × 107 W/m3; the ambient
temperature of 263 K is set to observe the ice melting process and calculating the melting time.

The average temperature distribution of the material center of each layer in the PEMFC stack at
different times is given by Figure 6. It can be seen that the temperature of each layer gradually increases
with time, the proton exchange membrane (PEM) temperature is the highest, and the temperature of
the catalyst layer (CL), gas diffusion layer (GDL), ICE, and gas flow channel (GFC) layers is relatively
lower, and the temperature of the bipolar plate (BP) layer is the lowest. It is also apparent that when
the temperature rises to 273 K, the ice starts to melt and the complete melting time lasts for about 12 s.
Due to the fact that ice needs to absorb heat during the melting process, the temperature curvature
of each layer is almost horizontal from the beginning to the end. After the ice is completely melted,
the temperature of each layer continues to rise.

Figure 6. The average temperature distribution of each layer in the PEMFC stack.

The liquid fraction distribution at the center of the ICE layer in the PEMFC stack at different times
is given by Figure 7, what can be seen from the figure is the fact that the liquid fraction is 0 before the
temperature reaches 273 K. When the temperature arrives at 273 K and the time is 20 s, the ice starts to
melt, and as the heating time increases, the liquid fraction of ice increases gradually. When it is heated
to 32.5 s, the liquid fraction is 1, which means the ice is completely melted.

In order to observe the overall temperature distribution of the PEMFC Stack, the 16th second is
selected to observe the temperature distribution in the vertical direction. The temperature distribution
curve of each layer of the PEMFC stack before the overall temperature reached the melting point
is displayed in Figure 8. The horizontal ordinate is the distance in the vertical direction of PEMFC
stack, including the negative/positive GFC, the ICE, the GDL, the CL, the PEM, and the BP of fuel cell.
In addition, the vertical coordinate is the temperature distribution in the vertical direction, it can be
clearly seen that the temperature differentiates between the layers in the PEMFC stack. Among them,
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the average temperature of the BP is the lowest, only 270.5 K, the PEM is the highest, 271.6 K, and GFC
is 271.5 K.

Figure 7. The liquid fraction distribution of the ICE layer in the PEMFC stack.

Figure 8. The temperature distribution in the vertical direction at 16th second.

The temperature distribution of the PEMFC stack at different times (24 s, 28 s, 32 s) is shown in
Figure 9. The ice is located at the middle of the blue area because there is no ice on the edges where the
temperature is higher. The temperature distribution of the ice inside is still lower, and the temperature
reaches a melting point of 273 K at 24 s. As the heating time increases, the temperature continues to
rise and the ice continues to melt. Figure 10 shows the temperature distribution of PEM at different
times (24 s, 28 s, 32 s), which can be seen clearly that the temperature gradually increases as computing
time extension.

Figure 11 depicts the melting process of the PEMFC stack at different times (24 s, 28 s, 32 s),
showing that the temperature of the PEMFC stack reaches 273 K at 24 s, and the ice in PEMFC stack
begins to melt. The inner ice melts first and the first and 40th pieces melt last. Most of the ice in the
PEMFC stack melts at 28 s, and the ice is basically melted at 32 s. Figure 12 shows the melting process
of the ice at different times (24 s, 28 s, 32 s); it can be seen that the ice in the PEMFC stack begins to melt
at 24 s, and most of the ice in the PEMFC stack melts at 28 s, and the ice is basically melted at 32 s.
The reason why only the top layer is not completely melted is because the top layer cell is in direct
contact with the atmosphere, where there exists a natural convective heat dissipation. The complete
melting time of ice is 32.5 s.
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Figure 9. Temperature contours of the PEMFC stack at different times: (a) t = 24 s, (b) t = 28 s, (c) t = 32 s.

Figure 10. Temperature contours of the PEM at different times; (a) t = 24 s, (b) t = 28 s, (c) t = 32 s.
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Figure 11. Liquid fraction contours of the PEMFC stack at different times; (a) t = 24 s, (b) t = 28 s, (c) t = 32 s.

Figure 12. Liquid fraction contours of the ice at different times; (a) t = 24 s, (b) t = 28 s, (c) t = 32 s.
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3.2. The Results of PEMFC Stack Heating with Electrothermal Film

In order to study the melting process and the ice melting time, the ice with a thickness of 0.1 mm
is established on the Gas Flow Channel, and the Electrothermal Film (ETF) with a thickness of 0.1 mm
is built on the ice. This part of the article takes the ETF as a heat source and sets a constant thermal
power density and ambient temperature as 1 × 107 W/m C, 263 K, respectively.

Figure 13 is the average temperature distribution of the material center of each layer in the PEMFC
stack at different times. It can be seen that the temperature of each layer gradually increases with
time, the ETF temperature is the highest, the temperatures of GDL, CL, PEM, ICE, and GFC layers
are relatively lower, and the BP layer has the lowest temperature. What we can also conclude is that
when the temperature rises to 273 K, the ice starts to melt, and the whole melting time lasts for about
15 s. From the beginning to the end of the melting, the temperature curvature of each layer is small.
This is due to the reason that the ice needs to absorb heat during the melting process. After the ice has
completely melted, the temperature of each layer continues to rise.

Figure 13. The average temperature distribution of each layer in the PEMFC stack.

The liquid fraction distribution of the center of the ICE layer in the inner layer fuel cell of the
PEMFC stack at different times is given by Figure 14, from which it can be seen that the liquid fraction
is 0 before the temperature reaches 273 K. When the temperature arrives at 273 K and the time is 20 s,
the ice starts to melt. As the heating time increases, the liquid fraction of ice gradually rises. When it is
heated to 36 s, the liquid fraction is 1 and the ice is completely melted.

Figure 14. The liquid fraction distribution of the ICE layer in the PEMFC stack.

In order to observe the overall temperature distribution of the PEMFC Stack, the 16th second is
selected to observe the temperature distribution in the vertical direction. Figure 15 is the temperature
distribution curve of each layer of the PEMFC stack before the overall temperature reaches the melting
point. The horizontal ordinate is the distance in the vertical direction of the PEMFC stack, including the
negative/positive GFC, the ICE, the ETF, the GDL, the CL, the PEM, and the BP of the fuel cell, and the
vertical coordinate is the temperature distribution in the vertical direction; the temperature differences
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between the layers in the PEMFC stack can be clearly seen. Among them, the average temperature of
the BP is the lowest, only 270.05 K, the ETF is the highest, 271.3 K, and the GFC is 271.1 K.

Figure 15. The temperature distribution in the vertical direction at 16th second.

The temperature distribution of the PEMFC stack at different times (24 s, 32 s, 36 s) is shown
in Figure 16. The ice is located at the middle of the blue area. Because there is no ice on the edges,
the temperature is higher. However, the temperature distribution of the ice inside is still lower, and the
temperature reaches the melting point of 273 K at 24 s. As the heating time increases, the temperature
continues to rise and the ice continues to melt. Figure 17 shows the temperature distribution of ETF
at different times (24 s, 32 s, 36 s), from which it can be seen clearly that the temperature gradually
increases as computing time extends.

Figure 16. Temperature contours of the PEMFC stack at different times; (a) t = 24 s, (b) t = 32 s, (c) t = 36 s.

Figure 18 shows the melting process of the PEMFC stack at different times (24 s, 32 s, 36 s), showing
that the temperature of the PEMFC stack reaches 273 K at 24, and the ice in the PEMFC stack begins to
melt. The inner ice melts first and the first and 40th pieces melt last. Most of the ice in PEMFC stack
melts at 32 s, and the ice basically melts completely at 36 s. Figure 19 shows the melting process of the
ice at different times (24 s, 32 s, 36 s), from which it can be seen that the ice in the PEMFC stack begins
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to melt at 24 s, most of the ice in PEMFC stack melts at 32 s, and the ice is basically melted at 36 s.
The reason why only the top layer is not completely melted is due to the fact that the top layer cell is in
direct contact with the atmosphere and there is a natural convective heat dissipation. The complete
melting time of ice is 36.5 s.

Figure 17. Temperature contours of the ETF at different times; (a) t = 24 s, (b) t = 32 s, (c) t = 36 s.

Figure 18. Liquid fraction contours of the PEMFC stack at different times; (a) t = 24 s, (b) t = 32 s, (c) t = 36 s.
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Figure 19. Liquid fraction contours of ice at different times; (a) t = 24 s, (b) t = 32 s, (c) t = 36 s.

3.3. The Simulation Results of Different Electrothermal Film Structure

3.3.1. The Three-Dimensional Structure Design of Electrothermal Film

In order to ensure the smooth flow of hydrogen and air, the electrothermal film (ETF) should
maintain a certain porosity. The effects of the different ETF structures on the melting time are researched.
The structure adopts the same porosity, and ETF with different pore sizes are established. Due to
comparative analysis, this paper only builds one fuel cell. The structure is the GFC, ICE, and ETF
from the bottom to the top. In order to simplify the model, only one half of a fuel cell is built
and symmetric constraints are applied on the top face of the GFC. The dimension of the GFC is
40 mm × 40 mm × 1.6 mm, both the ICE thickness and ETF thickness is 1 mm. In this paper, a constant
porosity of 60% is adopted, and the pore sizes from small to large are 0.3 mm, 0.6 mm and 1.2 mm,
respectively. A constant power density of 1 × 107 W/m3 is used, and ambient temperature is set as
263 K. The detailed fuel cell structure is shown in Figure 20, and the ETF structure is shown in Figure 21.

Figure 20. The three-dimensional structure of the half of fuel cell ((a) pore size = 0.3 mm, (b) pore size = 0.6 mm,
(c) pore size = 1.2 mm).
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Figure 21. The three-dimensional structure of electrothermal film ((a) pore size = 0.3 mm, (b) pore size = 0.6 mm,
(c) pore size = 1.2 mm).

3.3.2. Simulation Results

Figure 22 shows the process of the average temperature of each layer of ETF with different pore
sizes over time; it can be seen that as the time increases, the temperature of each layer gradually
increases, where the temperature of the ETF layer is the highest. The ICE layer is second and the GFC
layer is the lowest. It can also be seen that when the temperature rises to 273 K, the ice starts to melt,
and the complete melting time lasts for about 10 s. From the beginning to the end of the melting,
the temperature curvature of each layer is small. This is because the ice needs to absorb heat during
the melting process. After the ice has been completely melted, the temperature of each layer continues
to rise. The lower right corner is an enlarged average temperature value of each layer of different ETF
pore sizes at 46 s. It can be clearly seen that at the same porosity, the ETF with a hole size of 0.3 mm has
the higher temperature compared to the ETF with a 0.6-mm hole size. The temperature of 1.2 mm is
the lowest.

Figure 22. Average temperature of each layer of ETF with different pore sizes.

Figure 23 shows the liquid fraction distribution of different ETF structures at different times:
the liquid fraction is shown to be 0 before the temperature reaches 273 K. When the temperature reaches
273 K, the ice starts to melt. As the heating time increases, the liquid fraction of the ice gradually
increases. When the liquid fraction reaches 1, the ice is completely melted. It can also be seen clearly is
that the complete melting time of the ETF with different pore sizes is variable. The ETF with a pore
size of 0.3 mm melts first, followed by 0.6 mm, and 0.9 mm melts last. The complete melting times are
42 s, 44 s, and 46 s, respectively.
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Figure 23. Liquid fraction distribution of different ETF structures at different times.

Figures 24–26 show the overall temperature distribution of the ETF with pore dimensions of
0.3 mm, 0.6 mm and 1.2 mm, respectively. It can be seen that the ETF pore sizes of 0.3 mm, 0.6 mm and
1.2 mm arrive at the melting point after 28 s, 30 s and 32 s, respectively. The final temperature of the
PEMFC fuel cell is about 276 K when the ice is completely melted.

Figure 24. The fuel cell temperature contours with pore diameter = 0.3 mm at different times; (a) t = 28 s,
(b) t = 40 s, (c) t = 44 s.

Figures 27–29 shows the distribution of liquid fraction of ice when the hole sizes of the ETF are
0.3 mm, 0.6 mm and 1.2 mm, respectively. It can be seen that the pore size of 0.3 mm melts first,
followed by 0.6 mm, and 1.2 mm is the last to completely melt. When the pore sizes of the ETF are
0.3 mm, 0.6 mm and 1.2 mm, the ice initial melting times are 28 s, 30 s and 32 s, respectively. The final
melting times are 44 s, 46 s and 48 s, respectively.
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Figure 25. The fuel cell temperature contours with pore diameter = 0.6 mm at different times; (a) t = 30 s,
(b) t = 38 s, (c) t = 46 s.

Figure 26. The fuel cell temperature contours with pore diameter = 1.2 mm at different times; (a) t = 32 s,
(b) t = 42 s, (c) t = 48 s.
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Figure 27. The fuel cell temperature contours with pore diameter = 0.3 mm at different times; (a) t = 28 s, (b) t = 40 s,
(c) t = 44 s.

Figure 28. The fuel cell temperature contours with pore diameter = 0.6 mm at different times; (a) t = 30 s,
(b) t = 38 s, (c) t = 46 s.
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Figure 29. The fuel cell temperature contours with pore diameter = 1.2 mm at different times; (a) t = 32 s,
(b) t = 42 s, (c) t = 48 s.

4. Conclusions

Based on the solidification and melting model and multi-phase flow model, this paper applies the
Fluent software to simulate the melting process of the PEMFC stack. The numerical simulation analysis
of the melting process is conducted using the PEM electric heating method and the electrothermal film
heating method. The following conclusions were obtained:

1. Both the PEM electric heating method and the electrothermal film heating method were able to
achieve rapid cold start-up. The ice inside the PEMFC stack melted first, and the first and 40th
pieces melted afterwards. The ice melting time of the PEMFC stack of the two methods was 32.5 s
and 36.5 s, respectively.

2. In order to study the effect of different electrothermal film (ETF) structures on cold start-up
performance, ETFs with pore diameters of 0.3 mm, 0.6 mm, and 0.9 mm were established. It was
found that the pore size of 0.3 mm melts first, followed by 0.6 mm, and then 1.2 mm. When the
pore sizes of the ETF were 0.3 mm, 0.6 mm and 1.2 mm, the ice initial melting times were
28 s, 30 s and 32 s, respectively, and the corresponding final melting times were 44 s, 46 s and
48 s, respectively.
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Appendix A. Determination of the Heat Transfer Coefficient hext

The empirical formula proposed by QuanLi is given

hc = 0.83 f
(Ts − T∞

P

)n
(A1)

where hc is the surface convection heat transfer coefficient, Ts is the surface temperature of the material,
and T∞ is the external ambient temperature. In this paper, Ts is set to 275 K, which is the maximum
PEMFC surface temperature. T∞ is set to 263 K.

• When f = 1.22, n = 0.35, hc represents the vertical surface convection heat transfer coefficient,
P = H;

• When f = 1.0, n = 0.33, hc represents the convection heat transfer coefficient of horizontal top
surface, P = W.L

2(W+L) ;

• When f = 0.5, n = 0.33, hc represents the convection heat transfer coefficient of horizontal
bottom surface;

• Where L is the length of the horizontal plane, W is the width of the horizontal plane, and H is the
vertical height.

The paper uses a 40-layer two-dimensional PEMFC stack with an overall size of 70 mm × 132.8 mm.
The actual stack length and width are equal, that is, W = L = 70 mm. It can be deduced that the
top and bottom boundary convection heat transfer coefficients are 7.16 W/m3

·K and 3.58 W/m3
· K,

respectively, and vertical boundary convection heat transfer coefficient is 4.89 W/m3
·K.

Appendix B. Determination of Thermal Conductivity and Volume Power Density of the ETF

In this paper, the carbon nanotube film is used for the ETF. Young et al. [13] studied the
electrothermal performance of the carbon nanotube film and calculated the convective heat transfer
coefficient of the carbon nanotube film. The maximum value is 7.4 W/m3. K. The ETF actual thickness
is 0.1 mm, and the thermal conductivity of the ETF can be calculated according to the following:

k = h/l, (A2)

where k is the thermal conductivity, h is the convective heat transfer coefficient of the carbon nanotube
film, and l is the thickness of the carbon nanotube film.

Young et al. concluded that the carbon nanotube film can be heated to 176 ◦C when the voltage
is 10 V. The paper uses ANSYS-ICEPAK software to establish the same structure as what studied by
Young et al. The same voltage is applied at 10 V to reach 176 ◦C. The thermal conductivity is the
reversed calculation of 0.175 W/m·K, and the calculation result is shown in Figure A1.

In summary, due to the small difference in thermal conductivity between the two methods,
the thermal conductivity of the electric heating film is 0.18 W/m·K.

Young et al.’s results also show that under the load of 1–2 W, the temperature can be increased
to 176 ◦C The article also uses ANSYS-ICEPAK software, and applies a thermal conductivity of
0.18 W/m·K to study the loaded power when the temperature rise reaches 176 ◦C. The calculational
results are shown in Figure A2:

The calculation results show that the temperature can reach 176 ◦C when the power is 1.2 W, so the
power of the electric heating film is 1.2 W. According to the actual structure of the electric heating film,
the power density is 1 × 107 W/m3.
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Figure A1. Calculation result of the thermal conductivity.

Figure A2. The calculation result of temperature.



Energies 2020, 13, 4456 23 of 25

Appendix C. The Units of Variables

Table A1. The unit of variables

Symbol Variable Units

ρs density of solid

kg m−3ρq density of qth fluid

ρf density of fulid

p density

ks thermal conductivity of the solid phase.

W m−1 K−1kf thermal conductivity of the liquid phase

keff effective thermal conductivity of the medium

αq the qth fluid’s volume fraction

υ velocity of qth fluid
m.s−1

→
vq velocity vector

Saq source term
W.m−3

Sh source term
.

mpq the mass transfer from phase q to phase p
kg.

mqp the mass transfer from phase p to phase q

h enthalpy

kJ/kg
hq enthalpy of qth fluid

∆H enthalpy variation

hre f reference enthalpy

cp specific heat J.kg−1. K−1

β volume fraction of the liquid

L latent heat of liquid water J.kg−1

Tq temperature of q-phase

K

Tfs temperature of the porous medium region

Tw outer surface temperature of the material

Text external ambient temperature

Tsolidus temperature of water starts to freeze

Tliquidus temperature of liquid begins to melt

γ porosity of the porous medium

Eq energy of qth fluid J

Ef total energy of the fluid J

Es total energy of the solid medium J

hext convective heat transfer coefficient W/(m2 ◦C)
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