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Abstract: The forecasting of monthly seasonal streamflow time series is an important issue for
countries where hydroelectric plants contribute significantly to electric power generation. The main
step in the planning of the electric sector’s operation is to predict such series to anticipate behaviors
and issues. In general, several proposals of the literature focus just on the determination of the best
forecasting models. However, the correct selection of input variables is an essential step for the
forecasting accuracy, which in a univariate model is given by the lags of the time series to forecast.
This task can be solved by variable selection methods since the performance of the predictors is
directly related to this stage. In the present study, we investigate the performances of linear and
non-linear filters, wrappers, and bio-inspired metaheuristics, totaling ten approaches. The addressed
predictors are the extreme learning machine neural networks, representing the non-linear approaches,
and the autoregressive linear models, from the Box and Jenkins methodology. The computational
results regarding five series from hydroelectric plants indicate that the wrapper methodology is
adequate for the non-linear method, and the linear approaches are better adjusted using filters.
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1. Introduction

An essential task for countries where power generation is done using hydroelectric plants is the
monthly seasonal streamflow series forecasting. This step is directly related to energetic planning,
water availability, and pricing strategies. The last Hydropower Status Report from the International
Hydropower Association reported that 4306 TWh of electricity was generated in the world employing
hydroelectric plants in 2019, corresponding to a 2.5% annual increase [1]. This amount represents the
single most significant contribution from a renewable energy source in history. The report addresses
data from 13,000 stations in 150 countries. The leaders in hydropower installed capacity are China
(356.40 GW), Brazil (109.06 GW), United States (102.75 GW), and Canada (81.39 GW). These figures also
provide an idea about the productive chain regarding such power source. It is clear that the correct
water management can bring substantial benefits in avoiding water or money waste [2].

Many researchers have addressed streamflow series tasks for different countries such as China,
Canada, Ecuador, Iraq, Mozambique, United States, Serbia, Norway, Turkey, Sri-Lanka, and Brazil [2–10].
It highlights the importance of the problem to the global economy. These series present a particular
seasonal component due to the periods of rainfall along the year, being non-stationary series [11,12].
However, most of such studies focus on determining just the best predictor, disregarding some other
essential steps of the whole process.

Identifying a system is a task influenced by factors, such as prior knowledge of its characteristics,
complexity, presence of noise, and performance metrics to be used [13,14]. The inputs must represent
the dynamics of the system, which helps in choosing a forecasting model that is appropriate to
the problem and is a fundamental step to obtain an efficient model for time series forecasting [15].
The structure of models also defined by the number of entries. For example, in the case of neural
networks, the number of inputs impacts the determination of their structure, since the more entries
there are, the more complex the neural network will be, as well as the more costly its training, without
a guarantee of a performance improvement [16]. Additionally, the number of inputs influences the
surface of the cost function, which tends to have more local minima [17,18].

Among potential benefits of inputs selection, we can mention the facilitation of visualization, data
understanding, order reduction, memory requirements, reduction in training time, and computational
effort [17].

Variable selection (VS) methods attempt to identify a subset of inputs that assist in forecasting,
pattern recognition, and data regression, playing a significant role in the accuracy of the forecasting
methods. Additionally, such approaches tend to simplify the final model, as well as to improve
the stability of responses, and eliminate redundant inputs [19]. Harrell [20] stated that VS could be
subjective because they use a conceptual understanding of the dependent variable to select independent
variables. Many times, a small number of inputs is recommended for prediction purposes [21]. Guyon
and Elisseeff [17] classified the selection methods as filters, wrappers, and embedded. We can also
mention a new category, the bio-inspired metaheuristics for optimization.

Many research fields have addressed the importance of variable selection to improve the accuracy
of models in different contexts, as presented in the works below:

• Li et al. [22]—to increase the estimation of growing stem volume of pine using optical images;
• Bonah et al. [23]—to quantitative tracking of foodborne pathogens;
• Xiong et al. [24]—to increase near-infrared spectroscopy quality;
• Speiser et al. [25]—an extensive investigation with 311 datasets to compare several random forest

VS methods for classification;
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• Rendall et al. [26]—extensive comparison of large scale data driven prediction methods based on
VS and machine learning;

• Marcjasz et al. [27]—to electricity price forecasting;
• Santi et al. [28]—to predict mathematics scores of students;
• Karim et al. [29]—to predict post-operative outcomes of cardiac surgery patients;
• Kim and Kang [30]—to faulty wafer detection in semiconductor manufacturing;
• Furmańczyk and Rejchel [31]—to high-dimensional binary classification problems;
• Fouad and Loáiciga [5]—to predict percentile flows using inflow duration curve and

regression models;
• Ata Tutkun and Kayhan Atilgan [32]—investigated VS models in Cox regression, a multivariate model;
• Mehmood et al. [33]—compared several VS approaches in partial least-squares regression tasks;
• McGee and Yaffee [34]—provided a study on short multivariate time series and many variations

of Least Absolute Shrinkage and Selection Operator (LASSO) for VS;
• Seo [35]—discussed the VS problem together with outlier detection, due to each input affecting

the regression task;
• Dong et al. [36]—to wind power generation prediction;
• Sigauke et al. [37]—presented a probabilistic hourly load forecasting framework based on additive

quantile regression models;
• Wang et al. [38]—to short-term wind speed forecasting;
• Taormina and Chau [39]—to rainfall-runoff modeling;
• Taormina et al. [40]—to river flow forecasting;
• Cui and Jiang [41]—to chaotic time series prediction;
• Silva et al. [42]—to predict the price of sugarcane derivatives;
• Siqueira et al. [12,43–45]—applied the partial autocorrelation function linear filter to streamflow

series forecasting;
• Siqueira et al. [2]—use of VS methods, such as wrappers and filters to predict streamflow series; and
• Kachba et al. [46]—application of wrapper and non-linear filters to estimate the impact of air

pollution on human health.

Despite these methodologies not being universal or equally useful in various fields, the presentation
of the studies above depicts the importance of variable selection for data processing in many different
contexts, methods, and tasks. In streamflow series forecasting from hydroelectric plants, this is even
more relevant due to the high magnitude of the energy generated. An increase of a single percentage
point in the accuracy of such predictions represents an enormous amount of electric power. However,
most of the literature focuses on the definition of the best forecasting model, neglecting a further
investigation on the impact in adopting distinct VS approaches.

To fill this gap, we analyzed the use of ten VS methods in the autoregressive (AR) model from the
Box and Jenkins methodology and the extreme learning machines neural network. The addressed
VS approaches are linear filters (two manners of using the partial autocorrelation function, PACF),
non-linear filters (three mutual information-based methods), wrappers (considering three evaluating
metrics), and bio-inspired metaheuristics (genetic algorithm and particle swarm optimization).

The remainder of this study is organized as follows: Section 2 presents the main content of the
variable selection procedure, as well as the main stages of the seasonal streamflow series forecasting;
Section 3 discusses the filters; Section 4 the wrapper; Section 5 the bio-inspired metaheuristics—genetic
algorithm and particle swarm optimization (PSO); Section 6 the case study, computational results, and
the performance analysis; and Section 7 presents the conclusions.
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2. Variable Selection

The variable selection methodologies can use information available a priori, through empirical
tests of trial and error, or some information criterion. Puma-Villanueva et al. [47] describe a simple
example of how the general process works. Consider set V that represents the space of input variables,
here limited to 3. Thus, we define the vector of inputs V = [v1,v2,v3], with which it is possible to form
(23 – 1 = 7) subsets of inputs, as depicted in Table 1.

Table 1. Possible subsets for the input vector V.

Subsets Selected Inputs

1 v1
2 v2
3 v3
4 v1,v2
5 v1,v3
6 v2,v3
7 v1,v2,v3

The selection methods’ role is to define which of these subsets is the most appropriate to represent
the information in the data, possibly in contrast to the adoption of all inputs. In this case, selecting
variables is choosing the subset that allows the best forecast of future values of a time series, that is,

selecting the vector
¯

V ∈ <k among the possible combinations between the variables of
¯

V ∈ <l, such
that k ≤ l. This set represents the dependence structure of a stochastic process over time. In Table 1,
the goal of the VS methods is to choose one of seven possibilities.

Yu and Liu [48] present some criteria that relate to this procedure:

• Relevance: the concept associated with the importance of a given variable may have to the
problem, since the information it contains will be the basis of the selection process. The relevance
is strong or weak depending on how much its removal degrades the performance of the predictor;

• Redundancy: two or more variables are redundant if their observed values are highly correlated
or dependent. The level of this correlation reveals the degree of redundancy; and

• Optimality: a so-called optimal subset of input variables is when there is no other subset that
produces better results.

However, these characteristics, if combined, have no direct implication. For example, a relevant
variable does not mean that the optimal subset contains it. Likewise, the inputs that belong to the
optimal subset are not necessarily appropriate [47]. Guyon and Elisseeff [17] classify the VS models
into embedded, wrappers, and filters, each of them having its own advantages. The particularities for
a given problem indicate which method is most appropriate.

It is essential to point out a difference between the variables and feature selection.
The understanding of feature is linked to the idea of a set of inputs that is formed from a combination
of the original variables or the extraction of some essential characteristics. An example is principal
component analysis (PCA), which linearly combines the inputs [49]. Thus, there is a set of new
variables, which are in a new space. It differs from as, in this case, the subset is formed by those
variables of the original entries that do not undergo any type of transformation.

Variable Selection in Streamflow Series Forecasting

The predictions regarding the monthly seasonal streamflow series follow the stages shown in
Figure 1 (adapted from [2]):
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The first stage is data acquisition. Sensors are spread to measure the volume of water that passes
a transversal section of the rivers. Such water is that which moves the turbines of hydroelectric
plants. Due to the nature of the rivers, containing many recesses along their way, the measurement’s
uncertainty incidence is inevitable.

The second stage is the pre-processing, which can be summarized in two steps: (a) the application
of the deseasonalization procedure to remove the inherent seasonal component present in this kind of
series. The transformed data are stationary series, with zero mean and variance equal to one. For linear
models of the Box and Jenkins methodology, this step is mandatory, but some investigations have
shown that the performance of non-linear methods also increases with this procedure; (b) the input
selection step, to determine the lags that lead to the best performances of the predictors. The input
selection step is the focus of this investigation.

The next stage is the definition of the forecasting model. Undoubtedly, this is the most usual
theme addressed in streamflow series forecasting. Clearly, the definition of the adequate predictor is
crucial regarding the accuracy of the estimation of future samples.

The last stage is post-processing, which involves three procedures. After making predictions,
the output responses of the predictors are in the deseasonalized domain. Therefore, we reverse the
deseasonalization to allow a performance evaluation in the real domain. Then, a statistical test is
applied to verify if the results found by the various predictors are distinct, even if they present different
numeric values. Finally, the last step is performance analysis.

Despite the specialized literature on this series is related to the forecasting model, it is necessary
to elaborate a specific investigation focused on the input selection process due to the impact it presents
in the performance of such models. Determining the most suitable set of lags may lead to distinct
conclusions. Thus, this theme must be discussed.

3. Filters

The filter selection method is based only on the available data and does not depend on the
predictor model. The variables are chosen through linear or non-linear correlation measures between
the observations. The main advantage of this method is its generality, as it is not necessary to synthesize
the predictor, which tends to make it computationally efficient [17].

However, as this is a previous step, the optimal set of inputs may not be selected, since there is no
interaction with the forecasting model. Metrics based on dependency between samples can be useful,
but insufficient to ensure that the chosen set is the best possible. Therefore, we recommend using it for
problems with a large amount of available data because if the criterion of optimality is not met, the
computational cost should be worthwhile.

Figure 2 shows the scheme of the filter type method. Some of the inputs contained in the vector ut

will belong to vector u′t of smaller or equal dimension. The predictions are performed with u′t.
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3.1. Partial Autocorrelation Function

The partial autocorrelation function (PACF) is a widely used filter to identify the order of linear
models [11]. The definition of the partial correlation coefficient is directly related to autoregressive
models (AR) and the Yule–Walker equations.

The partial autocorrelation coefficient of order k is the last coefficient of an AR(k) model, adjusted
for a time series xt and denoted by ϕkk. This means that an AR process of order p is different from zero
to k less than or equal to p, and zero for k > p. Based on this assumption and using the Yule–Walker
equations, the relationship between the autocorrelation estimates of a time series in these terms obeys
the set of equations described in (1):

ρ j = ϕk1ρ j−1 + ϕk2ρ j−2 + . . .+ ϕk(k−1)ρ j−(k+1) + ϕkkρ j−k, j = 1, 2, . . . , k (1)

or, in a matrix form, we have (2) and (3):

Pkp =


1 ρ1 · · · ρp−1

ρ1 1 · · · ρp−2
...

...
...

ρp−1 ρp−2 · · · 1

,ρkp =


ρ1
ρ2
...
ρp

, Φkp =


ϕk1
ϕk2

...
ϕkp

, (2)

Φkp = P−1
kp ρkp. (3)

in which ρ are the coefficients of the autocorrelation [50].
Thus, the AR(p) model of order p = 1, 2, ..., k must be adjusted to find ϕkk. Expression (4) shows

the coefficients of the first two AR models:
AR(1): ρ1 = ϕ11ρ0

P1p = [ρ0], ρ1p = [ρ1], Φ1p = [ϕ11], (4)

being ϕ11 = ρ1 the first partial autocorrelation coefficient. Similarly, we have (5):

AR(2):

∣∣∣∣∣∣ ρ1 = ϕ11ρ0 + ϕ22ρ1

ρ2 = ϕ21ρ1 + ϕ22ρ0

P1p =

[
1 ρ1

ρ1 1

]
, ρ1p =

[
ρ1

ρ2

]
, Φ1p =

[
ϕ21

ϕ22

]
, (5)

Isolating ϕ21 and equating the equations, we have ϕ22 =
(
ρ2 − ρ2

1

)
/
(
1− ρ2

1

)
, the value admitted as

the second partial autocorrelation coefficient.
It is noteworthy that the autocorrelation coefficients ρp are problem-dependent. Then, the PACF

of a series can be estimated through successive adjustments of the autoregressive models, determining
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the most appropriate orders of an AR model. In practice, the AR(1) is adjusted, from where we estimate
the coefficient ϕ11. Following, we adjust the AR(2), and we have ϕ21 and ϕ22, the latter being of interest.
We continue in these systematic steps until the required k order is adjusted, from where the coefficients
come out the desired ϕkk.

For a time series, the highest order is sought such that all estimates ϕkk for k > p are not significant.
The order of the model is the value corresponding to the selected entry, that is, if the coefficients are
selected ϕ11 and ϕ55, lags 1 and 5 are part of the subset of inputs.

Quenouille [51] showed that for a AR(p) process, the coefficients ϕkk estimated for orders greater
than p have a Gaussian distribution with a mean equal to zero, variance equal to VAR[ϕkk] � 1/N,
being N the number of samples. Thus, the confidence threshold for the coefficients based on the
standard deviation is

∣∣∣ϕkk
∣∣∣ � 2/

√
N, considering that the estimate is different from zero in this interval.

However, the method can select non-consecutive delays as model inputs. For example,
if V = [v1,v2,v3,v4], it can select V = [v1, v4], which means that ϕ11 and ϕ44 were significant, while ϕ22

and ϕ33 are not. For hydrologic time series, Stedinger [52] states that it makes no sense that a given
sample is related to non-consecutive delays and that delays in a non-consecutive hydrological system
selected by the PACF have no physical meaning, proposing the suppression of these entries. According
to this work, some historical series have an autocorrelation structure relative to both the time between
observations and the observed period.

Taking as an example an AR(6) model, if PACF defines that only the inputs weighted by the
coefficients ϕ11 and ϕ44 are significant, the latter is considered as spurious data and must be discarded.
This means that intermediate values should not be considered. Siqueira et al. [2] used bootstrapping
techniques to evaluate the best order of periodic autoregressive models, and reached the same
conclusion as Stedinger, with similar orders for streamflow series.

Figure 3 is related to the calculation of the PACF of the monthly streamflow series from Furnas
hydroelectric plant, located in Brazil. The data used are from January. The horizontal line is the
confidence threshold calculated as a function of the standard deviation. Note that, with 12 delays, the
method selected lags 1, 5, and 7. If Stedinger’s proposal is taken into account, only delay 1 is chosen.
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Figure 3. Example of partial autocorrelation function.

The technique is implemented for the selection of inputs in linear simulation models by the
Brazilian National Electric System Operator [12].
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3.2. Mutual Information

The dependency between two variables is an essential step for selecting model inputs. In this
context, a reliable criterion belonging to the scope of information theory can be used, i.e. The mutual
information (MI) [53]. The MI is a metric that provides a measure of the degree of dependence between
variables; it reflects the amount of information that links them. This filter can be applied as a criterion
to select the inputs of forecasting models.

The definition of MI between two random variables can be interpreted as a measure of proximity
between the joint probability distribution of the variables x and y, and the product of their marginal
distributions. Mathematically, we have (6):

MI =
∫

fxy(x, y) log
(

fxy(x, y)

fx(x) fy(y)

)
dx dy, (6)

in which fxy(x, y) is the joint probability density function (PDF), and fx(x) and fy(y) are the respective
marginal density functions. The MI criterion presents zero as a result for independent variables, and
greater than zero otherwise. If a representative sample of the data is available, one can estimate (6)
using (7) [54]:

MI =
1
N

N∑
i=1

log
[

fxy(xi, yi)

fx(xi) fy(yi)

]
, (7)

where (xi, yi) is the i-th pair of data from the sample with size N, being i = 1, 2,..., N.
The difficulty in this case is to estimate the probabilities since the distributions are often unknown in

practice. Additionally, these estimates may require a large amount of data, which is not always available.
There are several ways to estimate PDFs in the literature. In this work, we use a non-parametric

approach based on kernel functions, the absolute distance, or city-block type, which have already
been applied in streamflow series forecasting [54]. The choice for this proposal is justified in terms of
computational simplicity and absence of data distribution type assumption.

Consider the input and output dataset [Xk, yk], being k = 1, 2,..., N. The approximation of the
probability densities of a one-dimensional x variable via non-parametric kernel estimators is given
by (8):

f̂x =
1

Nλ

N∑
i=1

K
[x− xi
λ

]
=

1
N

N∑
i=1

Kλ(x− xi), (8)

in which Kλ(t) is the kernel function, and λ the bandwidth or dispersion parameter.
Therefore, the marginal approximate probability density function of x is given by (9):

f̂x(x) =
1

N(2λ)p

N∑
i=1

exp

− 1
λ

p∑
i=1

∣∣∣x j − xi j
∣∣∣, (9)

with p being the dimension of x.
Equation (9) arises from (8) as a case adapted to multidimensional x, and using the city-block

function. The parameter λ is calculated by (10) [55]:

λ =

(
4

p + 2

) 1
(p+4)

N
−1

(p+4) . (10)

Finally, the joint probability of (x− y), the latter being a one-dimensional output, is as in (11) [56]:

f̂xy(x, y) =
1

N(λ)p+1

N∑
i=1

K
(x− x j

λ

)
K
( y− y j

λ

)
, (11)
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or as in (12)

f̂xy(x, y) =
1

N(λ)p+1

N∑
i=1

exp
(
−

1
λ

si

)
. (12)

Therefore, si is calculated by (13):

si =

p∑
j=1

∣∣∣x j − xi j
∣∣∣+ ∣∣∣y− y j

∣∣∣. (13)

An example that shows the approximation capability of this proposal is its use to build a bi-variable
Gaussian distribution function. This function is defined by (14):

fxy =
1

2πσxσy
√

1− ρ2
exp(−Γ) (14)

where:

Γ =
1
2

(
1− ρ2

) (x− µx)

σ2
x

+

(
y− µy

)
σ2

y
+ 2ρ

(x− µx)
(
y− µy

)
σ2

x σ
2
y

. (15)

with x and y being the variables used, µx and µy their respective averages, σx and σy the standard
deviations, and ρ the correlation coefficient between them.

To exemplify the approximation capability using the city-block function, we generate 2000 samples
of x and y with normal distribution and zero mean. With Equation (14), it is possible to plot fxy,
represented graphically in Figure 4a together with its diagram in contour lines (Figure 4b). In parallel,
we present the approximations using the city-block kernel function of (13) in Figure 4c,d. The proximity
of the curves is clear, which illustrates how this function approximates the distributions. The correlation
coefficient between them is 0.9932, although the circles are not perfectly concentric.
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The final step in applying the MI filter is to define a confidence threshold that determines if an
input belongs to the selected subset of explanatory variables. One possibility is to establish a minimum
value for the MI and reject entries with a lower MI score. Another option is to use a bootstrapping
or resampling technique to test the hypothesis of independence between x and y. For this, several
sequences other than x in relation to y are built, in which the independent variable is reordered, and
a vector of MIs is obtained. If this value surpasses the threshold at a given level of significance α, x
and y are considered dependent. Thus, an input variable x is identified [57]. This work adopts the
latter approach.

The example in Figure 5 refers to the calculation of the MI coefficients related to Furnas hydroelectric
plant streamflow series. As in Figure 3, the samples are from January. In this case, we adopted p = 100
sequences and α = 5%, and the respective MI values calculated. For 12 lags initially considered as
possible explanatory variables, the selected ones are lags 1, 8, and 9.
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3.3. Partial Mutual Information

The MI criterion appears advantageous due to the non-parametric nature on identifying
explanatory variables, regardless of the model’s nature to adjust afterward. Notwithstanding,
two or more explanatory variables may be highly correlated; thus the choice of those variables
would insert redundancy and an unnecessary increase in the complexity of the model. It may occur
because the criterion does not perform a joint evaluation of the whole set of potential input variables.
One way to deal with this is the proposal of [58], who reformulates the MI into what is known as
the partial mutual information criterion (PMI). The PMI criterion measures the mutual information
between the independent variable x and the dependent variable y, conditioned to a set of inputs z
previously selected.

Consider that this set z exists. Next, it is necessary to extract the influence of this set concerning
the other potential inputs evaluated yet, to calculate their real contribution, a different from the one
already given by z. Thus, following Luna et al. [54] and Sharma [58], Equation (7) can be reformulated
as (16):

PMI =
1
N

N∑
i=1

loge

 fx′y′
(
x′i , y′i

)
fx′

(
x′i

)
fy′

(
y′i

)  (16)

where x′ = x− E(x |z ) and y′ = y− E(y |z ).
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Here, x′ and y′ denote the residuals of x and y, respectively, after removing the conditional
expectations given z, E(x |z ) and E(y |z ). With this transformation, x′ and y′ can be interpreted as
remaining information in both variables: what is yet different from the information in z; and what has
not been explained yet from y.

Several approaches have been proposed for estimating expected means [58–60]. We opted
for simplicity by following the non-parametric approach based on kernel regressions by using the
Nadaraya–Watson estimator [61]. According to this, given two variables a and b, a general expected
value E(a|b ) is defined by (17):

r̂(a) =
N∑

i=1

wλa(a, ai) bi (17)

where:

wλa(a, ai) =
Kλa(a− ai)

N∑
i=1

Kλa(a− ai)

. (18)

with Kλa(a− ai) denoting the kernel function for variable a. As before, we will use the city-block
function for this purpose.

Therefore, input selection, in this case, follows an iterative process. At the first iteration, MI scores
are calculated for every potential input variable previously defined. The first input selected is the one
with the higher MI score as long as its significance is validated, initiating z. In the following steps, PMI
scores are calculated for all the potential input variables, updating z at each iteration, until the higher
PMI is not statistically significant at all. The bootstrapping technique is once more used to verify the
PMI scores significance at a 5% level.

3.4. Normalization of Maximum Relevance and Minimum Common Redundancy Mutual Information

Some studies use the principles of mutual information, extending it in different directions to
increase the filers’ selection capability. The work from Che et al. [62] proposed to expand the MI
using the maximum relevance and minimum common redundancy (MRMCR) between the inputs of a
model (lags). This framework intends to determine the best set of inputs, controlling the redundancy
between them.

The first step of this method is to calculate the common redundancy to evaluate the inputs’
common information. Following, one must apply the normalization of maximum relevance and
minimum common redundancy (N-MRMCR-MI). The result presents values in the interval [0,1].

Let S be the subset of chosen inputs, and T the complementary non-selected group. Then, calculate
the common mutual information (CI), using (19):

CI(xi, S, y) = max
x j∈S

 MI(xi, x j)

max
[
MI(xi, x j), MI(xi, y), MI(x j, y)

] min
[
MI(xi, y), MI(x j, y)

], (19)

where i is the index of the variables in T, j the index of the inputs in S, and MI is the mutual information
(see (7)):

The complete application of N-MRMCR-MI procedure is according to the following stages [62]:
(1) Initialization: be T =

(
x1, x2, . . . , xp

)
the full set of inputs, and S = ∅ (empty);

(2) First input selection: calculate F(xi) using (20) for all i = 1, 2, . . . , p, and set the best on x∗i
applying (21):

F(xi) =
MI(xi, y)
MI(y, y)

, (20)

x∗i = argmax
i=1,2,...p

{
F(xi)

}
(21)
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(3) Update the groups: T = T −
{
x∗i

}
, and S =

{
x∗i

}
;

(4) Greedy selection: repeat steps 1 and 2 until the desired number of features is determined;
(5) Determine the N-MRMCR-MI considering the output variable using (22):

F(xi) =
MI(xi, y)
MI(y, y)

−
CI(xi, S, y)
MI(y, y)

, (22)

(6) Update T = T −
{
x∗i

}
, and S =

{
x∗i

}
;

(7) Output the subset S.
In this work, we again address the bootstrapping to calculate the confidence level [57], and the

city-block functions.

4. Wrappers

In the wrapper approach, the central aspect is the interaction between the variable selection
mechanism and the forecasting model [63]. Once the model has already been adjusted, the wrapper
will evaluate, through some performance criteria, each of the subsets to solve it [47]. However, the
computational cost involved is high, as the model needs to be adjusted for each candidate subset [64].
The literature recommends using this method for cases where the number of samples is reduced [17].
Figure 6 shows the scheme of the method.
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As shown in Figure 6, the operation of the wrapper is as follows: firstly, the set of entries ut is
divided into smaller subsets u′t ; next, the predictor is trained and executed for each of subset; after the
forecasting stage, we calculate a performance score from the evaluator block for each subset. The one
with the best value is used.

It is possible not to use the last predictor shown in Figure 6, if the result of each assessment is
stored. However, we presented the selection as a separate task of the forecasting process for the sake of
simplicity of understanding.

4.1. Progressive Selection

The computational cost of performing an exhaustive search of all possible subsets can be impractical
even a relatively small problem since the computational cost is factorial. A proposal to overcome
this problem is the wrapper using the progressive selection method. This methodology establishes a
manner to build subsets of entries considering each one individually.

The procedure initiates with an empty subset, and we compare each variable with all others.
The one presenting best performance measured by the evaluation function is selected, either to improve
the result or to least deterioration of this value. After choosing the first entry, fixed in the subset,
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the others are evaluated to ascend as the second entry. We repeat this procedure until the evaluation of
all V variables. The final subset is the one with the best overall result.

Figure 7 presents this idea, considering the Emborcação series, with the adjustment of an Extreme
learning machines neural network (ELM) with a fixed number of 20 neurons in the hidden layer, and a
maximum of 10 delays as input. As one can note, we selected three entries in this order: 4, 10, and
6, since this was the combination that had the lowest mean square error. In this case, it is noticeable
that the selected entries are not consecutive and that the increase in the number of inputs does not
necessarily improve performance.
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The number of subsets formed in this case is equal to the number V of inputs, and the number of
times the predictor needs training obeys V(V + 1)/2. In the example, above 55 ELMs were adjusted,
since V = 10.

It is also interesting to observe the behavior of the mean squared error (see Section 4.2) between
iterations 2 and 4 in Figure 7. When adding the lag v6, the error decreased, improving the value
of the objective function to be minimized. However, with the insertion of the variable v3, the error
increased. This behavior occurs because the search may fall in local minima, which can circumvent at
later iterations [47].

4.2. Evaluation Functions

After discussing how the wrapper method works, it is necessary to define a criterion for assessing
the quality of forecasting using the previously defined subsets. This step corresponds to the Evaluator
block in Figure 7.
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The most straightforward criterion is to use some error metric that, for each adjusted set, shows
the average of the differences between the desired and the predicted data. The proposal used by
Puma-Villanueva et al. [47] is the mean absolute error (MAE), given by (23):

MAE =
1

Ns

Ns∑
t=1

|xt − x̂t|, (23)

where xt is the desired sample in time t, x̂t is the prediction, and Ns the number of predicted samples.
Another possibility is to address the mean squared error (MSE), the most common metric used as

a cost function in the training of neural networks, and in the estimation of AR model parameters. This
metric is defined by (24):

MSE =
1

Ns

Ns∑
t=1

(xt − x̂t)
2. (24)

Note that these criteria only consider the final result of the adjustment, regardless of the number
of inputs. However, there are other types of evaluation functions seek to penalize the number of entries
in order to select parsimonious subsets regarding the number of inputs. Criteria widely used are based
on information measures [17].

Schwarz [65] proposed the Bayesian Information Criterion (BIC). It is based on linear correlation
metrics, and is linked to the optimal orders of the forecasting model, as defined in (25):

BIC = N loge

(
σ̂2

a

)
+ p loge(N). (25)

where N is the number of observations, p is the order or number of model entries and σ̂2
a is estimated

variance of white noise (or residue).
Thus, the wrapper chooses the set of inputs with the lowest BIC value. Similarly, the Akaike

Information Criterion (AIC) [66] is defined by (26):

AIC = N ln
(
σ̂2

a

)
+ 2p. (26)

In both cases, it is clear that there is a penalty concerning the number of entries so that the
inclusion of more inputs depends not only on the performance improvement but also on how much it
is increased. Thus, the selected subset must be efficient and parsimonious. The difference between the
criteria lies in the fact that the BIC penalizes the inclusion more strongly than the AIC. Observe the
BIC last term (25) is the natural logarithm of the number of observations, while the AIC (26) has a
multiplication of the order or number of model entries by 2.

5. Bio-Inspired Metaheuristics

Bio-inspired metaheuristics for optimization have been widely applied in VS tasks, especially
their binary versions. The genetic algorithm (GA) belongs to the field of evolutionary computation
because it is inspired by Darwinian natural selection. Another class of bio-inspired methods is the
swarm-based approaches, from which many algorithms were created. The main characteristic of this
class is the inspiration based on the collective behavior of groups of animals. Its primary representative
is the particle swarm optimization (PSO) [67]. Still, many other algorithms can be cited as artificial bee
colony, cat swarm optimization, fish school search, ant colony optimization, among others [68,69].

In this section, we briefly explain the two metaheuristics widely used in the literature for
optimization: genetic algorithm and particle swarm optimization. Both techniques simulate multiple
agents that evolve/adapt depending on the environment to find better solutions to one fitness
function. The flexibility, robustness, and scalability are key advantages of applying metaheuristics to
real problems.
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5.1. Genetic Algorithm

The genetic algorithm (GA) was introduced by John Holland [70], and the theory of natural
evolution inspires it. The population which adapts better to the environment circumstances perpetuates
the genes, reproducing other individuals with more likely useful genes. Therefore, GA has a population
of individuals that will pass into three processes: selection, crossover, and mutation to reproduce a
better population until an a priori constraint is reached. For the binary version, a vector of binary
values represents each individual of the population.

In summary, the GA starts generating an initial (generally random) population of individuals
with the respective fitness function of their genes. Until the population has not converged, the three
processes will be executed, and the fitness function will be updated when the genes are updated.
The first process, selection, chooses the individuals that will reproduce new individuals. Then, in the
following procedure, crossover, the adopted parents (two) will mix their genes to create a new offspring.
Thirdly, the mutation process randomly selects genes to be changed. In general, each process establishes
the number of individuals that will be updated. The algorithm is usually greedy (only allowing the
update of the new individuals that are better than the current ones).

5.2. Particle Swarm Optimization

Kennedy and Eberhart [67] developed particle swarm optimization (PSO). After two years,
the discrete or binary version of PSO was also published by them [71]. The PSO algorithm mimics
the behavior of a flock of birds where each bird is a candidate solution. Each candidate solution i
is represented by a position xi and a velocity vi. For the binary version, binary values represent the
position and the velocity is continuous values between 0 and 1.

In summary, PSO starts generating an initial (generally random) population of birds with their
respective fitness function. Then, until reaching a priori condition, all the birds update the velocity and
position. The update of the post (flip the position for binary optimization) is performed each time
that random value is higher (or smaller) than a transformation function of the velocity F(v) (such as
sigmoid or tangent sigmoid). Using the sigmoid function, we can express that the new position is
updated by:

xt+1
i =

 0 i f rand() ≥ F
(
vt+1

i

)
1 i f rand() < F

(
vt+1

i

) (27)

Moreover, the new velocity is calculated based on the current velocity, and the delta displacement
between the personal (pt

besti
) and global (gt

besti
) best positions. The pt

besti
is updated every time that

a particle finds a better position, and the gt
besti

is the best position between the neighbors’ particle
(defined a priori by the topology). The parameters c1 and c2 are a priori constants that define how
altruistic or selfish each particle is, and the parameters r1 and r2 are random values between 0 and 1.
Equation (28) shows the update process in the velocity:

vt+1
i = wxt

i + c1r1
(
pt

besti
− xt

i

)
+ c2r2

(
gt

besti
− xt

i

)
. (28)

Until the algorithm is converged, each particle updates the velocity and position. When the
position is updated, the fitness function is also updated.

6. Case Study

In this section, we summarize the computational results of the linear model and the Extreme
Learning Machines neural networks using the variable selection techniques discussed: filters, wrappers,
and bio-inspired metaheuristics. As discussed in Section 1, seasonal streamflow series forecasting is
essential for countries presenting hydroelectric plants to power generation. In the Brazilian case, 70%
of the electric energy is hydroelectric generated [72]. Additionally, this task is vital to optimize the
energetic planning [43–45,73].
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First, it is paramount to mention the adopted assumptions. We performed the simulations with a
maximum of 6 delays, following the literature [2,11,54]. We addressed two forecasting approaches: the
use of one predictor to the whole series, and the monthly approach, in which we adjusted 12 different
models, one for each month of the year.

Several investigations have shown that monthly streamflows present a seasonal behavior
throughout the year, being non-stationary series. Linear models cannot be directly applied, being
necessary to remove the seasonal component. In this work, we adopted the deseasonalization procedure
to transform the series into stationary, with zero mean and variance equals one [2]. The process is
reversed before the performance analysis. Equation (29) describes the deseasonalization procedure:

zi,m =
si,m − µ̂m

σ̂m
. (29)

where, sn is the original series formed by the samples si,m, which is transformed into a new series zn;
µ̂m is the monthly mean; σ̂m the monthly standard deviation; and the month m = 1, 2 . . . , 12.

The series addressed are related to five important Brazilian hydroelectric plants: Furnas,
Emborcação, Sobradinho, Agua Vermelha, and Passo Real. The datasets are available from 1931
to 2015, totaling 85 years or 1020 monthly samples. Each sample refers streamflow in m3/s. These data
are public, being available on the website of the National Operator of the Electric System (ONS) [74].
We separated each series on three groups:

• Training, from January 1st, 1931 to December 31st, 1995 (780 samples);
• Validation, from January 1st, 1996 to December 31st, 2005 (120 samples); and
• Test, from January 1st, 2006 to December 31st, 2015 (120 samples).

The mean and standard deviation of all series are available in Table 2. Note their distinct statistical
and consequent hydrological behavior, enabling a broader analysis of the results.

Table 2. Mean and standard deviation of each series.

Complete Series Test Set

Series Mean
(m3/s)

S. Deviation
(m3/s)

Mean
(m3/s)

S. Deviation
(m3/s)

Furnas 912.1225 613.5036 803.6833 611.6814
Emborcação 480.6578 360.3957 447.7333 355.7428
Sobradinho 2.6062 × 103 1.9412 × 103 1.9607 × 103 1.5001 × 103

Agua Vermelha 2.0773 × 103 1.2957 × 103 1.9635 × 103 1.2668 × 103

Passo Real 208.6216 169.7734 228.0083 167.1326

6.1. Predictors

In this section, we briefly describe the forecasting models used in this work. We consider
as predictors two methods: the autoregressive linear model (AR) from the Box and Jenkins
methodology [50], and the extreme learning machines neural network (ELM), as the nonlinear
representative. Note that when using the approach with 12 predictors, the linear method is called the
Periodic Autoregressive model (PAR).

The AR approach linearly weights p past values ut =
[
ut−1, ut−2, . . . , ut−p

]
of a time series to

provide a future response yt. Considering that the values of vector u are stationary, (30) explicates such
a process:

yt = ϕ1ut−1 + ϕ2ut−2 + . . .+ ϕput−p + at (30)

where ϕp are the free coefficients of the model.
A significant advantage of this method is the possibility of calculating its coefficients using a close

form approach named Yule–Walker equations. This means that, using the same set of inputs, the model
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always converges to the same output. This method guarantees the minimum MSE between the output
and the desired response.

The standard AR considers just one model to predict all values of the time series. However, it is
possible to extend the AR to series, which presents variations in its structure [75], using the periodic
autoregressive model (PAR). According to Hippel and McLeod [76], some historical series, such as
hydrological ones with seasonal behavior, present an autocorrelation structure linked to the time delay
between observations, and the observed period. In this sense, we can address one predictor for each
month, the core of the PAR model. For monthly streamflow forecasting, we use 12 predictors, each one
adjusted to predict the samples for each month [11].

The second forecasting model addressed is the extreme learning machine (ELM). ELMs are
feedforward neural networks like the traditional multilayer perceptron (MLP), with only one
intermediate layer. However, the training process differentiates them since the weights of the
neurons in the hidden layer are randomly and independently determined. The training process does
not adjust the weights of this layer, but only those of the output. The optimal values of the weights are
typically calculated analytically since the training involves solving a linear regression problem [77].
Thus, there is no need to calculate derivatives, back-propagate error signals, or use iterative algorithms,
which reduces the computational cost involved in the training process.

Bartlett [78] obtained an important theoretical result. The author proved that controlling the
norm of synaptic weights is more relevant in terms of the generalization capability of a neural model
than controlling the number of neurons in the middle layer. This leads to important evidence that
an improvement occurs when the parameter vector has a minimum norm, so the effective number of
neurons in the intermediate layer will be defined by the configuration of the weights of the output layer.

Given this statement, ELM presents a guarantee of good generalization effectively given by the
weights of the output layer, and the weights of the intermediate layer can be defined at random.
Because of this, the network’s training becomes linear in relation to the adjustable parameters for
supervised training. The generalized Moore–Penrose operator is the most important candidate for
solving this problem in the literature [79,80].

In this work, we address the neural network following the same premises of the AR and PAR
models: just one ELM for the complete series (annual approach), and 12 ELMs, one adjusted for each
month. We highlight that such method was chosen because it presented good results in monthly
seasonal streamflow series forecasting, overcoming other neural models [2,12,43–45,80].

6.2. Computational Results

This investigation aims to analyze the quality of the predictions regarding the use of the
aforementioned variable selection techniques: filters, wrappers, and bio-inspired metaheuristics.
We consider as predictor the autoregressive model (AR), periodic autoregressive model (PAR) [50], and
the extreme learning machines neural network (ELM) considering the annual and monthly approaches.

The purpose of these simulations is to find the input selection model that is more suitable for
a linear and a non-linear methodologies. Note that the wrappers for AR and PAR models take into
account the assessment of the fit of the training set, while the training error of ELMs are not as important
because we are interested in the smallest generalization error.

The maximum number of inputs or delays allowed is six, as models of higher orders increase the
possibility of negative auto-regressive coefficients [11]. Siqueira et al. [2,12] and Stedinger [52] defend
this premise.

The computational results regarding the mean square error (MSE) and mean absolute error (MAE)
in the real and deseasonalized (MESd and MAEd) domains for one step ahead are in Tables 3–5.
The acronym “Lf” means the linear filter approach based on the partial autocorrelation function (the
traditional PACF and the Stedinger’s approach PACF-Sted.), “Nf” corresponds to the non-linear filters
developed using the mutual information principle (MI, PMI, and N-MRMCR-MI), “WR”, the wrapper
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method considering as evaluation function the BIC, AIC, and MSE, and “M” the metaheuristics,
GA and PSO.

In the AR (Table 3) and PAR (Table 4) cases, we presented the error for training and test sets,
while for the single and monthly ELM (Table 5), we just show the errors for the test, because we are
interested in analyzing the generalization capability of such response. To the ELM, the results are an
average of 30 simulations. The best performances in the test set regarding the MSE in the real domain
are highlighted using shades of gray. Additionally, in Appendix A we explicate the inputs selected for
all case studies in Tables A1–A5.

Table 3. Results of the variable selection using the AR model.

Variable Selection
Test Training

MSE MAE MSEd MAEd MSE MAE MSEd MAEd

FURNAS

WR
BIC 109,014 210.77 0.4330 0.5078 96,033 196.58 0.4490 0.4907
AIC 109,014 210.77 0.4330 0.5078 96,033 196.58 0.4490 0.4907

WRAPPER-MSE 107,962 208.81 0.4224 0.4992 97,037 195.55 0.4459 0.4859

Lf
FACPPe 107,551 209.32 0.4259 0.5043 96,646 195.75 0.4464 0.4871

FACPPe-Sted. 107,551 209.32 0.4259 0.5043 96,646 195.75 0.4464 0.4871

Nf
MI 108,083 209.65 0.4252 0.5015 96,702 195.43 0.4452 0.4856

PMI 108,083 209.65 0.4252 0.5015 96,702 195.43 0.4452 0.4856
N-MRMCR-MI 108,083 209.65 0.4252 0.5015 96,702 195.43 0.4452 0.4856

M
GA 107,962 208.81 0.4224 0.4992 97,037 195.55 0.4459 0.4859
PSO 107,962 208.81 0.4224 0.4992 97,037 195.55 0.4459 0.4859

EMBORCAÇÃO

WR
BIC 51,745 139.36 0.5487 0.5716 40,456 119.79 0.4838 0.5131
AIC 51,745 139.36 0.5487 0.5716 40,456 119.79 0.4838 0.5131

WRAPPER-MSE 51,745 139.36 0.5487 0.5716 40,456 119.79 0.4838 0.5131

Lf
FACPPe 50,408 138.01 0.5353 0.5613 39,953 119.40 0.4790 0.5102

FACPPe-Sted. 50,408 138.01 0.5353 0.5613 39,953 119.40 0.4790 0.5102

Nf
MI 50,559 138.24 0.5397 0.5602 39,880 119.20 0.4768 0.5081

PMI 50,559 138.24 0.5397 0.5602 39,880 119.20 0.4768 0.5081
N-MRMCR-MI 50,559 138.24 0.5397 0.5602 39,880 119.20 0.4768 0.5081

M
GA 51,745 139.36 0.5487 0.5716 40,456 119.79 0.4838 0.5131
PSO 51,745 139.36 0.5487 0.5716 40,456 119.79 0.4838 0.5131

SOBRADINHO

WR
BIC 836,738 568.04 0.3071 0.4408 1,032,181 580.83 0.3895 0.4366
AIC 836,738 568.04 0.3071 0.4408 1,032,181 580.83 0.3895 0.4366

WRAPPER-MSE 836,738 568.04 0.3071 0.4408 1,032,181 580.83 0.3895 0.4366

Lf
FACPPe 836,738 568.04 0.3071 0.4408 1,032,181 580.83 0.3895 0.4366

FACPPe-Sted. 863,796 577.30 0.3196 0.4515 1,020,492 578.13 0.3910 0.4403

Nf
MI 828,142 566.45 0.3043 0.4375 994,408 573.77 0.3837 0.4350

PMI 828,142 566.45 0.3043 0.4375 994,408 573.77 0.3837 0.4350
N-MRMCR-MI 828,142 566.45 0.3043 0.4375 994,408 573.77 0.3837 0.4350

M
GA 836,738 568.04 0.3071 0.4408 1,032,181 580.83 0.3895 0.4366
PSO 836,738 568.04 0.3071 0.4408 1,032,181 580.83 0.3895 0.4366

AGUA
VERMELHA

WR
BIC 417,720 404.35 0.4097 0.4826 378,866 394.30 0.4095 0.4780
AIC 417,720 404.35 0.4097 0.4826 378,866 394.30 0.4095 0.4780

WRAPPER-MSE 417,720 404.35 0.4097 0.4826 378,866 394.30 0.4095 0.4780

Lf
FACPPe 409,613 401.00 0.4052 0.4803 379,329 392.98 0.4078 0.4752

FACPPe-Sted. 409,613 401.00 0.4052 0.4803 379,329 392.98 0.4078 0.4752

Nf
MI 415,465 404.50 0.4062 0.4828 378,197 392.12 0.4065 0.4749

PMI 413,991 403.40 0.4119 0.4886 369,658 393.50 0.4149 0.4819
N-MRMCR-MI 413,991 403.40 0.4119 0.4886 378,197 392.12 0.4065 0.4749

M
GA 415,465 404.50 0.4062 0.4828 378,197 392.12 0.4065 0.4749
PSO 415,465 404.50 0.4062 0.4828 378,197 392.12 0.4065 0.4749

PASSO REAL

WR
BIC 14,996 88.65 0.6570 0.5969 16,637 86.70 0.6490 0.5718
AIC 14,996 88.65 0.6570 0.5969 16,637 86.70 0.6490 0.5718

WRAPPER-MSE 14,996 88.65 0.6570 0.5969 16,637 86.70 0.6490 0.5718

Lf
FACPPe 14,523 87.74 0.6397 0.5914 16,497 86.32 0.6415 0.5696

FACPPe-Sted. 14,523 87.74 0.6397 0.5914 16,497 86.32 0.6415 0.5696

Nf
MI 14,632 88.16 0.6447 0.5956 16,478 86.08 0.6398 0.5676

PMI 14,632 88.16 0.6447 0.5956 16,478 86.08 0.6398 0.5676
N-MRMCR-MI 14,632 88.16 0.6447 0.5956 16,478 86.08 0.6398 0.5676

M
GA 14,996 88.65 0.6570 0.5969 16,637 86.70 0.6490 0.5718
PSO 14,996 88.65 0.6570 0.5969 16,637 86.70 0.6490 0.5718
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We also applied the Friedman’s test to evaluate if the results are significantly distinct [57].
As expected, for the cases that the same set of inputs are selected, there is no statistical difference
between the results for the same model. In almost all the other cases, the p-values achieved were close to
zero, indicating that change the inputs leads to different conclusions. We discuss the exceptions below.

Table 4. Results of the variable selection using PAR model.

Variable Selection
Test Training

MSE MAE MSEd MAEd MSE MAE MSEd MAEd

FURNAS

WR
BIC 117,347 207.37 0.4096 0.4819 94,879 190.77 0.4124 0.4725
AIC 120,629 211.50 0.4343 0.4957 93,403 189.09 0.4041 0.4677

WRAPPER-MSE 128,415 215.49 0.4546 0.5046 87,842 183.45 0.3846 0.4556

Lf
PACF 118,744 211.52 0.4113 0.4882 102,317 198.26 0.4499 0.4899

PACF-Sted. 117,144 206.70 0.4055 0.4788 94,824 190.41 0.4112 0.4709

Nf
MI 120,121 211.57 0.4302 0.4963 92,821 187.35 0.3973 0.4620

PMI 122,682 215.72 0.4442 0.5055 96,930 193.12 0.4502 0.4822
N-MRMCR-MI 135,260 224.64 0.4811 0.5271 95,500 187.39 0.3999 0.4619

M
GA 128,680 216.09 0.4601 0.5073 87,837 183.33 0.3845 0.4550
PSO 133,171 228.39 0.4794 0.5279 109,291 201.15 0.4856 0.5007

EMBORCAÇÃO

WR
BIC 46,356 128.98 0.5034 0.5350 35,421 112.66 0.4377 0.4817
AIC 46,356 129.00 0.5034 0.5352 35,415 112.57 0.4370 0.4806

WRAPPER-MSE 51,529 134.64 0.5460 0.5489 33,362 109.12 0.4188 0.4702

Lf
PACF 50,251 134.96 0.5526 0.5612 42,622 123.54 0.5596 0.5418

PACF-Sted. 46,195 129.23 0.5093 0.5444 35,710 113.81 0.4535 0.4914

Nf
MI 47,918 130.25 0.5094 0.5353 39,096 115.99 0.4588 0.4851

PMI 48,392 129.72 0.5183 0.5361 40,967 118.63 0.4913 0.5010
N-MRMCR-MI 46,088 128.22 0.4982 0.5343 35,593 113.05 0.4419 0.4836

M
GA 51,529 134.64 0.5460 0.5489 33,362 109.12 0.4188 0.4702
PSO 58,768 153.16 0.9161 0.6795 48,079 136.61 0.8187 0.6266

SOBRADINHO

WR
BIC 650,374 507.00 0.2791 0.4097 850,140 530.47 0.3560 0.4133
AIC 642,631 496.61 0.2706 0.3972 847,763 528.97 0.3530 0.4118

WRAPPER-MSE 675,439 510.13 0.3071 0.4194 829,497 523.19 0.3450 0.4061

Lf
PACF 724,099 546.38 0.3361 0.4462 1,021,024 577.88 0.4665 0.4523

PACF-Sted. 666,690 513.82 0.2896 0.4175 886,340 540.87 0.3671 0.4207

Nf
MI 628,672 495.94 0.2923 0.4124 847,892 530.37 0.3519 0.4104

PMI 665,958 511.55 0.2948 0.4171 886,511 544.87 0.3852 0.4340
N-MRMCR-MI 682,074 513.84 0.3034 0.4180 824,000 519.21 0.3399 0.4010

M
GA 675,494 510.64 0.3074 0.4207 829,499 523.20 0.3450 0.4061
PSO 755,372 564.36 0.3402 0.4509 1,181,095 632.30 0.5290 0.4889

AGUA
VERMELHA

WR
BIC 438,074 401.41 0.4075 0.4729 357,604 380.46 0.3774 0.4614
AIC 439,586 402.88 0.4161 0.4769 356,951 379.09 0.3742 0.4587

WRAPPER-MSE 473,968 409.23 0.4437 0.4881 335,448 366.74 0.3564 0.4461

Lf
PACF 469,836 407.75 0.4179 0.4732 404,467 393.70 0.4056 0.4728

PACF-Sted. 432,799 393.57 0.3960 0.4611 359,174 382.19 0.3817 0.4645

Nf
MI 459,970 408.37 0.4300 0.4836 379,638 380.90 0.3817 0.4566

PMI 443,387 399.30 0.4188 0.4711 360,565 384.67 0.3838 0.4673
N-MRMCR-MI 436,274 395.68 0.4029 0.4664 357,410 380.80 0.3781 0.4618

M
GA 476,365 409.64 0.4450 0.4884 335,047 366.40 0.3561 0.4459
PSO 775,418 560.05 0.7722 0.6972 627,743 500.78 0.7843 0.6385

PASSO REAL

WR
BIC 16,793 93.49 0.7945 0.6449 15,864 85.70 0.6228 0.5684
AIC 15,601 88.50 0.7664 0.6198 15,299 84.28 0.6022 0.5590

WRAPPER-MSE 15,584 91.70 0.7454 0.6395 14,770 82.82 0.5797 0.5474

Lf
PACF 15,924 90.39 0.8031 0.6296 15,012 84.05 0.6062 0.5605

PACF-Sted. 15,522 89.04 0.7557 0.6151 14,976 83.78 0.6018 0.5576

Nf
MI 14,982 90.73 0.7152 0.6300 16,107 85.61 0.6336 0.5671

PMI 15,282 87.41 0.7423 0.6038 16,013 85.63 0.6344 0.564
N-MRMCR-MI 15,474 90.55 0.7402 0.6306 14,638 82.25 0.5724 0.5428

M
GA 15,779 92.12 0.7551 0.6424 14,769 82.99 0.5796 0.5486
PSO 17,895 101.47 0.8774 0.7130 22,018 103.18 0.8769 0.6816
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Table 5. Results of the variable selection using ELM.

Variable Selection
Monthly Approach Annual Approach

MSE MAE MSEd MAEd MSE MAE MSEd MAEd

FURNAS

WR
BIC 124,391 212.47 0.4320 0.4943 123,754 220.19 0.4597 0.5307
AIC 123,550 210.02 0.4264 0.4878 126,426 219.67 0.4503 0.5195

WRAPPER-MSE 119,067 206.45 0.4060 0.4809 123,745 217.80 0.4455 0.5171

Lf
PACF 126,594 222.32 0.4623 0.5236 129,323 219.72 0.4451 0.5138

PACF-Sted. 121,806 212.11 0.4433 0.4997 126,768 216.79 0.4509 0.5110

Nf
MI 130,637 230.24 0.5115 0.5656 124,105 220.33 0.4665 0.5279

PMI 126,445 217.60 0.4769 0.5207 126,349 221.97 0.4611 0.5287
N-MRMCR-MI 140,451 238.15 0.5424 0.5842 126,507 222.67 0.4650 0.5330

M
GA 137,304 230.58 0.5063 0.5448 135,978 232.35 0.4963 0.5594
PSO 132,599 228.87 0.4829 0.5377 131,426 226.52 0.4823 0.5435

EMBORCAÇÃO

WR
BIC 38,143 114.51 0.4495 0.4956 48,513 130.03 0.5333 0.5586
AIC 41,110 116.21 0.4657 0.4944 45,459 127.26 0.5158 0.5501

WRAPPER-MSE 37,551 118.56 0.4335 0.5001 44,936 129.15 0.5137 0.5557

Lf
PACF 44,227 124.36 0.5122 0.5355 45,994 130.15 0.5153 0.5563

PACF-Sted. 48,543 130.42 0.5395 0.5526 44,690 129.01 0.5095 0.5556

Nf
MI 49,315 131.44 0.5641 0.5662 45,169 130.89 0.5126 0.5565

PMI 52,571 132.20 0.5707 0.5564 44,094 128.54 0.5061 0.5511
N-MRMCR-MI 47,931 129.26 0.5398 0.5459 45,707 129.50 0.5169 0.5558

M
GA 54,659 142.88 0.6225 0.6017 45,434 128.47 0.5166 0.5515
PSO 50,211 130.82 0.5667 0.5644 45,298 130.20 0.5170 0.5595

SOBRADINHO

WR
BIC 642,185 519.69 0.2954 0.4329 669,441 534.37 0.3209 0.4632
AIC 590,254 492.20 0.2979 0.4298 657,405 530.22 0.3166 0.4532

WRAPPER-MSE 587,680 495.73 0.2945 0.4250 672,783 531.90 0.3229 0.4567

Lf
PACF 696,480 530.92 0.3376 0.4506 718,719 549.40 0.3366 0.4676

PACF-Sted. 747,932 550.63 0.3561 0.4591 690,307 549.76 0.3510 0.4872

Nf
MI 692,277 533.35 0.3526 0.4587 668,656 531.83 0.3187 0.4527

PMI 746,916 546.82 0.3647 0.4621 694,596 540.00 0.3234 0.4549
N-MRMCR-MI 828,437 582.14 0.4819 0.3842 710,649 542.32 0.3316 0.4583

M
GA 728,468 563.81 0.3400 0.4674 698,381 555.96 0.3501 0.4869
PSO 773,147 571.99 0.3657 0.4738 712,829 558.87 0.3655 0.4920

AGUA
VERMELHA

WR
BIC 408,982 384.66 0.3646 0.4528 443,959 394.45 0.4055 0.4727
AIC 411,485 387.40 0.3701 0.4583 436,790 393.10 0.3946 0.4661

WRAPPER-MSE 374,264 375.43 0.3412 0.4429 436,981 394.69 0.3952 0.4664

Lf
PACF 436,494 412.25 0.4109 0.4864 439,692 401.17 0.4025 0.4759

PACF-Sted. 419,472 401.62 0.4040 0.4813 458,381 406.68 0.4131 0.4813

Nf
MI 423,961 426.85 0.4565 0.5274 453,903 420.36 0.4288 0.5065

PMI 434,519 410.82 0.4420 0.5026 432,417 394.64 0.3955 0.4687
N-MRMCR-MI 417,154 397.18 0.4020 0.4787 458,725 422.00 0.4344 0.5076

M
GA 502,689 437.62 0.4673 0.5201 449,919 405.97 0.4142 0.4874
PSO 478,617 440.21 0.4526 0.5271 439,377 402.75 0.4022 0.4806

PASSO REAL

WR
BIC 12,768 79.70 0.6382 0.5549 15,859 89.78 0.7367 0.6079
AIC 12,964 78.81 0.6592 0.5490 15,866 89.78 0.7366 0.6078

WRAPPER-MSE 11,828 78.42 0.6033 0.5488 15,435 87.80 0.7277 0.5962

Lf
PACF 16,288 91.41 0.7772 0.6218 15,257 86.40 0.7278 0.5884

PACF-Sted. 16,435 89.65 0.7850 0.6116 15,351 86.55 0.7320 0.5893

Nf
MI 15,059 86.49 0.7196 0.5944 16,074 89.96 0.7612 0.6170

PMI 15,400 87.35 0.7517 0.5979 16,146 91.00 0.7584 0.6207
N-MRMCR-MI 16,635 91.48 0.7723 0.6274 16,208 90.10 0.7683 0.6168

M
GA 17,035 90.31 0.8134 0.6140 16,258 91.15 0.7626 0.6206
PSO 15,589 86.86 0.7344 0.5964 16,270 91.04 0.7731 0.6217

The critical analysis regarding the results achieved by the AR model reveals interesting behaviors
(Table 3). For Furnas and Emborcação time series, there was no perfect correspondence between the
best performance regarding the MSE and MAE in the real and deseasonalized domains’ errors. In such
cases, we assumed the best predictor with the smallest MSE in the real space, following the premises
already stated in previous works [2,12,80].



Energies 2020, 13, 4236 21 of 35

The general analysis showed other relevant issues: for training or test, at least two variable
methods led to the same performances since they selected the same subset of inputs, except for the
Agua Vermelha training set. As the AR optimized by the Yule-Walker equations presents a closed-form
solution, the same input vector necessarily leads to the same output responses. This behavior can
occur since just one model is adjusted, and the number of inputs is limited to six.

Likewise, these draws happened for the same class of variable selection method. Note, for example,
for Emborcação, Sobradinho, and Passo Real, the smallest training error in the MSE sense was related
to the non-linear filters, while for Furnas were the wrappers based on BIC and AIC.

However, we observed an intriguing behavior: the best performances were related to distinct
variable selection methods for training and test sets (Table 3). Following some literature regarding
monthly seasonal streamflow series forecasting [2,12], one should state the best variable selection
method related to the error in the test set. However, the analysis of the training set presented the
search capability of the methods. Indeed, the ideal behavior would be the same VS approach for both.
The training set was better adjusted for MI filters in 4 cases, and the wrapper (BIC and AIC) in one.
PACF best fitted the test sets four of five times, and by the MI filters, once.

Analyzing the inputs selected for AR model in Tables A1–A5 in Appendix A, one can note that
the models that fitted better in training set selected six lags for Emborcação, Sobradinho, and Passo
Real. For Furnas and Agua Vermelha, two entries. Considering the test set, the PACF approaches,
in general, selected three or four inputs. As expected, the MI methods usually chose more lags than
the PACF, since they detect non-linear relations. As the linear approach achieved four of five best
results, we can affirm that include all inputs in the AR model may tend to a configuration with less
generalization capability.

Although the bio-inspired metaheuristics present an elevated search capability, for the AR neither,
PSO nor GA achieved some of the best performances (Table 3).

Unlike the AR case, the PAR model’s results presented a draw just for the training set of Emborcação
(Table 4). It happened because both GA and wrapper-MSE found the same set of inputs (see Table A2).
Considering the optimization of 12 models simultaneously, totaling up to 72 free parameters, it is more
likely that the variable selection models achieve distinct configurations.

To the PAR model (Table 4), the best VS method presented homogeneity regarding the four error
metrics. On the other hand, we noted again that the best performance for training did not present
correspondence with the test set. In the training set, the GA stood out, achieving the smallest errors for
Emborcação, Furnas, and together with wrapper-MSE for Agua Vermelha. For the other scenarios, we
highlight the N-MRMCR-MI. In the test set, just filters reached the smallest errors: PACF-Sted. (Furnas
and Agua Vermelha), N-MRMCR-MI (Emborcação), and MI for the others.

Tables A1–A5 reveal the GA and wrapper-MSE often selected five or six inputs for all months.
In the comparison of wrapper methodologies, a pattern could be noticed, since the BIC selected fewer
inputs than AIC. In practice, we observed the influence of each type of penalty regarding the insertion
of new entries.

The results achieved by the ELM considering the annual approach, summarized in Table 5, must
be discussed considering not just the numerical values of the errors, but also the statistical difference
between them. Additionally, it is important to highlight that when applying neural networks, there is
no interest in evaluating the training error, because we are looking for the configuration to achieve the
highest generalization capability. Therefore, we discuss just the error in the test set.

In the annual models, we once again noted some ties for Furnas and Emborcação. In addition to
Table 5 presenting distinct numerical values, the obtained p-value for the Friedman test was higher than
0.05, as expected, since the set of selected inputs was the same (see Tables A1–A5). As the initialization
of the weights of an ELM is random, the outputs are distinct, but the results are close. It is the reason
we must run the algorithm at least 30 times.

For Furnas, wrapper (AIC and MSE), and the non-linear filters (MI and PMI) presented the best
results, selecting the same entries. For Emborcação, a further discussion must be done. Except for the
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wrapper-BIC, all methods led to the same performances statistically, according to the Friedman test.
However, one can find four distinct sets of inputs in Table A2. It can happen since the approximation
capability of a neural network is elevated, and these models are universal approximators. Regarding
the inputs, note that lags 1 and 4 belong to all subsets.

For the other series, the AIC stood out for Agua Vermelha and Sobradinho, while the PACF and
PACF-Sted., for Passo Real (same set of inputs). The AIC method selected two inputs for all cases.

As observed for the linear prediction models, the MI methods tended to select more lags than the
linear filters (see Tables A1–A5). The PMI presented fewer inputs than their non-linear counterparts.
In general, it seems clear that inserting too many inputs does not necessarily lead to an increase in
performance, especially in the test set.

The monthly prediction using ELM, similar to the linear case, showed error values with a standard
pattern. For all scenarios, the wrapper-MSE found the best performances, although the smallest MAE
for Sobradinho is related to AIC. In a few cases, the best error metrics converge to the same predictor.
Except for the tie in Emborcação, the metaheuristics did not achieve the best errors.

6.3. Discussion

Table 6 displays how many times each VS method led to the best performance, according to the
models depicted in Tables 3–5: AR (training and test), PAR (training and test), annual ELM (test), and
monthly ELM (test). Due to the statistical similarity between some of the best results, provided by
Friedman test, we indicated the number of VS methods that achieved similar performance regarding
each predictor between parentheses. For example, for the AR in the training set, the PMI reached the
best result four times, once alone and three times together with two more VS methods. In bold and
underlined it is highlighted the number of times some approach was the single best.

Table 6. Number of best results by approach.

Models

VS Method AR Train AR Test PAR Train PAR Test ELM
Annual

ELM
Monthly

BIC 1(+1) - - - 1(+3) -
AIC 1(+1) - - - 2; 1(+8) -

WRAPPER-MSE - - 1(+1) - 1(+3); 1(+8) 5

PACF - 1(+1); 1(+1);
1(+1); 1(+1) - - 1; 1(+8) -

PACF-Sted. - 1(+1); 1(+1);
1(+1); 1(+1) - 2 1(+8) -

MI 1(+2); 1(+2);
1(+2) 1(+2) - 2 1(+3); 1(+8) -

PMI
1; 1(+2);

1(+2); 1(+2)
1(+2) - - 1(+3); 1(+8) -

N-MRMCR-MI 1(+2); 1(+2);
1(+2) 1(+2) 1 1 1(+8) -

GA - - 3; 1(+1) - 1(+8) -
PSO - - - - 1(+8) -

The general analysis considering all results allows some interesting observations. In annual
approaches, we noted many draws, unlike in the monthly approach. It is plausible since only one
predictor is adjusted. The monthly models presented more sprayed performances due to the number
of models fitted for each series (see Tables 3–5).

In most cases, the PACF and PACF - Sted. presented the same set of inputs (see Appendix A,
Tables A1–A5). It indicates that, for hydrologic series, the hypothesis of dependency of consecutive
delays makes sense. These methods were highlighted to the test set of the AR and PAR models (Table 6).

Considering the non-linear filters for annual models, these approaches presented as inputs all the
six lags, except for Agua Vermelha. In general, comparing the MI-methods to the monthly cases, the
PMI tended to select fewer inputs, while the N-MRMCR-MI selected more inputs, except for Agua
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Vermelha (see Tables A1–A5). The MI-based approaches are avid for data since the estimation of the
probability density function (PDF) gets better; the more data are available. That is why for annual
models, such an approach tends to behave better than the monthly models. The AR was better adjusted
for the training set using MI. Additionally, the N-MRMCR-MI won alone twice (Table 6).

Regarding the wrapper methodology, as expected, the MSE-based selected more inputs then BIC
and AIC, since there is no penalty in introducing new lags. The BIC selected fewer entries than the
AIC, due to its strong penalty function (see Tables A1–A5). However, The BIC did not overcome the
others by itself, unlike the AIC, which was the winner twice for ELM annual model. In summary,
the wrapper approach stood out for the neural networks (Table 6).

Regarding the metaheuristics, just for the PAR in the training set, the GA achieved most of the best
performances. These are powerful methods to deal with binary optimization problems like variable
selection, and we believe this approach could be competitive [68,69]. Additionally, the computational
cost was higher than the wrappers (Table 6). Moreover, we can also notice that for four of five series, the
monthly ELM achieved the best general performances (Table 3, Table 4 and Table 5). It is particularly
relevant since, in current days, one can still find the massive use of linear models in the literature [2,12].

Finally, we state that variable selection is a complex problem, little explored in the context of
monthly seasonal streamflow forecasting. The variety among the responses proves the task’s inherent
difficulties, which present elevated economic and environmental impacts. As can be seen, the models’
efficiency is greatly influenced by lags choice. In Figure 8, we present the best predictions achieved by
the winner in each scenario: AR for Furnas and monthly ELM for the other cases.Energies 2020, 13, x FOR PEER REVIEW 25 of 36 
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7. Conclusions

This work performed an extensive investigation on the variable selection methods to determine
the best subsets of inputs to increase the accuracy in the monthly seasonal streamflow series forecasting
tasks. Most of the specialized literature focus on finding the best predictor, but the selection of the
inputs presents an essential step for forecasting.

We addressed wrappers, linear and non-linear filters, and bio-inspired metaheuristics. The wrapper
methodology can evaluate the quality of this subset under several criteria, including:

• Mean square error (MSE);
• Bayesian information criterion (BIC);
• Bayesian information criterion (AIC).
• The linear filters used were the:
• Partial autocorrelation function (PACF);
• PACF using the Stedinger [52] approach for hydrological series.
• The nonlinear filters addressed were:
• Mutual Information (MI);
• Partial mutual information (PMI); and
• Normalization of maximum relevance and minimum common redundancy mutual information

(N-MRMCR-MI).

Regarding the metaheuristics, we used binary versions of the:

• Particle swarm optimization (PSO); and
• Genetic algorithm (GA).

We performed computational tests with the predictions made for five monthly series related to
hydroelectric plants using the autoregressive linear model (AR), and extreme learning machine neural
network (ELM) as predictors. We also addressed two forecasting approaches, the use of only one
predictor for the whole series, and the use of 12 predictors, each one adjusted for each month.

The main findings of this investigation are:

• The selected lags were very diverse depending on the method, especially for the monthly case;
• For the annual approaches, some draws could be found;
• The linear models perform better with filters;
• The wrapper is the best choice for the neural network; and
• Regarding the forecasting methods, the monthly ELM achieved the best error values.

These findings are especially important for countries where the power generation is mainly
from hydroelectric plants, since this is the most important renewable power source in the world.
Additionally, such investigation can contribute to energetic planning, water availability, and pricing
strategies for the power productive chains.

Future works can be developed considering these approaches for other series of renewable inputs
for power generation, like wind power [36,38]. Other problems related to energy generation as an
estimation of methane production and biogas efficiency [81] could be treated and simulated using
a similar methodology. Furthermore, other metaheuristics can be addressed, since there is a vast
repertoire of possibilities being developed in the last years, such as differential evolution and artificial
bee colony, among others.
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Appendix A

In this appendix we present in Tables A1–A5 the inputs selected by each VS methodology,
regarding the five monthtly seasonal streamflow series from five Brazilian hydroelectric plants. Note
that the best performance related to Tables 3–5 in the test set are highlighted in bold. For the training
set, the best results are in italics and bold.
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Table A1. Furnas.

Month BIC AIC W-MSE PACF PACF
-Sted. MI PMI N-MRMCR

-MI GA PSO

PAR

J 1(1) 1(1) 5(1,3,4,5,6) 1(1) 1(1) 1(1) 1(1) 3(1,5,6) 5(1,3,4,5,6) 5(12,3,4,6)
F 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,6) 1(1) 2(1,2) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 3(2,4,6)
M 1(1) 2(1,2) 6(1,2,3,4,5,6) 2(1,6) 1(1) 2(1,2) 1(1) 5(1,2,3,4,5,5) 6(1,2,3,4,5,6) 2(1,5)
A 2(1,2) 3(1,2,3) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 4(1,2,3,4) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 3(1,3,5)
M 4(1,2,3,4) 4(1,2,3,4) 6(1,2,3,4,5,6) 3(1,2,3) 3(1,2,3) 5(1,2,3,4,5) 2(1,3) 4(1,3,4,6) 6(1,2,3,4,5,6) 3(1,2,3)
J 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 3(1,2,5) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,4)
J 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 4(1,2,4,5) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 5(1,2,4,5,6)
A 1(1) 4(1,2,3,4) 6(1,2,3,4,5,6) 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,3,5,6)
S 4(1,2,3,4) 4(1,2,3,4) 6(1,2,3,4,5,6) 4(1,2,3,4) 4(1,2,3,4) 6(1,2,3,4,5,6) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,6)
O 2(3,4) 3(3,4,6) 6(1,2,3,4,5,6) 4(1,2,3,4) 4(1,2,3,4) 6(1,2,3,4,5,6) 1(2) 6(1,2,3,4,5,6) 5(1,2,3,4,6) 4(1,3,4,6)
N 1(1) 2(1,2) 6(1,2,3,4,5,6) 2(1,5) 1(1) 6(1,2,3,4,5,6) 2(1,2) 6(1,2,3,4,5,6) 5(1,2,3,4,5) 4(1,2,4,5)
D 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 3(1,2,6) 2(1,2) 4(1,2,3,4) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(4,5)

ELM

J 1(2) 1(2) 1(2) 1(1) 1(1) 1(1) 1(1) 3(1,5,6) 2(1,4) 1(1)
F 1(1) 1(1) 1(1) 2(1,6) 1(1) 2(1,2) 1(1) 6(1,2,3,4,5,6) 2(1,4) 5(1,3,4,5,6)
M 1(1) 1(1) 2(3,6) 2(1,6) 1(1) 2(1,2) 1(1) 5(1,2,3,4,5,5) 5(1,2,3,4,5) 3(1,3,4)
A 1(5) 1(5) 1(5) 2(1,2) 2(1,2) 4(1,2,3,4) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,2) 4(1,2,4,5)
M 1(2) 1(2) 1(2) 3(1,2,3) 3(1,2,3) 5(1,2,3,4,5) 2(1,3) 4(1,3,4,6) 2(2,3) 3(1,2,3)
J 1(1) 1(1) 1(1) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 3(1,2,5) 6(1,2,3,4,5,6) 1(1) 1(1)
J 1(1) 1(1) 1(1) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 4(1,2,4,5) 6(1,2,3,4,5,6) 2(1,6) 1(1)
A 1(1) 1(1) 1(1) 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,5) 1(3)
S 1(1) 1(1) 1(1) 4(1,2,3,4) 4(1,2,3,4) 6(1,2,3,4,5,6) 1(1) 6(1,2,3,4,5,6) 1(1) 2(1,3)
O 1(1) 1(1) 1(1) 4(1,2,3,4) 4(1,2,3,4) 6(1,2,3,4,5,6) 1(2) 6(1,2,3,4,5,6) 1(1) 3(1,2,6)
N 1(5) 1(5) 2(2,5) 2(1,5) 1(1) 6(1,2,3,4,5,6) 2(1,2) 6(1,2,3,4,5,6) 1(1) 3(2,3,5)
D 1(2) 1(2) 1(2) 3(1,2,6) 2(1,2) 4(1,2,3,4) 1(1) 6(1,2,3,4,5,6) 1(2) 2(2,6)

AR 2(1,2) 2(1,2) 4(1,2,3,5) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,5) 4(1,2,3,5)

ELM 1(1) 2(1,4) 6(1,2,3,4,5,6) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,5) 5(1,2,4,5,6)
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Table A2. Emborcação.

Month BIC AIC W-MSE PACF PACF
-Sted. MI PMI N-MRMCR

-MI GA PSO

PAR

J 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,6) 1(1) 1(6) 1(6) 1(1) 6(1,2,3,4,5,6) 3(4,5,6)
F 1(1) 1(1) 6(1,2,3,4,5,6) 1(1) 1(1) 1(1) 1(1) 1(1) 6(1,2,3,4,5,6) 4(1,2,4,5)
M 1(1) 1(1) 6(1,2,3,4,5,6) 1(1) 1(1) 2(1,2) 1(1) 1(1) 6(1,2,3,4,5,6) 2(3,4)
A 3(1,2,5) 3(1,2,5) 6(1,2,3,4,5,6) 3(1,2,5) 2(1,2) 3(1,2,3) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 1(4)
M 4(1,2,3,5) 4(1,2,3,5) 6(1,2,3,4,5,6) 2(1,3) 1(1) 5(1,2,3,4,5) 6(1,2,3,4,5,6) 3(1,2,3) 6(1,2,3,4,5,6) 2(5,6)
J 3(1,3,5) 4(1,2,3,5) 5(1,2,3,5,6) 1(1) 1(1) 5(1,2,3,4,5) 3(1,2,5) 2(1,2) 5(1,2,3,5,6) 2(1,2)
J 3(1,2,6) 3(1,2,6) 3(1,2,6) 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 3(1,2,6) 1(1)
A 1(1) 1(1) 1(1) 2(1,3) 1(1) 6(1,2,3,4,5,6) 2(1,2) 1(1) 1(1) 2(1,2)
S 1(1) 1(1) 2(1,2) 2(1,3) 1(1) 6(1,2,3,4,5,6) 2(1,2) 4(1,2,3,4) 2(1,2) 2(1,2)
O 1(1) 1(1) 3(1,2,3) 4(1,3,4,6) 1(1) 6(1,2,3,4,5,6) 1(1) 4(1,2,3,4) 3(1,2,3) 1(2)
N 2(1,2) 2(1,2) 4(1,2,3,4) 3(1,2,5) 2(1,2) 1(1) 1(1) 1(1) 4(1,2,3,4) 2(4,5)
D 1(1) 1(1) 5(1,2,3,4,5) 3(1,5,6) 1(1) 2(1,2) 2(1,6) 2(1,2) 5(1,2,3,4,5) 3(1,2,3)

ELM

J 1(2) 1(2) 3(1,2,6) 2(1,6) 1(1) 1(6) 1(6) 1(1) 4(1,2,3,5) 3(4,5,6)
F 1(1) 1(1) 2(1,5) 1(1) 1(1) 1(1) 1(1) 1(1) 2(1,4) 2(1,3)
M 1(1) 1(1) 2(2,3) 1(1) 1(1) 2(1,2) 1(1) 1(1) 1(2) 5(1,2,4,5,6)
A 1(5) 1(5) 1(5) 3(1,2,5) 2(1,2) 3(1,2,3) 2(1,2) 2(1,2) 1(3) 1(5)
M 1(2) 1(2) 1(2) 2(1,3) 1(1) 5(1,2,3,4,5) 6(1,2,3,4,5,6) 3(1,2,3) 2(1,4) 2(1,5)
J 1(1) 1(1) 3(1,5,6) 1(1) 1(1) 5(1,2,3,4,5) 3(1,2,5) 2(1,2) 2(1,5) 5(1,2,3,4,5)
J 1(1) 1(1) 2(1,2) 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 2(1,6) 4(1,3,4,6)
A 1(1) 1(1) 3(1,4,5) 2(1,3) 1(1) 6(1,2,3,4,5,6) 2(1,2) 1(1) 2(1,6) 4(1,2,3,5)
S 1(1) 1(1) 3(1,5,6) 2(1,3) 1(1) 6(1,2,3,4,5,6) 2(1,2) 4(1,2,3,4) 5(1,2,4,5,6) 3(2,5,6)
O 1(1) 1(1) 3(1,3,4) 4(1,3,4,6) 1(1) 6(1,2,3,4,5,6) 1(1) 4(1,2,3,4) 5(1,2,3,4,5) 4(1,2,4,6)
N 1(5) 1(5) 3(1,4,5) 3(1,2,5) 2(1,2) 1(1) 1(1) 1(1) 2(1,3) 3(1,2,3)
D 1(2) 1(2) 2(2,5) 3(1,5,6) 1(1) 2(1,2) 2(1,6) 2(1,2) 3(1,2,5) 4(2,4,5,6)

AR 2(1,2) 2(1,2) 2(1,2) 4(1,2,3,4) 4(1,2,3,4) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,2) 2(1,2)

ELM 1(1) 2(1,4) 6(1,2,3,4,5,6) 4(1,2,3,4) 4(1,2,3,4) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,4,5,6)



Energies 2020, 13, 4236 29 of 35

Table A3. Sobradinho.

Month BIC AIC W-MSE PACF PACF
-Sted. MI PMI N-MRMCR

-MI GA PSO

PAR

J 1(1) 1(1) 6(1,2,3,4,5,6) 1(1) 1(1) 3(1,2,3) 1(1) 4(1,4,5,6) 6(1,2,3,4,5,6) 2(3,6)
F 3(1,3,5) 3(1,3,5) 6(1,2,3,4,5,6) 3(1,4,5) 1(1) 4(1,2,4,5) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,4)
M 1(1) 1(1) 5(1,2,3,4,6) 1(1) 1(1) 2(1,2) 1(1) 6(1,2,3,4,5,6) 5(1,2,3,4,6) 3(1,2,5)
A 1(1) 1(1) 6(1,2,3,4,5,6) 1(1) 1(1) 5(1,2,3,4,6) 1(5) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 3(2,4,6)
M 1(1) 2(1,3) 6(1,2,3,4,5,6) 1(1) 1(1) 4(1,2,3,4) 2(1,3) 5(1,2,4,5,6) 6(1,2,3,4,5,6) 3(1,3,4)
J 5(1,2,3,5,6) 5(1,2,3,5,6) 6(1,2,3,4,5,6) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6)
J 5(1,2,3,4,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,2) 6(1,2,3,4,5,6) 5(1,2,3,5,6) 2(1,3)
A 1(1) 1(1) 5(1,2,3,4,5) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 3(1,5,4) 6(1,2,3,4,5,6) 5(1,2,3,4,5) 4(1,2,3,5)
S 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 2(1,2) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 5(1,2,3,4,5)
O 1(1) 1(1) 4(1,2,3,4) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 3(1,2,6) 6(1,2,3,4,5,6) 4(1,2,3,4) 6(1,2,3,4,5,6)
N 1(1) 2(1,3) 2(1,3) 1(1) 1(1) 5(1,2,3,4,5) 1(1) 6(1,2,3,4,5,6) 2(1,3) 1(1)
D 1(1) 1(1) 5(1,2,3,4,5) 2(1,6) 1(1) 2(1,2) 1(1) 6(1,2,3,4,5,6) 5(1,2,3,4,5) 1(6)

ELM

J 1(2) 1(2) 1(3) 1(1) 1(1) 3(1,2,3) 1(1) 4(1,4,5,6) 1(3) 3(1,3,5)
F 1(1) 1(1) 3(1,2,6) 3(1,4,5) 1(1) 4(1,2,4,5) 1(1) 6(1,2,3,4,5,6) 2(1,6) 4(1,2,5,6)
M 1(1) 1(1) 2(1,3) 1(1) 1(1) 2(1,2) 1(1) 6(1,2,3,4,5,6) 3(1,5,6) 3(1,4,6)
A 1(5) 1(5) 3(1,2,4) 1(1) 1(1) 5(1,2,3,4,6) 1(5) 6(1,2,3,4,5,6) 2(1,6) 5(1,2,3,5,6)
M 1(2) 1(2) 1(1) 1(1) 1(1) 4(1,2,3,4) 2(1,3) 5(1,2,4,5,6) 2(1,3) 1(1)
J 1(1) 1(1) 2(1,4) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 5(1,2,4,5,6) 3(1,3,6)
J 1(1) 1(1) 1(1) 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,2) 6(1,2,3,4,5,6) 1(1) 2(1,4)
A 1(1) 1(1) 1(1) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 3(1,5,4) 6(1,2,3,4,5,6) 1(1) 2(1,2)
S 1(1) 1(1) 2(1,5) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 2(1,2) 6(1,2,3,4,5,6) 2(1,2) 3(1,4,5)
O 1(1) 1(1) 5(1,2,4,5,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 3(1,2,6) 6(1,2,3,4,5,6) 1(3) 4(1,4,5,6)
N 1(5) 1(5) 2(1,3) 1(1) 1(1) 5(1,2,3,4,5) 1(1) 6(1,2,3,4,5,6) 1(3) 4(1,4,5,6)
D 1(2) 1(2) 4(2,3,5,6) 2(1,6) 1(1) 2(1,2) 1(1) 6(1,2,3,4,5,6) 1(2) 5(1,2,3,4,5)

AR 2(1,3) 2(1,3) 2(1,3) 2(1,3) 3(1,3,4) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,3) 2(1,3)

ELM 1(1) 2(1,4) 6(1,2,3,4,5,6) 1(1) 3(1,3,4) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,4)
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Table A4. Agua Vermelha.

Month BIC AIC W-MSE PACF PACF
-Sted. MI PMI N-MRMCR

-MI GA PSO

PAR

J 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,5) 1(1) 3(1,5,6) 1(1) 1(1) 5(1,3,4,5,6) 3(3,4,6)
F 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,6) 1(1) 1(1) 1(1) 1(1) 6(1,2,3,4,5,6) 2(5,6)
M 1(1) 1(1) 6(1,2,3,4,5,6) 2(1,6) 1(1) 2(1,2) 1(1) 1(1) 6(1,2,3,4,5,6) 3(3,5,6)
A 3(1,2,6) 3(1,2,6) 4(1,2,5,6) 2(1,2) 2(1,2) 3(1,2,4) 1(1) 2(1,2) 4(1,2,5,6) 2(2,3)
M 4(1,2,3,5) 4(1,2,3,5) 5(1,2,3,4,5) 3(1,2,3) 3(1,2,3) 5(1,2,3,4,5) 2(1,2) 3(1,2,3) 5(1,2,3,4,5) 3(2,5,6)
J 1(1) 1(1) 5(1,2,4,5,6) 1(1) 1(1) 5(1,2,3,4,5) 6(1,2,3,4,5,6) 2(1,2) 5(1,2,4,5,6) 4(2,3,4,5)
J 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 1(3)
A 1(1) 5(1,2,3,4,6) 6(1,2,3,4,5,6) 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 1(1) 6(1,2,3,4,5,6) 5(2,3,4,5,6)
S 2(1,3) 2(1,3) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 1(1) 4(1,2,3,4) 6(1,2,3,4,5,6) 1(1)
O 2(1,3) 3(1,3,6) 6(1,2,3,4,5,6) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,4) 6(1,2,3,4,5,6) 1(1)
N 1(1) 2(1,2) 6(1,2,3,4,5,6) 1(1) 1(1) 6(1,2,3,4,5,6) 1(1) 1(1) 6(1,2,3,4,5,6) 4(1,2,5,6)
D 1(1) 1(1) 6(1,2,3,4,5,6) 1(1) 1(1) 5(1,2,3,4,5) 1(1) 2(1,2) 6(1,2,3,4,5,6) 1(4)

ELM

J 1(2) 1(2) 2(1,6) 2(1,5) 1(1) 3(1,5,6) 1(1) 1(1) 5(1,2,3,4,6) 4(1,2,4,6)
F 1(1) 1(1) 1(1) 2(1,6) 1(1) 1(1) 1(1) 1(1) 4(1,2,3,6) 4(1,2,4,5)
M 1(1) 1(1) 2(1,2) 2(1,6) 1(1) 2(1,2) 1(1) 1(1) 2(1,2) 6(1,2,3,4,5,6)
A 1(5) 1(5) 2(1,2) 2(1,2) 2(1,2) 3(1,2,4) 1(1) 2(1,2) 2(1,2) 4(1,2,3,5)
M 1(2) 1(2) 1(1) 3(1,2,3) 3(1,2,3) 5(1,2,3,4,5) 2(1,2) 3(1,2,3) 4(1,2,4,6) 4(2,3,5,6)
J 1(1) 1(1) 3(1,2,6) 1(1) 1(1) 5(1,2,3,4,5) 6(1,2,3,4,5,6) 2(1,2) 2(2,5) 3(1,2,4)
J 1(1) 1(1) 2(1,2) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 2(1,2) 2(1,2) 2(1,2) 3(1,2,5)
A 1(1) 1(1) 3(1,2,5) 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 1(1) 5(1,2,3,4,5) 2(1,2)
S 1(1) 1(1) 2(4,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 1(1) 4(1,2,3,4) 2(2,6) 2(5,6)
O 1(1) 1(1) 2(1,6) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,4) 3(1,3,4) 3(1,2,5)
N 1(5) 1(5) 1(6) 1(1) 1(1) 6(1,2,3,4,5,6) 1(1) 1(1) 2(2,5) 4(2,3,5,6)
D 1(2) 1(2) 3(2,3,4) 1(1) 1(1) 5(1,2,3,4,5) 1(1) 2(1,2) 1(2) 2(2,6)

AR 2(1,2) 2(1,2) 2(1,2) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 2(1,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6)

ELM 1(1) 2(1,4) 6(1,2,3,4,5,6) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 2(1,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,4)
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Table A5. Passo Real.

Month BIC AIC W-MSE PACF PACF
-Sted. MI PMI N-MRMCR

-MI GA PSO

PAR

J 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 3(1,5,6) 1(1) 3(1,2,4) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 5(1,2,4,5,6)
F 2(1,3) 3(1,3,5) 5(1,3,4,5,6) 1(1) 1(1) 3(1,2,3) 1(1) 6(1,2,3,4,5,6) 5(1,3,4,5,6) 3(2,5,6)
M 1(1) 2(1,6) 5(1,2,3,4,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 1(1) 6(1,2,3,4,5,6) 5(1,2,3,4,6) 2(2,5)
A 1(2) 1(2) 6(1,2,3,4,5,6) 3(1,2,4) 2(1,2) 5(1,2,3,4,5) 3(1,2,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 3(1,5,6)
M 1(1) 2(1,5) 4(1,3,5,6) 5(1,2,3,4,6) 4(1,2,3,4) 6(1,2,3,4,5,6) 2(1,6) 6(1,2,3,4,5,6) 4(1,3,5,6) 2(2,3)
J 1(1) 2(1,2) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,5) 3(1,2,5) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 3(1,3,5)
J 3(1,2,4) 3(1,2,4) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 5(1,2,3,4,6) 2(1,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(3,4,5,6)
A 1(1) 3(1,2,5) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 5(1,2,3,4,5) 2(1,5) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 3(2,3,6)
S 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,3) 2(1,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 3(2,4,5)
O 1(1) 3(1,2,4) 5(1,2,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,4) 2(1,4) 6(1,2,3,4,5,6) 5(1,2,4,5,6) 2(3,4)
N 3(1,2,3) 4(1,2,3,5) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,3) 2(1,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(5,6)
D 1(1) 2(1,4) 6(1,2,3,4,5,6) 5(1,2,3,4,6) 4(1,2,3,4) 3(1,2,4) 1(1) 6(1,2,3,4,5,6) 5(1,3,4,5,6) 1(1)

ELM

J 1(2) 1(2) 1(2) 3(1,5,6) 1(1) 3(1,2,4) 1(1) 6(1,2,3,4,5,6) 2(1,4) 3(1,3,4)
F 1(1) 1(1) 1(1) 1(1) 1(1) 3(1,2,3) 1(1) 6(1,2,3,4,5,6) 2(1,2) 5(1,2,3,4,6)
M 1(1) 1(1) 2(3,6) 2(1,2) 2(1,2) 6(1,2,3,4,5,6) 1(1) 6(1,2,3,4,5,6) 2(1,2) 3(1,3,6)
A 1(5) 1(5) 1(5) 3(1,2,4) 2(1,2) 5(1,2,3,4,5) 3(1,2,3) 6(1,2,3,4,5,6) 2(1,2) 3(1,3,4)
M 1(2) 1(2) 1(2) 5(1,2,3,4,6) 4(1,2,3,4) 6(1,2,3,4,5,6) 2(1,6) 6(1,2,3,4,5,6) 1(4) 4(1,2,3,6)
J 1(1) 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,5) 3(1,2,5) 6(1,2,3,4,5,6) 2(2,5) 1(1)
J 1(1) 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 5(1,2,3,4,6) 2(1,3) 6(1,2,3,4,5,6) 3(2,3,6) 2(1,5)
A 1(1) 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 5(1,2,3,4,5) 2(1,5) 6(1,2,3,4,5,6) 3(3,4,5) 3(2,3,5)
S 1(1) 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,3) 2(1,3) 6(1,2,3,4,5,6) 4(1,2,4,5) 3(2,3,5)
O 1(1) 1(1) 1(1) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,4) 2(1,4) 6(1,2,3,4,5,6) 3(1,4,5) 3(2,4,6)
N 1(5) 1(5) 2(2,5) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,3) 2(1,3) 6(1,2,3,4,5,6) 3(1,2,3) 1(1)
D 1(2) 1(2) 1(2) 5(1,2,3,4,6) 4(1,2,3,4) 3(1,2,4) 1(1) 6(1,2,3,4,5,6) 3(1,4,5) 2(1,3)

AR 2(1,2) 2(1,2) 2(1,2) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 2(1,2) 2(1,2)

ELM 1(1) 2(1,4) 6(1,2,3,4,5,6) 3(1,2,3) 3(1,2,3) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 6(1,2,3,4,5,6) 4(1,2,3,6)
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