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Abstract: Due to the strong concealment of electricity theft and the limitation of inspection resources,
the number of power theft samples mastered by the power department is insufficient, which limits
the accuracy of power theft detection. Therefore, a data augmentation method for electricity theft
detection based on the conditional variational auto-encoder (CVAE) is proposed. Firstly, the stealing
power curves are mapped into low dimensional latent variables by using the encoder composed of
convolutional layers, and the new stealing power curves are reconstructed by the decoder composed
of deconvolutional layers. Then, five typical attack models are proposed, and the convolutional neural
network is constructed as a classifier according to the data characteristics of stealing power curves.
Finally, the effectiveness and adaptability of the proposed method is verified by a smart meters’ data
set from London. The simulation results show that the CVAE can take into account the shapes and
distribution characteristics of samples at the same time, and the generated stealing power curves have
the best effect on the performance improvement of the classifier than the traditional augmentation
methods such as the random oversampling method, synthetic minority over-sampling technique,
and conditional generative adversarial network. Moreover, it is suitable for different classifiers.

Keywords: power theft detection; data augmentation; conditional variational auto-encoder;
convolutional neural network; deep learning

1. Introduction

The electrical loss includes non-technical loss and technical loss. Technical loss is an unavoidable
loss in the process of power transmission, which is determined by power loads and parameters of
power supply equipment. Non-technical loss is caused by wrong measurement, electricity theft,
and non-payment by consumers [1]. In recent years, the U.S. has lost USD 6 billion every year due to
electricity theft, according to a report by Forbes magazine [2]. Therefore, the detection of electricity
theft is of great significance to reduce non-technical loss.

The existing methods for electricity theft detection can be divided into supervised classification
and unsupervised regression. The unsupervised regression method is to determine the electricity
theft by comparing the deviation between the actual value and the predicted value of the power
load [3]. This kind of method does not need a labeled data set to train the model, but it is difficult to
set the threshold and the detection accuracy is low [4,5]. Supervised classification methods mainly
include traditional data mining models such as support vector machine (SVM), multi-layer perceptron
(MLP), Bayesian network, extreme gradient boosting tree (XGBoost) [6–10], and new deep learning
technologies such as the deep belief network and convolutional neural network (CNN) [11–13].
Specifically, SVM is very suitable for binary classification. For n types of stealing power curves, it needs
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to train n SVM, which consumes a lot of computing time for the data sets with a large number of
samples [14,15]. The Bayesian network is sensitive to the form of input data, and it needs to assume a
prior distribution for samples, which may lead to poor accuracy for detection due to the inaccurate prior
model [16]. MLP has a powerful non-linear mapping ability. In theory, it can fit arbitrary continuous
functions theoretically. However, it has the problem of over-fitting [17]. The XGBoost improves the
performance by using multiple classifiers, but it has too many parameters, which makes it difficult to
adjust parameters [18,19]. In general, these traditional data mining methods are easy to implement,
and are suitable for electricity theft detection with small samples. However, they have problems of low
feature extraction ability and limited detection accuracy. Relatively, deep neural networks not only
have strong ability of feature extraction, but also can map complex nonlinear relationships, which gives
them a higher detection accuracy than traditional methods [20,21].

A sufficient number of stealing power curves in the data set is the basis to ensure that the deep
neural networks have strong generalization ability. However, it is difficult to detect electricity theft due
to the strong concealment of thieves and limited audit resources. In practical engineering, the number
of stealing power curves found are limited, which is not enough to train deep neural networks.
Therefore, it is necessary to use the limited stealing power curves for data augmentation, so as to
improve the accuracy of detection. In reference [22], the random oversampling (ROS) is proposed to
reproduce the samples. Although the number of samples is increased, the classifier is prone to over
fitting, since new sample lacks diversity. To solve this problem, the synthetic minority over-sampling
technique (SMOTE) is proposed in reference [23–25]. However, the SMOTE does not take into account
the probability distribution characteristics of electricity stealing curves, so the improvement of accuracy
is limited. Reference [26] uses the conditional generative adversarial network (CGAN) to model the
stealing power curves, which has higher accuracy than the traditional oversampling methods, but it is
difficult to adjust parameters, and the training process is unstable.

The conditional variational auto-encoder (CVAE) is a novel deep generative network which uses
output vectors to reconstruct input features. At present, the CVAE has been widely used in different
fields such as image augmentation, dimensionality reduction, and data generation [27–29], and has
shown good performance, but its application in data augmentation for stealing power curves is still
in its infancy. In theory, the CVAE effectively extracts the potential features of stealing power curves
by using the encoder with strong learning ability, and reconstructs the stealing power curves by the
decoder, which can provide enough data for the deep neural network. Specifically, it is necessary to
redesign the structure of the CVAE to make it suitable for generating stealing power curves, since the
existing structures are only suitable for processing 2-dimensional data, such as images and videos.

To improve the accuracy of electricity theft detection, a data augmentation method for stealing
power curves based on conditional variational auto-encoder is proposed in this paper. The key
contributions of this paper can be summarized as follows:

1. The CVAE proposed has strong generalization ability and can generate many stealing power
curves similar to that from the test set through unsupervised learning. As long as Gaussian
noises are input to the decoder of CVAE, any number of samples of stealing power curves can be
generated to train the deep neural network.

2. Compared with ROS and SMOTE, the samples generated by CVAE not only have diversity,
but also capture the probability distribution characteristics of stealing power curves. In addition,
the training process of CVAE is more stable than that of CGAN and can generate new samples
with higher quality.

3. After data augmentation for the training set by CVAE, the detection accuracy of deep neural
network can be significantly improved, and it is suitable for different classifiers.

The rest of this paper is organized as follows: Section 2 proposes the conditional variational
auto-encoder for data augmentation. Section 3 introduces the process of electricity theft detection base
on CNN. The simulation and results are shown in Section 4. The conclusions are described in Section 5.
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2. Conditional Variational Auto-Encoder for Data Augmentation

2.1. Conditional Variational Auto-Encoder

Formally, the variational auto-encoder is to learn the data distribution pθ(X) of stealing power
curves according to the historical data X =

{
x1, x2, · · · xn

}
. Typically, this data distribution of stealing

power curves can be decomposed as follows [30]:

pθ(X) =
n∏

i=1

pθ(xi) (1)

where Π is the capital pi that is a product of all values in range of series.
In order to solve numerical problems, the log function is applied to obtain the following results:

log
n∏

i=1

pθ(xi) =
n∏

i=1

log pθ(xi) (2)

Each data point of steal power curves includes the latent variable z that explains the generative
process. The Equation (1) can be rewritten for a single point as:

pθ(x) =
∫

pθ(x, z)dz =

∫
pθ(z)pθ(x|z )dz (3)

where
∫

denotes the sign for definite integrals.
The generation procedure for stealing power curves includes various steps. First, the prior

probability pθ∗(z) is sampled to obtain the latent variable z. Then, the stealing power curve x is
generated accordingly to the posterior probability pθ∗(x|z ). Unfortunately, the prior probability pθ∗(z)
and the posterior probability pθ∗(x|z ) are not available. In order to estimate them, the posterior

probability pθ(z|x ) =
pθ(x|z )pθ(z)

pθ(x)
needs to be known. Hence, the inference is very difficult. Since the

posterior probability is often very complex, a simple distribution qφ(z|x ) and parameter φ are needed
to approximate it.

The distribution log pθ(xi) needs to be estimated, because it is impossible to directly sample the
distribution of the stealing power curves. Therefore, the Kullback–Leibler divergence can be combined
with the variational lower bound:

log pθ(x) = DKL
(
qφ(z|x )‖pθ(z|x )

)
+ L(θ,φ; x) (4)

L(θ,φ; x) =
∫

qφ(z|x ) log
pφ(x|z )

qφ(z|x )
= Eqφ(z|x)

[
− log qφ(z|x ) + log pφ(x|z )

]
(5)

where DKL
(
qφ(z|x )‖pθ(z|x )

)
is the Kullback–Leibler divergence between the distribution qφ(z|x ) and

the distribution pθ(z|x ). qφ is the probability distribution to be learned and pφ is the prior distribution
of latent variables. Obviously, this Kullback–Leibler divergence is greater than 0. The term acts as a
lower bound of the log-likelihood:

log pθ(x) ≥ L(θ,φ; x) (6)

In this case, the term L(θ,φ; x) could be written as:

L(θ,φ; x) = −DKL
(
qφ(z|x )‖pθ(z)

)
+ Eqφ(z|x)[log pθ(x|z )] (7)
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where the first term −DKL
(
qφ(z|x )‖pθ(z)

)
constrains the function qφ(z|x ) to the shape of the pθ(z).

The second term Eqφ(z|x)[log pθ(x|z )] reconstructs the input data with the given latent variable z that
follows pθ(x|z ). With this optimization goal L, the model can be parameterized as follows:{

qφ(z|x ) = q(z; f (x,φ))
pθ(x|z ) = p(x; g(z,θ))

(8)

where f and g are deep neural networks with a set of parameters, respectively. A more detailed
derivation about VAE can be found in [27].

For the stealing power curve, it may have different shapes due to different attack methods, such as
physical attack, data attack, and communication attack. In order to make the variational auto-encoder
generate the stealing power curves of the specified attack method, the labels should be added in the
training stage of the variational auto-encoder. Normally, the conditional distribution pθ(x

∣∣∣y ) can be
used to replace the original distribution pθ(x). The term L(θ,φ; x) of CVAE could be written as [31]:

L(θ,φ; x
∣∣∣y ) = −DKL

(
qφ(z

∣∣∣(x∣∣∣y ) )‖pθ(z))+ Eqφ(z|x)

[
log pθ((x

∣∣∣y )|z )] (9)

2.2. Data Augmentation for Stealing Power Curves

The main advantage of CVAE is that it does not need to assume the probability distribution of
the stealing power curves, and only a few samples are needed to train the model, which can generate
samples similar to the original stealing power curves. A summary of this process for generating
stealing power curves is represented in Figure 1.Energies 2020, 13, x FOR PEER REVIEW 5 of 14 
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Figure 1. Process of generating stealing power curves by the conditional variational auto-encoder (CVAE).

Step 1: The input data of CVAE are the stealing power curves and labels. Before inputting the
data into the CVAE, it is necessary to normalize the data of power stealing curves, otherwise CVAE
may not converge. In this paper, the min-max normalization method is used to transform the input
data into values between 0 and 1.

Step 2: The deep convolutional network with a strong ability of feature extraction is used to
construct encoder that maps input data to the low dimensional latent variables. Then, the mean and
variance of the output data of the encoder are calculated, which are used to generate corresponding
Gaussian noises as the input data of the decoder.

Step 3: Gaussian noises are fed to the decoder composed of the deep transposed convolutional
network to generate new stealing power curves. Then, the output data of the decoder and the actual
data are utilized to calculate the loss function, which is used to update the weight of the encoder and
decoder by the back-propagation method.

Step 4: After training the CVAE, the Gaussian noises are fed to the decoder to generate the stealing
power curves under the specified attack model. Furthermore, the generated stealing power curves and
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the original samples from the training set will be used to train a classifier (e.g., CNN), which is used to
distinguish whether the unknown sample is a stealing power curve or a normal power curve.

3. Electricity Theft Detection Based on Data Augmentation

3.1. Attack Models for Generation of Stealing Power Curves

In previous works, most of the stealing power curves are obtained by simulation, because it is
difficult to detect electricity theft due to the strong concealment of thieves and limited audit resources.
In this paper, the different attack models (e.g., physical attack, communication attack, and data attack)
are utilized to obtain the samples with labels [2,13]. Table 1 shows the stealing power curves under
different attack models. In the Table 1, some types of attack models will cause denial of service. In this
case, the meter will stop reporting consumer information. This is the case of attack models such as
alter routing table, drop packets, and disconnect meter [32]. The more problematic attack models are
those that allow generating fake consumption records that imitate a user with a legitimate low power
profile. This is the case of session hijacking, other types of attack models that permit privileged access
to the firmware misconfiguration and power meter [33,34].

Table 1. Mathematical formulas of different attack models.

Attack Models Mathematical Model Attack Models Mathematical Model

Type 1 x′t = αxt, 0.1 ≤ α ≤ 0.8 Type 4 x′t = γtmean(x
)
, 0.1 ≤ γt ≤ 0.8

Type 2 x′t = βtxt, βt =

{
0, ts < t < te
1, else

0 ≤ ts ≤ 46− tc, te = ts + td, tc ≤ td ≤ 48
Type 5 x′t = x48−t

Type 3 x′t = γtxt, 0.1 ≤ γt ≤ 0.8

In type 1, the normal power curve, is multiplied by a random number in the range of 0.1 to 0.8 to
get the stealing power curve. In type 2, the recorders of consumption are replaced by zeroes during
a random period of every day. In type 3, every point of the normal power curve is multiplied by
a random number in the range of 0.1 to 0.8. In type 4, the recorder of consumption is the product
between the mean of the normal power curve and a random noise in the range of 0.1 to 0.8. In type
5, the recorders of consumption between low electrovalence period and high electrovalence period
are exchanged.

3.2. Electricity Theft Detection Based on CNN

The input variables of the classifier for electricity theft detection are the power curves, and the
output variables are the types of power curves shown in Table 2.

Table 2. The way of one-hot coding for power curves.

Curves Output Code Curves Output Code Curves Output Code

Normal 000000 Type 2 001000 Type 4 000010
Type 1 010000 Type 3 000100 Type 5 000001

As one of the representative algorithms of deep learning technologies, CNN has been widely used
in image classification, fault diagnosis, and time series prediction due to its powerful feature extraction
ability and has achieved remarkable results [35,36]. Compared with the traditional classification
methods, CNN can not only map more complex nonlinear relationships, but also has good generalization
ability. Therefore, this paper selects CNN as the classifier for electricity theft detection.
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CNN is composed of convolutional layers, pooling layers, flatten layers, dropout layers, and fully
connected layers. Specifically, convolutional layers and pooling layers are responsible for extracting
the features of stealing power curves. Their mathematical formula is as follows:

yi = fi(xi ∗wi + bi) (10)

y′ = max
i, j∈R

(
yi, j

)
(11)

where xi denotes input data of i-th convolutional layer and yi denotes output data of i-th convolutional
layer. y′ denotes output data of i-th max-pooling layer. fi is the activation function. bi and wi denote
the offset vector and the weights of the i-th convolutional layer, respectively.

To alleviate the over-fitting, the dropout layer can make some neurons lose efficacy with a certain
probability. The flatten layer is used as the bridge between the pooling layer and fully connected layer,
which plays the role of format transformation for data. The mathematical formula of a fully connected
layer is as follows:

y′′i = gi
(
y′i w

′′

i + b′′i
)

(12)

where gi is the activation function. b′′i and w′′i denote the offset vector and the weights of the i-th
fully connected layer, respectively. y′′i and y′i denote output and input data of i-th fully connected
layer, respectively.

According to the characteristics of the power curves, the optimal structure and parameters of
CNN are obtained after many experiments, as shown in Figure 2.
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theft detection.

In order to process the data conveniently, a 0 element is added at the end of the power curve,
and the 1 × 49 vector is reconstituted into a 3-dimensional tensor of 5 × 5 scales as the input data of the
convolutional layer. Then, two convolutional layers and max-pooling layers are used to extract the key
features of the power curves. The number of filters in two convolutional layers is 16 and 32, respectively.
The convolutional size and pooling size are 2 × 2. There is a dropout layer behind the pooling layer,
which makes neurons lose efficacy with a probability of 0.25. After the flatten layer, there are two
fully connected layers with 15 and 6 neurons, respectively. Activation functions are mathematical
equations that determine the output of a neural network. The function is attached to each neuron in the
network, and determines whether it should be activated or not, based on whether each neuron’s input
is relevant for the model’s prediction. Common activation functions include the Sigmoid function,
Tanh function, Softmax, and ReLU. Specifically, the Sigmoid function is usually used to normalize the
output of the last layer of the neural network for forecasting tasks. The Softmax function is usually
used as a classifier of the neural network for multi-classification. For the Tanh function, previous works
show that it has the problems of vanishing gradient and is computationally expensive [11]. Therefore,
except for the last layer, it uses softmax function as activation function, and the remaining layers use
the ReLU function as the activation function. The loss function is categorical cross-entropy, and the
optimizer is the Adadelta algorithm.
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3.3. The Process of the Proposed Methods

Summarizing the above analysis, the process of electricity theft detection based on data
augmentation is shown in Figure 3. The specific steps are as follows:

Step 1: After importing the dataset, the dataset is divided into the training set, validation set, and
test set. The one-hot codes method is used to represent seven types of power curves, and the min-max
normalization method is used to normalize the raw data.

Step 2: In the coding stage, the stealing power curves are mapped into latent variables by encoder.
In the decoding stage, the new stealing power curves are obtained by feeding Gaussian noises to
decoder. Then, the loss function is calculated to update the weights of the network. After the training
of CVAE, a large amount of Gaussian noises are fed to the decoder of CVAE to generate new samples
for training CNN.

Step 3: The samples generated by CVAE and the original samples from training set are used to
train CNN. In the training process, the features of input variables are extracted by convolutional layers
and pooling layers, and the labels output by a fully connected layer are used to calculate the loss
function. Finally, the back-propagation algorithm is used to update the weights of CNN. After training
CNN, it will be used to distinguish whether the unknown sample is a stealing power curve or a normal
power curve.

Step 4: For the multi classification problem, it is too simple to evaluate the performance of the
model only by accuracy. In this paper, Macro F1 and G-mean are used to evaluate the performance of
CNN for the test set [37,38].
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4. Case Study

4.1. Data Description

To illustrate the effectiveness of the proposed methods, the data set of smart meters from London
is used for simulation and analysis [39]. In this dataset, the time resolution of the power curve is
30 min, which means that each power curve has 48 points. Some samples are randomly selected to
generate the stealing power curves based on the attack models proposed in Section 3.1. For example,
in order to generate the stealing power curves in type 1, a normal curve is randomly selected from the
data set. Then, this normal power curve is multiplied by a random number in the range of 0.1 to 0.8
to get the stealing power curve in type 1. In this case, the power curve with a label can be obtained
through the attack models. Furthermore, the CVAE model is used to expand the number of training
samples to twice the original number as shown in Table 3. Specifically, the samples in the validation
set and test set do not change after data augmentation.

Except for SVM, the other algorithms (e.g., CVAE, CNN, MLP, XGBoost, ROS, SMOTE, and GAN)
in this paper are running in Spyder (Python 3.7) with keras 2.2.4 and tensorflow 1.12.0. The parameters
of the computer are as follows: 16 GB of memory, the processor is 3.8 GHz and Intel Core (TM)
i5-7400 CPU.
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Table 3. The number of samples in the training set, validation set, and test set.

Samples Before Data Augmentation After Data Augmentation

Sum Training Validation Test Sum Training Validation Test

Normal 600 400 100 100 1000 800 100 100
Type 1 300 200 50 50 500 400 50 50
Type 2 300 200 50 50 500 400 50 50
Type 3 300 200 50 50 500 400 50 50
Type 4 300 200 50 50 500 400 50 50
Type 5 300 200 50 50 500 400 50 50

4.2. Performance of CVAE

Figure 4 shows the structure and parameters of CVAE. The input data of CVAE are vectors
of 1 × 48 scales. A 0 is added at the end of these vectors and then they will become vectors of
1 × 49 scales. Furthermore, the reshape function is used to transform these vectors into matrixes of 7 ×
7 × 1 scales. For the encoder, it includes four convolutional layers, one flattened layer, and three fully
connected layers. Specifically, the first convolutional layer includes one filter, and the remaining three
convolutional layers have 16 filters. The kernel size of the first two layers is 2, and that of the last two
layers is 3. The activation function of all convolution layers is the ReLU function. Every convolutional
layer is followed by a batch normalization layer. The flatten layer is used as the bridge between the
pooling layer and the fully connected layer, which plays the role of format transformation for data.
To calculate the KL divergence loss and sample latent variable, the encoder adds two fully connected
layers with 32 neurons for variance and mean to its end. For the decoder, its input data are Gaussian
noises of 1 × 32 scales. Two fully connected layers, three deconvolutional layers, and one convolutional
layer constitute the decoder. Specifically, the numbers of neurons in the fully connected layers are 64
and 256, respectively. The numbers of filters in the deconvolutional layers are all 16 and the kernel
size is all 3. The number of filters in the convolution layer is 1 and the kernel size is 2. The activation
functions are all ReLU functions. In addition, the optimizer is the Rmsprop algorithm.
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In order to observe the training stability of CVAE, Figure 5 visualizes the evolution process of
CVAE. Obviously, the loss function decreases rapidly with the increase of iteration times. When the
iteration times are more than 40, the value of the loss function tends to be stable, which indicates that
CVAE has entered the convergence state. The training process of CVAE is very stable, not like the loss
function of CGAN which fluctuates violently and is difficult to converge.

Energies 2020, 13, x FOR PEER REVIEW 9 of 14 

 

that CVAE has entered the convergence state. The training process of CVAE is very stable, not like 
the loss function of CGAN which fluctuates violently and is difficult to converge. 

 
Figure 5. Evolution process of CVAE. 

After training CVAE, the Gaussian noises of 1 × 32 scales are used as input variables of the 
decoder, and a large number of new stealing power curves are obtained. Then, some new stealing 
power curves are selected to verify the effectiveness of the power curves generated by CVAE. Next, 
the Euclidean distance of each power curve in the test set and the new power curve generated by 
CVAE is calculated, and the power curve in the test set with the minimum Euclidean distance is 
selected. Finally, Figure 6 visualizes the shapes of the generated power curves and the real power 
curves. 

 
Figure 6. Comparison of shapes between real samples and generated samples. 

It can be seen from Figure 6 that the stealing power curves generated by CVAE are very close 
to those from the test set. The stealing power curves in the test set do not participate in the training 
process of the CVAE, which indicates that CVAE has a strong generalization ability, and the 
stealing power curves generated by CVAE are very in line with the actual scene. 

In addition to comparing the shape similarity of stealing electricity curves, the validity of 
CVAE can be further verified by the probability density function (PDF). It can be seen from the 
Figure 7 that the probability distribution functions of the stealing power curves generated by CVAE 
are very close to those from the test set, which indicates that CVAE can not only learn the shape of 
the stealing power curves, but also capture the distribution characteristics of historical data to 
generate high-quality samples. 

Lo
ss

 fu
nc

tio
n

Figure 5. Evolution process of CVAE.

After training CVAE, the Gaussian noises of 1 × 32 scales are used as input variables of the decoder,
and a large number of new stealing power curves are obtained. Then, some new stealing power curves
are selected to verify the effectiveness of the power curves generated by CVAE. Next, the Euclidean
distance of each power curve in the test set and the new power curve generated by CVAE is calculated,
and the power curve in the test set with the minimum Euclidean distance is selected. Finally, Figure 6
visualizes the shapes of the generated power curves and the real power curves.
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Figure 6. Comparison of shapes between real samples and generated samples.

It can be seen from Figure 6 that the stealing power curves generated by CVAE are very close
to those from the test set. The stealing power curves in the test set do not participate in the training
process of the CVAE, which indicates that CVAE has a strong generalization ability, and the stealing
power curves generated by CVAE are very in line with the actual scene.

In addition to comparing the shape similarity of stealing electricity curves, the validity of CVAE
can be further verified by the probability density function (PDF). It can be seen from the Figure 7
that the probability distribution functions of the stealing power curves generated by CVAE are very
close to those from the test set, which indicates that CVAE can not only learn the shape of the
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stealing power curves, but also capture the distribution characteristics of historical data to generate
high-quality samples.
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4.3. Performance Comparison of Different Methods for Data Augmentation

In order to illustrate the effectiveness of generating stealing power curves by CVAE, the ROS,
SMOTE, and CGAN are used as the baseline. These methods are used to expand the samples of the
training set to train a classifier (e.g., CNN), and the results of the classifier for test set are shown in
Table 4.

Table 4. Results of the test set under different data augmentation methods.

Methods Accuracy Macro F1 G-Mean

No data augmentation 83.25% 83.90% 83.55%
ROS 85.25% 85.54% 85.24%

SMOTE 86.75% 86.80% 86.88%
GAN 88.00% 88.36% 88.23%
CVAE 90.25% 90.55% 90.56%

As can be seen from Table 4, the detection performance of CNN has been significantly improved
after data augmentation by various methods. Specifically, after data augmentation by ROS, the accuracy,
Macro F1, and G-mean of CNN are improved by 2.00%, 1.64%, and 1.69%, respectively, compared with
the original training set. After data augmentation by SOMTE, the accuracy, Macro F1, and G-mean of
CNN are improved by 3.50%, 2.90%, and 3.33%, respectively, compared with the original training set.
After data augmentation by CGAN, the accuracy, Macro F1, and G-mean of CNN are improved by
4.46%, 4.46%, and 4.68%, respectively compared with the original training set. After data augmentation
by CVAE, the accuracy, Macro F1, and G-mean, of CNN are improved by 7.00%, 6.65%, and 6.01%,
respectively, compared with the original training set. Therefore, compared with the existing methods
for data augmentation, the proposed CVAE can expand the training set according to the actual shape
and distribution characteristics of stealing power curves, and has the strongest improvement on
CNN performance.

4.4. Adaptability Analysis of CVAE

In order to verify the adaptability of CVAE to different classifiers, CVAE is used to expand the
samples from the training set, and then the performance of different classifiers (e.g., CNN, MLP, SVM,
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and XGBoost) after data augmentation is tested. After many experiments, their optimal parameters are
found as follows:

For MLP, the number of neurons in the input layer is 48, and the number of neurons in the
middle layer is 24 and 12, respectively. The number of neurons in the output layer is equal to the
number of categories. The optimizer is the root mean square prop (RMSprop) and the loss function is
cross-entropy. Besides, a dropout layer with a rate of 0.25 is inserted between each fully connected
layer to alleviate over-fitting. For SVM, the fitcecoc function from MATLAB2018a is used to classify
stealing power curves. For XGBoost, the min child weight is 2 and the subsample is 0.8. The max
depth is 6 and eta is 0.1. The gamma is 0.2. The results of the test set using different classifiers as
shown in Table 5.

Table 5. Results of the test set using different classifiers.

Classifiers
Before Data Augmentation After Data Augmentation

Accuracy Macro F1 G-Mean Accuracy Macro F1 G-Mean

CNN 83.25% 83.90% 83.55% 90.25% 90.55% 90.56%
MLP 78.75% 78.78% 78.06% 82.50% 83.13% 82.71%
SVM 75.25% 75.64% 74.44% 79.75% 80.04% 78.70%

XGBoost 80.25% 80.75% 80.65% 83.25% 83.48% 82.62%

As can be seen from Table 5, the performance of each classifier has been greatly improved after
data augmentation by CVAE. Specifically, the accuracy, Macro F1, and G-mean of CNN are improved
by 7.00%, 6.65%, and 7.01%, respectively after data augmentation. The accuracy, Macro F1, and G-mean
of MLP are improved by 3.75%, 4.35%, and 4.65%, respectively after data augmentation. The accuracy,
Macro F1, and G-mean of SVM are improved by 4.50%, 4.40%, and 4.26%, respectively after data
augmentation. The accuracy, Macro F1, and G-mean of XGBoost are improved by 3.00%, 2.73%,
and 1.96%, respectively, after data augmentation. In general, CVAE can effectively improve the
accuracy of electricity theft detection through the unsupervised generation of new samples, which is
suitable for different classifiers.

5. Discussion

The objective of this paper is to propose a new method based on CVAE to improve the accuracy
for electricity theft detection. In this paper, the effectiveness of the proposed CVAE has been tested on
the smart meter dataset from the low carbon London project. The simulation results show that the
accuracy of electricity theft detection can be significantly enhanced after data augmentation by CVAE.
For the CVAE model, its training process requires some labeled power curves. However, the labels of
the power curves of stealing electricity are difficult to obtain in some cases, which make it impossible
to train the CVAE model. At this time, we can try to use the traditional VAE to model different types of
stealing power curves. If the data set contains n kinds of different electricity stealing power curves,
we have to train n VAE model. Relatively, if each stealing power curve has a label, we only need to
train one CVAE model.

6. Conclusions

Due to the strong concealment of electricity theft and the limitation of inspection resources,
the number of power theft samples mastered by the power department is insufficient, which limits
the accuracy of power theft detection. Therefore, a data augmentation method for electricity theft
detection based on a conditional variational auto-encoder is proposed. The following conclusions are
drawn through simulation:

(1). The training process of CVAE is very stable, and the convergence speed is fast. The generated
stealing power curves have a similar shape and distribution characteristics with the original
stealing power curves.



Energies 2020, 13, 4291 12 of 14

(2). After data augmentation by CVAE, the accuracy, Macro F1, and G-mean of CNN are improved
by 7.00%, 6.65%, and 6.01%, respectively compared with the original training set. Compared
with existing data augmentation methods (e.g., ROS, SMOTE and GAN), the accuracy, Macro F1,
and G-mean values of CNN are the largest, which indicates that the new samples generated by
CVAE have the strongest improvement on detection performance.

(3). Compared with the original training set, the training set augmented by CVAE improves the
comprehensive detection performance of classifiers such as CNN, MLP, SVM, and XGBoost,
which indicates that CVAE is suitable for different classifiers.

For future work, we can try other generative networks (e.g., a flow-based network) to model the
stealing power curve. In addition, the capsule network can be used to distinguish the stealing curves
from the normal curves.
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Nomenclature

X historical stealing power curves
pθ(X) data distribution of stealing power curves
z latent variable
pθ∗ (z) the prior probability
pθ∗ (x|z ) the posterior probability
DKL

(
qφ(z|x )‖pθ(z|x )

)
the Kullback–Leibler divergence

qφ the probability distribution to be learned
pφ the prior distribution of latent variables
α a random noise in the range of 0.1 to 0.8
γt a random noise in the range of 0.1 to 0.8 for the t-th point of power curves
x′t the t-th point of stealing power curves generated by attack models
xt the t-th point of normal power curves
wi the weights of the i-th convolutional layer
bi the offset vector of the i-th convolutional layer
y′ the output data of i-th max-pooling layer
w′′i the weights of the i-th fully connected layer
b′′i the offset vector of the i-th fully connected layer
y′′i the output data of i-th fully connected layer

References

1. Nabil, M.; Ismail, M.; Mahmoud, M.M.E.A.; Alasmary, W.; Serpedin, E. PPETD: Privacy-Preserving Electricity
Theft Detection Scheme with Load Monitoring and Billing for AMI Networks. IEEE Access 2019, 7,
96334–96348. [CrossRef]

2. Zanetti, M.; Jamhour, E.; Pellenz, M.; Penna, M.; Zambenedetti, V.; Chueiri, I. A Tunable Fraud Detection
System for Advanced Metering Infrastructure Using Short-Lived Patterns. IEEE Trans. Smart Grid 2019, 10,
830–840. [CrossRef]

3. Yip, S.; Tan, C.; Tan, W.; Gan, M.; Bakar, A.A. Energy theft and defective meters detection in AMI using
linear regression. In Proceedings of the 2017 IEEE International Conference on Environment and Electrical
Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I & CPS Europe),
Milan, Italy, 6–9 June 2017.

http://dx.doi.org/10.1109/ACCESS.2019.2925322
http://dx.doi.org/10.1109/TSG.2017.2753738


Energies 2020, 13, 4291 13 of 14

4. Wu, R.; Wang, L.; Hu, T. AdaBoost-SVM for Electrical Theft Detection and GRNN for Stealing Time Periods
Identification. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics
Society, Washington, DC, USA, 21–23 October 2018.

5. Gu, G.; He, Q.; Wang, B.; Dai, B. Comparison of Machine Learning Techniques for the Detection of the
Electricity Theft. In Proceedings of the 2018 IEEE 3rd International Conference on Cloud Computing and
Internet of Things (CCIOT), Dalian, China, 20–21 October 2018.

6. Jindal, A.; Dua, A.; Kaur, K.; Singh, M.; Kumar, N.; Mishra, S. Decision Tree and SVM-Based Data Analytics
for Theft Detection in Smart Grid. IEEE Trans. Ind. Inform. 2016, 12, 1005–1016. [CrossRef]

7. Punmiya, R.; Choe, S. Energy Theft Detection Using Gradient Boosting Theft Detector with Feature
Engineering-Based Preprocessing. IEEE Trans. Smart Grid 2019, 10, 2326–2329. [CrossRef]

8. Ahmad, T.; Chen, H.; Wang, J.; Guo, Y. Review of various modeling techniques for the detection of electricity
theft in smart grid environment. Renew. Sustain. Energy Rev. 2018, 82, 2916–2933. [CrossRef]

9. Messinis, G.M.; Hatziargyriou, N.D. Review of non-technical loss detection methods. Electr. Power Syst. Res.
2018, 158, 250–266. [CrossRef]

10. Toma, R.N.; Hasan, M.N.; Nahid, A.; Li, B. Electricity Theft Detection to Reduce Non-Technical Loss using
Support Vector Machine in Smart Grid. In Proceedings of the 2019 1st International Conference on Advances
in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019.

11. Zheng, Z.; Yang, Y.; Niu, X.; Dai, H.; Zhou, Y. Wide and Deep Convolutional Neural Networks for
Electricity-Theft Detection to Secure Smart Grids. IEEE Trans. Ind. Inform. 2018, 14, 1606–1615. [CrossRef]

12. Bhat, R.R.; Trevizan, R.D.; Sengupta, R.; Li, X.; Bretas, A. Identifying Nontechnical Power Loss via Spatial
and Temporal Deep Learning. In Proceedings of the 2016 15th IEEE International Conference on Machine
Learning and Applications (ICMLA), Anaheim, CA, USA, 18–20 December 2016.

13. Wei, L.; Gao, D.; Luo, C. False Data Injection Attacks Detection with Deep Belief Networks in Smart
Grid. In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an China, 30 November–2
December 2018.

14. Wu, X.; Zuo, W.; Lin, L.; Jia, W.; Zhang, D. F-SVM: Combination of Feature Transformation and SVM Learning
via Convex Relaxation. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 5185–5199. [CrossRef]

15. Yu, S.; Li, X.; Zhang, X.; Wang, H. The OCS-SVM: An Objective-Cost-Sensitive SVM with Sample-Based
Misclassification Cost Invariance. IEEE Access 2019, 7, 118931–118942. [CrossRef]

16. Liu, J.; Li, D.; Xu, Y. Collaborative Online Edge Caching with Bayesian Clustering in Wireless Networks.
IEEE Internet Things J. 2020, 7, 1548–1560. [CrossRef]

17. Han, S.; Kong, G.; Choi, S. A Detection Scheme with TMR Estimation Based on Multi-Layer Perceptrons for
Bit Patterned Media Recording. IEEE Trans. Magn. 2019, 55, 1–4. [CrossRef]

18. Jiang, Y.; Tong, G.; Yin, H.; Xiong, N. A Pedestrian Detection Method Based on Genetic Algorithm for
Optimize XGBoost Training Parameters. IEEE Access 2019, 7, 118310–118321. [CrossRef]

19. Gu, X.; Han, Y.; Yu, J. A Novel Lane-Changing Decision Model for Autonomous Vehicles Based on Deep
Autoencoder Network and XGBoost. IEEE Access 2020, 8, 9846–9863. [CrossRef]

20. He, Y.; Mendis, G.J.; Wei, J. Real-Time Detection of False Data Injection Attacks in Smart Grid: A Deep
Learning-Based Intelligent Mechanism. IEEE Trans. Smart Grid 2017, 8, 2505–2516. [CrossRef]

21. Niu, X.; Li, J.; Sun, J.; Tomsovic, K. Dynamic Detection of False Data Injection Attack in Smart Grid using
Deep Learning. In Proceedings of the 2019 IEEE Power & Energy Society Innovative Smart Grid Technologies
Conference (ISGT), Washington, DC, USA, 18–21 February 2019.

22. Pang, Y.; Chen, Z.; Peng, L.; Ma, K.; Zhao, C.; Ji, K. A Signature-Based Assistant Random Oversampling
Method for Malware Detection. In Proceedings of the 2019 18th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications/13th IEEE International Conference on Big Data
Science and Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5–8 August 2019.

23. Pan, T.; Zhao, J.; Wu, W.; Yang, J. Learning imbalanced datasets based on SMOTE and Gaussian distribution.
Inf. Sci. 2020, 512, 1214–1233. [CrossRef]

24. Elreedy, D.; Atiya, A.F. A Comprehensive Analysis of Synthetic Minority Oversampling Technique (SMOTE)
for handling class imbalance. Inf. Sci. 2019, 505, 32–64. [CrossRef]

25. Feng, W.; Huang, W.; Bao, W. Imbalanced Hyperspectral Image Classification with an Adaptive Ensemble
Method Based on SMOTE and Rotation Forest with Differentiated Sampling Rates. IEEE Geosci. Remote
Sens. Lett. 2019, 16, 1879–1883. [CrossRef]

http://dx.doi.org/10.1109/TII.2016.2543145
http://dx.doi.org/10.1109/TSG.2019.2892595
http://dx.doi.org/10.1016/j.rser.2017.10.040
http://dx.doi.org/10.1016/j.epsr.2018.01.005
http://dx.doi.org/10.1109/TII.2017.2785963
http://dx.doi.org/10.1109/TNNLS.2018.2791507
http://dx.doi.org/10.1109/ACCESS.2019.2933437
http://dx.doi.org/10.1109/JIOT.2019.2956554
http://dx.doi.org/10.1109/TMAG.2018.2889875
http://dx.doi.org/10.1109/ACCESS.2019.2936454
http://dx.doi.org/10.1109/ACCESS.2020.2964294
http://dx.doi.org/10.1109/TSG.2017.2703842
http://dx.doi.org/10.1016/j.ins.2019.10.048
http://dx.doi.org/10.1016/j.ins.2019.07.070
http://dx.doi.org/10.1109/LGRS.2019.2913387


Energies 2020, 13, 4291 14 of 14

26. Wang, D.; Yang, K. A Data Generation Method for Electricity Theft Detection Using Generative Adversarial
Network. Power Syst. Technol. 2020, 44, 775–782.

27. Du, C.; Chen, B.; Xu, B.; Guo, D.; Liu, H. Factorized discriminative conditional variational auto-encoder for
radar HRRP target recognition. Signal Process. 2019, 158, 176–189. [CrossRef]

28. Pesteie, M.; Abolmaesumi, P.; Rohling, R.N. Adaptive Augmentation of Medical Data Using Independently
Conditional Variational Auto-Encoders. IEEE Trans. Med. Imaging 2019, 38, 2807–2820. [CrossRef]

29. Sadeghi, M.; Leglaive, S.; Alameda-Pineda, X.; Girin, L.; Horaud, R. Audio-Visual Speech Enhancement
Using Conditional Variational Auto-Encoders. IEEE/ACM Trans. Audio Speech Lang. Process. 2020, 28,
1788–1800. [CrossRef]

30. Pan, Z.; Wang, J.; Liao, W.; Chen, H.; Yuan, D.; Zhu, W.; Fang, X.; Zhu, Z. Data-Driven EV Load Profiles
Generation Using a Variational Auto-Encoder. Energies 2019, 12, 849. [CrossRef]

31. Du, Y.; Xu, J.; Zhen, X.; Cheng, M.; Shao, L. Conditional Variational Image Deraining. IEEE Trans. Image
Process. 2020, 29, 6288–6301. [CrossRef] [PubMed]

32. Liang, G.; Weller, S.R.; Zhao, J.; Luo, F.; Dong, Z.Y. The 2015 Ukraine Blackout: Implications for False Data
Injection Attacks. IEEE Trans. Power Syst. 2017, 32, 3317–3318. [CrossRef]

33. Lin, J.; Yu, W.; Yang, X. On false data injection attack against Multistep Electricity Price in electricity market
in smart grid. In Proceedings of the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta,
GA, USA, 9–13 December 2013.

34. Yu, L.; Sun, X.; Sui, T. False-Data Injection Attack in Electricity Generation System Subject to Actuator
Saturation: Analysis and Design. IEEE Trans. Syst. Man Cybern. Syst. 2019, 49, 1712–1719. [CrossRef]

35. Xin, R.; Zhang, J.; Shao, Y. Complex network classification with convolutional neural network. Tsinghua Sci.
Technol. 2020, 25, 447–457. [CrossRef]

36. Zhou, D.-X. Theory of deep convolutional neural networks: Downsampling. Neural Netw. 2020, 124, 319–327.
[CrossRef]

37. Kerschke, P.; Hoos, H.H.; Neumann, F.; Trautmann, H. Automated Algorithm Selection: Survey and
Perspectives. Evol. Comput. 2019, 27, 3–45. [CrossRef] [PubMed]

38. Qin, Z.; Hu, L.; Zhang, N.; Chen, D.; Zhang, K.; Qin, Z.; Choo, K.R. Learning-Aided User Identification Using
Smartphone Sensors for Smart Homes. IEEE Internet Things J. 2019, 6, 7760–7772. [CrossRef]

39. UK Power Networks. Low Carbon London Project. Available online: https://data.london.gov.uk/dataset/
smartmeter-energy-use-data-in-london-households (accessed on 10 August 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.sigpro.2019.01.006
http://dx.doi.org/10.1109/TMI.2019.2914656
http://dx.doi.org/10.1109/TASLP.2020.3000593
http://dx.doi.org/10.3390/en12050849
http://dx.doi.org/10.1109/TIP.2020.2990606
http://www.ncbi.nlm.nih.gov/pubmed/32365032
http://dx.doi.org/10.1109/TPWRS.2016.2631891
http://dx.doi.org/10.1109/TSMC.2019.2915527
http://dx.doi.org/10.26599/TST.2019.9010055
http://dx.doi.org/10.1016/j.neunet.2020.01.018
http://dx.doi.org/10.1162/evco_a_00242
http://www.ncbi.nlm.nih.gov/pubmed/30475672
http://dx.doi.org/10.1109/JIOT.2019.2900862
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Conditional Variational Auto-Encoder for Data Augmentation 
	Conditional Variational Auto-Encoder 
	Data Augmentation for Stealing Power Curves 

	Electricity Theft Detection Based on Data Augmentation 
	Attack Models for Generation of Stealing Power Curves 
	Electricity Theft Detection Based on CNN 
	The Process of the Proposed Methods 

	Case Study 
	Data Description 
	Performance of CVAE 
	Performance Comparison of Different Methods for Data Augmentation 
	Adaptability Analysis of CVAE 

	Discussion 
	Conclusions 
	References

