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Abstract: Reservoir history matching is a well-known inverse problem for production prediction
where enormous uncertain reservoir parameters of a reservoir numerical model are optimized by
minimizing the misfit between the simulated and history production data. Gaussian Process (GP)
has shown promising performance for assisted history matching due to the efficient nonparametric
and nonlinear model with few model parameters to be tuned automatically. Recently introduced
Gaussian Processes proxy models and Variogram Analysis of Response Surface-based sensitivity
analysis (GP-VARS) uses forward and inverse Gaussian Processes (GP) based proxy models with the
VARS-based sensitivity analysis to optimize the high-dimensional reservoir parameters. However,
the inverse GP solution (GPIS) in GP-VARS are unsatisfactory especially for enormous reservoir
parameters where the mapping from low-dimensional misfits to high-dimensional uncertain reservoir
parameters could be poorly modeled by GP. To improve the performance of GP-VARS, in this paper
we propose the Gaussian Processes proxy models with Latent Variable Models and VARS-based
sensitivity analysis (GPLVM-VARS) where Gaussian Processes Latent Variable Model (GPLVM)-based
inverse solution (GPLVMIS) instead of GP-based GPIS is provided with the inputs and outputs of
GPIS reversed. The experimental results demonstrate the effectiveness of the proposed GPLVM-VARS
in terms of accuracy and complexity. The source code of the proposed GPLVM-VARS is available at
https://github.com/XinweiJiang/GPLVM-VARS.

Keywords: production optimization; history matching; reservoir simulation; proxy model; gaussian process

1. Introduction

As a well-known inverse problem in reservoir simulation, History Matching is significant for
reservoir development, management and predictions, which tries to estimate the uncertain parameters
(such as porosity and permeability) of a reservoir numerical model based on observed historical
production data (such as well rates and pressure) [1–3]. Theoretically, simulated reservoirs models
with unknown parameters are calibrated by minimizing the misfits between the simulated and history
data, which can be used to forecast the reservoirs production and provide support decisions under
different operating conditions and in different production stages. As the reservoirs become large
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and heterogeneous, the highly nonlinear reservoirs models must be elaborate with numerous grid
blocks and reservoir parameters, which brings enormous computational burden and complexity for
the numerical optimization [4].

To address the issue, Assisted History Matching (AHM) techniques have been proposed to
replace labor-intensive and costly manual history matching [1,4–6]. Roughly, these methods for
assisted history matching can be divided into two categories [7]: the data assimilation approaches
(such as Ensemble Kalman Filter and Ensemble Smoother) and the optimization approaches (such as
gradient, evolutionary or data-driven-based algorithms). Ensemble Kalman Filter (EnKF) and
Ensemble Smoother (ES) are representative methods for data assimilation [8]. For example, EnKF is a
sequential Monte Carlo approximation of the Kalman filter where the correlation between reservoir
parameters and observed production data can be estimated from the ensemble with the uncertainty of
estimation [9]. EnKF can efficiently assimilate various types of data to optimize numerous reservoir
parameters, but it could fail if there are multimodal nonlinear data or discrete reservoir parameters.
To address the limitations, various EnKF extensions were developed through localization, ensemble
design scheme and clustering methods, etc. [8,10]. In contrast to the iterative process of EnKF, ES could
simultaneously assimilate all the production data in a global update, which is much faster than
EnKF [11]. Different extensions of ES such as iterative ES, and ES with Multiple Data Assimilation
(ES-MDA) had also been developed to boost the performance of data assimilation approaches [12].

Alternatively, the optimization methods for AHM had attracted people’s great attention
because history matching as an inverse problem can be naturally regarded as an optimization
routine. For example, the gradients-based AHM models (such as Newton’s method, Gauss-Newton,
Quasi-Newton, gradient descent and conjugate gradient, etc.) [13,14] have been widely adopted
to handle the history matching problems due to the advantages of high computational efficiency
and fast convergence. However, the objective function must be continuous and differentiable
which could be unfeasible for some reservoirs. Additionally, the solutions are prone to be the
local optimum to the initialization. To address the issues, global optimization techniques based
on Evolutionary Algorithms (EAs) had been introduced for AHM such as genetic algorithms,
differential evolution and particle swarm optimization, because of their easy application to various
problems without special assumptions [15–17]. In the framework of EAs, the objective function can be
formulated as a single-objective function or as a multi-objective function, which could be effectively
optimized even when there are discrete reservoir parameters, highly non-Gaussian distributed data, or
non-differentiable objective functions. In contrast to the gradient-based models where a single solution
is provided with the tendency to get stuck in local optimum, multiple solutions can be obtained from
EAs-based methods which also means that global optimum could be obtained. However, EAs are
slowly converging especially for large-scale reservoir numerical models.

Recently, the data-driven-based AHM models have been proposed with the rapid development
of machine learning techniques [18–20]. The past decade has witnessed various proxy models
for AHM based on machine learning algorithms. For example, Principal Component Analysis
(PCA) [21,22], Artificial Neural Network (ANN) [23–25], Deep Learning (DL) [12,26,27], Support Vector
Machine (SVM) [28] and Gaussian Process (GP) [7,29] have been introduced to replace computationally
intensive numerical simulators. Optimization-based PCA and two-dimensional PCA were applied
to characterize the channelized geological models [21,22], but they could fail when dealing with the
complex and nonlinear channelized structures in some geological models although kernel tricks can be
adopted. By contrast, Neural network-based proxy models like ANN [23–25], Stacked Autoencoder
and Convolutional Neural Networks [12,26,27] are capable of handling highly nonlinear structure
in the channelized reservoir models, but the network architecture and parameters are difficult to be
tuned properly. Alternatively, the SVM and GP-based proxy models [28,29] could be more flexible
than PCA, ANN and DL. From the perspective of machine learning models, these proxy models can be
classified as parametric and nonparametric methods. Parametric models such as PCA, ANN, and DL
are expressed by some finite set of parameters with specific model hypothesis where the parameters
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capture everything from the observed data, while infinite parameters typically defined by functions
are used in nonparametric methods with a few hyperparameters such as SVM and GP, which are
typically more flexible than parametric models.

Compared to typical parametric model ANN and nonparametric method SVM, GP is
a probabilistic and nonparametric model in Bayesian learning framework, which naturally provides
soft prediction with confidence interval and only has few hyperparameters in covariance function
to be automatically optimized. Thus, applying GP is easy for AHM without manually parameters
tuning. Hamdi et al. [7] first introduced GP for history matching with single GP as the proxy model
plus Expected Improvement based Bayesian optimization, and they concluded that the covariance
function Matern class 3 provided the best results for some history matching problems according to the
sensitivity analysis regarding various covariance functions. Sachin Rana et al. [29] further proposed
the GP proxy models and Variogram Analysis of Response Surface (GP-VARS) by making use of two
GPs to obtain forward (GPFS) and inverse (GPIS) solutions to improve the performance of a single
GP-based proxy models for AHM where Empirical Bayes approach [30] was employed to choose and
optimize the covariance function for any given data automatically. In addition, a novel application of
Variogram Analysis of Response Surface (VARS)-based sensitivity analysis was introduced to calculate
corresponding global relative sensitivity indices without the evaluation of one-dimensional variograms
for each input parameter and higher-dimensional variograms.

Although GP-VARS provided convincing experimental results, the inverse GP models (GPIS)
in GP-VARS where the inputs are the expected small misfit values and outputs are the uncertain
reservoir parameters could be inappropriate, because the mapping function modeled by GPIS tries
to nonlinearly transform the low-dimensional inputs (expected misfit values) to high-dimensional
outputs (uncertain reservoir parameters), which is very challenging especially when the parameters
are of high dimensionality.

To address the issue, motivated by the Gaussian Process Latent Variable Model (GPLVM) [31] for
dimensionality reduction, we propose the GP proxy models with Latent Variable Model and Variogram
Analysis of Response Surface (GPLVM-VARS) in this research, where the key idea is to make use of
GPLVM to replace the inverse GP in GP-VARS. For the GPLVM-based inverse solutions (GPLVMIS),
the inputs and outputs are reversed compared to original GPIS. Specifically, the inputs become the
high-dimensional uncertain reservoir parameters and outputs are the expected small misfit values
with low dimensionality, which could be more reasonable and accurate. The main contributions of this
paper are two-fold: (1) With the novel inverse model GPLVMIS, GPLVM-VARS is proposed which
could outperform GP-VARS in terms of accuracy and complexity. (2) Experiments conducted on a
synthetic data and the well-known PUNQ-S3 case demonstrate the effectiveness of the proposed
GPLVM-VARS.

The rest of the paper is organized as follows. In Section 2, we introduced the proposed
GPLVM-VARS for AHM. Then, the cases study based on synthetic data and PUNQ-S3 reservoir
are adopted to evaluate the performance of the newly proposed algorithm in Section 3 followed by
discussions in Section 4. Finally, the concluding remarks and comments will be given in Section 5.

2. Materials and Methods

To address the limitations of GP-VARS especially the unsatisfactory performance of the embedded
inverse model GPIS, we introduce the proposed GPLVM-VARS for AHM with the flowchart displayed
in Figure 1, which also includes two GP-based forward and inverse models. Actually, it is similar to
GP-VARS with the only difference in the GPLVM-based Inverse Solution (GPLVMIS). Except GPLVMIS,
other modules are similar to GP-VARS with an iterative optimization process where some initial
random set of reservoir parameters are initially generated by Latin hypercube sampling technique
and then the temporary (or proposal) solutions in each iteration are estimated to minimize the misfits
between the GPFS-based proxy model response and historical production data [29].
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Figure 1. Flowchart of the proposed GPLVM-VARS for assisted history matching.

The objective functions which quantitatively measures the misfit values between the simulated
output and history data are similarly defined by the Local Misfit Value (LMV) and Global Misfit Value
(GMV) as follows

LMV =

Npt

∑
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where Npt is the number of samples, Nl is the number of LMVs, LMVi is the i-th LVM, f s
i and f t

i are
the the simulated output and target historical data, respectively. As can be seen from Equation (1) that
LMV is an asymmetric objective function consisting of positive or negative Root Mean Squared Error
(RMSE), and GMV is the mean of absolute values of all the LMVs.

2.1. Forward GP Model (GPFS)

As can be seen from Figure 2 the inputs and outputs of the GP proxy model in GPFS are
the samples regarding the reservoir parameters and LMVs based on the simulated and target
data, respectively. According to original GP-VARS there are some pre-processing steps based on
normalization and standardization for the inputs and outputs data to rescale all the data to mean
zero within the ranges of [0–1]. Then, instead of manually choosing optimal covariance function for
GP, Empirical Bayes approach is employed to automatically select the best covariance function and
optimize the corresponding hyperparameters.
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Figure 2. Flowchart of the GPFS for assisted history matching.

Specifically, given the pre-processed D-dimensional inputs reservoir parameters X = [x1, ..., xN ] ⊂
RD×N and the corresponding outputs LVMs denoted by Y = [y1, ..., yN ] ⊂ RC×N with N denoting
the number of the samples. For the sake of convenience, we will simply assume the outputs LVMs are
scalar (C = 1). In the classical Gaussian Process Regression (GPR) [32] model, each output variable
yn is assumed to be sampled from the unknown latent function f with independent Gaussian noise
y = f (x) + ε where ε ∼ N (0, σ2) is with zero mean and covariance σ2, leading to the likelihood
P(Y|X, f , σ) = N (y| f , σ2 I). The unknown latent function f is expressed by a zero-mean GP prior
P( f |X) = N ( f |0, K) where the covariance matrix K is defined on the input space with a few
hyperparameters θ.

With Bayesian equation, we can obtain the posterior distribution over the unknown function f in
Equation (3) as follows,

P( f |Y, X, θ) =
P(Y|X, f , θ)P( f |X)

P(Y|X, θ)
(3)

where P(Y|X, θ) = N (Y|0, K+ σ2 I) is the marginal likelihood by integrating out the unknown function
f , which can then be maximized regarding the hyperparameters θ = {σ, γ} in the covariance function.

The objective function regarding the GPR optimization becomes

argmax
θ

log(P(Y|X, θ)) = argmax
θ

−1
2
(YK−1YT + log |K|+ n log 2π) (4)

and Equation (4) can be optimized by gradient-based algorithms.
To conduct prediction based on the learnt GPR, the predictive distribution conditioned on the

given observation data for a new testing sample x∗ can be formulated in Equation (5) based on Bayesian
framework as follows,

g∗|x∗, X, Y ∼N (Kx∗X(KXX + σ2I)−1YT ,

Kx∗x∗ − Kx∗X(KXX + σ2I)−1KXx∗) (5)

where KXX, Kx∗x∗ , Kx∗X and KXx∗ are the matrices of the covariance function values at the
corresponding samples X and/or x∗ with the learnt hyperparameters.

For GPFS, the optimal covariance function is automatically chosen from a set of covariance
functions listed in Table 1 in [29] based on Empirical Bayes. Specifically, there are five single
covariance functions including Cov1(Squared Exponential), Cov2(Matern Anisotropic), Cov3(Matern
Isotropic), Cov4(Neural Network), Cov5(Rational Quadratic) and four combined covariance functions
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Cov6(Cov1*Cov3), Cov7(Cov1*Cov2), Cov8(Cov1*Cov4) and Cov9(Cov1+Cov4). To automatically
pick the optimal covariance function, the one which provides the lowest value of negative log marginal
likelihood regarding Equation (4) is picked as the covariance function for the final GPFS model.

2.2. Vars-Based Sensitivity Analysis and Bayesian Optimization

Sensitivity analysis is typically employed to discover unimportant reservoir parameters that
have a very small contribution to history matching models so that computational cost can be reduced.
For a fair comparison, we similarly make use of the VARS-based sensitivity analysis in GP-VARS.
Specifically, for D-dimensional input reservoir parameters x and scalar output y, the D−dimensional
directional variogram is measured by Equation (6) as follows,

γ
(

hlag

)
= (1/2)V

(
y
(

x + hlag

)
− y(x)

)
(6)

where hlag = [hlag1 , . . . , hlagD ] is the D−dimensional lag vector and V is the variance of output y.
Based on Variogram Analysis of Response Surface (VARS) [33], Sachin Rana et al. [29] tried to

evaluate one dimensional variogram for each parameter while keeping the other parameters fixed
to decrease the computational cost for the Integrated Variogram Across Range of Scales (IVARS) in
GP-VARS. To further analyze the interaction terms, one-dimensional variogram is evaluated five times
for a parameter while keeping all the other parameters at different values to cover the full range of
response surface. The VARS method with detailed procedure can be found in the Appendix A of [29].

For the GP-based AHM model, Bayesian optimization is used for the gradient-free global
optimization where there exists expensive black-box function, such as computationally intensive
numerical simulators. The criterion of Expected Improvement is adopted to choose the proposal
or temporary samples which could provide the maximum improvement in the objective functions
regarding LMVs. Similar to GP-VARS, the best 10 proposal samples are picked via the Expected
Improvement-based Bayesian optimization throughout the paper.

2.3. Inverse GPLVM Model (GPLVMIS)

For the GPIS in GP-VARS where the inputs and outputs of the inverse GP model are the misfit
values (i.e., LMVs) and uncertain reservoir parameters respectively, it could be inappropriate and
inefficient because independent GPRs are employed to nonlinearly transform the low-dimensional
inputs (IVMs) to high-dimensional outputs (uncertain reservoir parameters), which could be very
challenging as displayed in Figure 3a. Compared to GPIS, in the proposed GPLVM-based inverse model
(GPLVMIS) the inputs and outputs in original GPIS are reversed, and the nonlinear mapping from
high-dimensional reservoir parameters to low-dimensional LVMs is modeled by GPLVM as displayed
in Figure 3b.

1 Sample of 
Reservoir

Parameters
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Inverse Model

LVMs

(a) GPIS

LVMs
GPLVMs based 
Inverse Model

Samples of 
Reservoir

Parameters
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Optimization 

being Xo

Model X=[Xo, x*] and 
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(c) Flowchart of GPLVMIS

Figure 3. The comparison of GPIS (a) and GPLVMIS (b) with the flowchart of GPLVMIS in detail (c).
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Originally, GPLVM is used to conduct unsupervised dimensionality reduction, where the observed
data are assumed to be the outputs of GPR with unknown inputs to be optimized which are typically
termed by latent variables [31]. GPLVM is a natural inverse model, and we believe that it could be
more efficient than GPR in GPIS for AHM.

Given the temporary reservoir parameters Xo = [x1, ..., xN ] ⊂ RD×N and the corresponding
outputs LVMs denoted by Yo = [y1, ..., yN ] ⊂ RC×N , similar to GPIS our goal is to obtain one proposal
sample x∗ of reservoir parameters corresponding to an expected very low LVMs y∗, we make use
of GPLVM/GP to model the unknown mapping from the updated input X = [Xo, x∗] to output
Y = [Yo, y∗] as follows,

p(Y|X, θ) =
C

∏
i=1

1

(2π)
C(N+1)

2 |K| C2
exp

(
−1

2
yi,:K

−1yT
i,:

)
(7)

where yi,: corresponds to the i-th row of matrix Y, and the covariance matrix K in Equation (7) is
defined on the input X with a few hyperparameters θ.

The objective function regarding the GPLVM optimization becomes

argmax
x∗ ,θ

log(P(Y|X, θ)) = argmax
x∗ ,θ

{
−C(N + 1)

2
log(2π)− C

2
log |K| − 1

2
tr(K−1YTY)

}
(8)

where only one latent variable x∗ in Equation (8) should be optimized rather than the whole latent
variables X in original GPLVM.

To make the optimization algorithm smooth, as displayed in Figure 3c we simply reset Xo in X to
original values in each iteration. For the initial value setting regarding x∗, instead of random value we
try to initialize it to be the existing parameters which correspond to the minimum Euclidean distance
between the existing LVMs Yo and the expected very low LVM y∗ based on Nearest Neighbor (NN)
method, which implicitly means that the best reservoir parameters regarding the lowest LVM in the
previous iteration will be the initial value of x∗. Similarly the gradients-based algorithms can be used
to optimize the objective function of GPLVM regarding the proposal sample x∗.

Compared to GPIS in GP-VARS [29] where GPs are employed to model the mapping from
low-dimensional LVMs to high-dimensional reservoir parameters, we reverse the inputs and outputs
of GPIS in the proposed GPLVMIS. It turns out that the GPLVM-based inverse model can be more
efficient and reasonable than GP-based inverse model, because GPLVMIS is consistent with the
direction of projection of GP-based proxy model in GPFS. Also, the proposed GPLVMIS outperforms
GPIS in terms of model complexity. Only one gradient-based optimization is required in GPLVMIS to
obtain the inverse temporary solutions x∗, while GPIS needs D (the number of reservoir parameters)
gradient-based algorithms corresponding to optimizing D GPs.

3. Results

In this section, we verify the proposed GPLVM-VARS in a synthetic dataset provided in [29] and
the well-known PUNQ-S3 case to demonstrate the advantages of GPLVM-VARS in terms of accuracy
and complexity.

3.1. Synthetic Data

There are two synthetic examples provided in [29] to verify the GP-based AHM models.
To objectively compare the proposed GPLVM-VARS with GP-VARS, we make use of the second
example in the source code of GP-VARS, which is more challenging than the first example. The
function is defined in Equation (9), which is the benchmark ’Multi-modal optimization function’ called
Rastrigin function. In this case, the input vector x is 2-dimensional which ranges from 0 to 5.12, and
the target value is 33.94. The task is to tune input vector x in such a way that the output is approximate
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to the target value. To make fair comparison, we run the experiment ten times and the best results are
reported in the following.

f (x) = 10d +
d

∑
i=1

[
x2

i − 10 cos (2πxi)
]

(9)

As can be seen from Figure 4, the proposed GPLVM-VARS outperforms GP-VARS significantly
in terms of the regression value R. In addition, we also compare the time complexity of the two
models. With Intel E3 1240-V2 CPU plus 16G memory and MATLAB 2015b in Windows 7 64-bit
platform, it takes 465.3 s to optimize GPLVM-VARS compared to 1413.9 s to optimize GP-VARS, which
demonstrates the effectiveness of the proposed GPLVM-VARS.
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Figure 4. The comparison of model performance in the synthetic data with the left (a)
and right (b) figures corresponding to regression results from GP-VARS and the proposed
GPLVM-VARS, respectively.

3.2. Punq-S3 Reservoir

PUNQ-S3 reservoir (https://www.imperial.ac.uk/earth-science/research/research-groups/
perm/standard-models/) is a 5-layer heterogeneous reservoir model based on a real-world field
operated by Elf Exploration and Production Company [34,35]. The medium-sized synthetic model
consisting of 19 × 28 × 5 grid blocks (180 m × 180 m) of which 1761 are active has been widely
employed to evaluate the performance of AHM models. As can be seen from Figure 5 that there exist
two faults in the east and south, plus the strong aquifers in the north and west. Six vertical production
wells (PRO-1, PRO-4, PRO-5, PRO-11, PRO-12, and PRO-15) are located near the initial gas–oil contact
area, where wells PRO-1, PRO-4 and PRO-12 are perforated in layers 4 plus 5, wells PRO-5 and PRO-11
are perforated in layers 3 plus 4, and well PRO-15 is only perforated in layer 4. Also, there is a small
gas cap in the first layer and in the center of the dome shaped structure. To avoid the gas production
from the gas cap, no well has been perforated in the first layer.

https://www.imperial.ac.uk/earth-science/research/research-groups/perm/standard-models/
https://www.imperial.ac.uk/earth-science/research/research-groups/perm/standard-models/
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Figure 5. The top structure of PUNQ-S3 with wells.

The unknown parameters in PUNQ-S3 are the horizontal and vertical permeability as well
as porosity. The Gaussian Random Field-based geo-statistical model is first used to generate the
permeability and porosity fields independently for each of the five layers, and then the reservoir
simulator Eclipse is used to generate eight years’ production data with Gaussian noise explicitly
accounting for measurement errors. Finally, only the eight years of the generated production data
to be the history observations are adopted for AHM which include Well Water Cut (WWCT), Well
Gas–Oil Ratio (WGOR), and Well Bottom Hole Pressure (WBHP) indices. The total production period
is approximately 6000 days, and in our experiments we select the production data from the first 4000
days as the training data to optimize the unknown reservoir parameters with production data WWCT,
WGOR and WBHP, and then the data for the remaining 2000 days to be the testing samples are used to
verify the optimized AHM model.

There are 2660 uncertain parameters to be optimized in PUNQ-S3. Even some parameters
reduction techniques are employed, the number of parameters could be large as well. For example,
in [29] each layer can be divided into 9 different homogeneous regions, giving rise to 45 regions for
5 layers and a total of 135 parameters. By contrast, there are 24 LMVs used in GP-VARS. In this
case, based on GPIS where the inputs and outputs are LMVs and uncertain parameters, respectively,
135 independent GPs should be learnt which is very time-consuming. On the contrary, in the proposed
GPLVMIS where the inputs and outputs are uncertain parameters and LMVs, respectively, there is
only one GPLVM needed to be optimized. However, to be consistent with the GP-VARS code we still
use 24 (the number of LMVs) GPLVMs in our code. If the number of LVMs can be further reduced,
the optimization time for GPLVMIS could be significantly reduced.

In the first experiment, we compare the proposed GPLVM-VARS with GP-VARS in terms of Global
Misfit Value (GMV) in each iteration. It can be seen from Figure 6 that as the number of iterations
grows, the GMVs based on the proposed GPLVM-VARS decrease significantly especially in the initial
stage, and could converge to relatively small misfit values compared to GP-VARS.
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Figure 6. The comparison of GMVs based on GP-VARS and GPLVM-VARS.

In the second experiment, the GMVs regarding 11 proposal samples in each GP-VARS and
GPLVM-VARS iteration are depicted in Figure 7, where Bayesian optimization-based GPIS provides
10 samples, GPIS and GPLVMIS-based optimizations give 1 sample for GP-VARS and GPLVM-VARS,
respectively. It must be highlighted that the there are relatively smaller GMVs for the proposal sample
from the proposed inverse model GPLVMIS than that from GPIS in GP-VARS especially in the initial
stages, which also means that the proposed GPLVM-VARS could converge faster than GP-VARS.
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Figure 7. The visualization of 11 proposal samples from GP-VARS and GPLVM-VARS.

In the third experiment, the overall comparison for all the six wells with 4000 days’ production
data as the training data and the remaining 2000 days’ data as the testing data. As can be seen from
Figures 8–10 that proposed GPLVM-VARS outperforms GP-VARS in terms of the prediction errors
especially for the WWCT matches in wells in Pro1, Pro4 and Pro5, plus WGOR and WBHP matches in
well Pro1.
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Figure 8. Comparison of WWCT with 4000 training and 2000 testing data for six wells (the black
vertical line indicating present day).
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Figure 9. Comparison of WGOR with 4000 training and 2000 testing data for six wells (the black
vertical line indicating present day).
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Figure 10. Comparison of WBHP with 4000 training and 2000 testing data for six wells (the black
vertical line indicating present day).

4. Discussion

Compared to GP-based AHM [7], GP-VARS [29] introduced the extra GPIS to model the
probability distribution of non-unique solutions. Furthermore, in the proposed GPLVM-VARS,
GPLVMIS instead of GPIS is developed to further improve the performance of GP-VARS. The inverse
mapping from low-dimensional LVMs to high-dimensional uncertain reservoir parameters is modeled
by GPLVM rather than GPR, and the reservoir parameters with high dimensionality can be efficiently
learnt by GPLVMIS which could improve the performance of GPIS as discussed in GP-VARS. As can
be seen from the experiments that the proposed GPLVM-VARS is superior to recently developed
GP-VARS in terms of accuracy and time complexity.

Compared to the parametric methods-based proxy models such as PCA, ANN and DL,
the advantages of the proposed GPLVM-VARS lies in the capability of fitting nonlinear structure in the
channelized reservoir models without time-consuming parameters tuning. All the hyperparameters in
GPLVM-VARS including the type of the covariance function can be determined automatically, which
could efficiently generalize to real-world reservoirs.

For the drawbacks of the proposed model, as the GP proxy models in GPLVM-VARS as well
as GP-VARS suffer from the curse of dimensionality, the number of reservoir parameters has to be
restricted up to 100. In addition to typical method like zonation and K-SVD, the semi-parametric
model [36] could be promising which could simultaneously perform dimensionality reduction
and regression. It is straightforward that the linear transformation in PCA which projects the
high-dimensional reservoir parameters to low-dimensional latent variables can be employed to
simultaneously perform dimensionality reduction and history matching.

Another issue that should be concerned about is the complexity of VARS in GP-VARS and
the proposed GPLVM-VARS. AS the VARS-based sensitivity analysis is employed to evaluate
one-dimensional variograms for each input parameter and the corresponding global relative sensitivity
indices. However, the one variable at a time strategy in VARS brings high computational complexity
especially when the number of reservoir parameters is large. Besides dimensionality reduction-based
approaches, more efficient sensitivity analysis methods are expected. A possible simplification to
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improve the efficiency of VARS is to independently evaluate one dimensional variograms for each
input parameter without keeping all the other parameters at different values to cover the full range of
response surface.

5. Conclusions

In this paper, we propose a novel proxy model for AHM termed GPLVM-VARS, which is
motivated by GP-VARS to similarly use GP-based proxy model to find the forward and inverse
solutions. To improve the unsatisfactory performance of the inverse model GPIS as stated in GP-VARS,
we propose a new inverse model termed GPLVMIS, where the inputs regarding LVMs and outputs
regarding reservoir parameters modeled by GP in GPIS are reversed. Given the high-dimensional
reservoir parameters and low-dimensional LVMs, the proposed GPLVMIS could be more efficient than
GPIS, giving rise to better inverse solutions. The experimental results in synthetic and PUNQ-S3 data
demonstrate that the proposed GPLVM-VARS outperforms GP-VARS in terms of regression accuracy
and model complexity.
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