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Abstract: Efforts to understand the influence of historical climate change, at global and regional levels,
have been increasing over the past decade. In particular, the estimates of air temperatures have been
considered as a key factor in climate impact studies on agricultural, ecological, environmental,
and industrial sectors. Accurate temperature prediction helps to safeguard life and property,
playing an important role in planning activities for the government, industry, and the public.
The primary aim of this study is to review the different machine learning strategies for temperature
forecasting, available in the literature, presenting their advantages and disadvantages and identifying
research gaps. This survey shows that Machine Learning techniques can help to accurately predict
temperatures based on a set of input features, which can include the previous values of temperature,
relative humidity, solar radiation, rain and wind speed measurements, among others. The review
reveals that Deep Learning strategies report smaller errors (Mean Square Error = 0.0017 ◦K) compared
with traditional Artificial Neural Networks architectures, for 1 step-ahead at regional scale. At the
global scale, Support Vector Machines are preferred based on their good compromise between
simplicity and accuracy. In addition, the accuracy of the methods described in this work is found to
be dependent on inputs combination, architecture, and learning algorithms. Finally, further research
areas in temperature forecasting are outlined.

Keywords: air temperature forecasting; artificial intelligence; machine learning; neural networks;
support vector machines

1. Introduction

Mitigating climate change is one of the biggest challenges of humankind. Despite the complexity
of predicting the effects of climate change on earth, there is a scientific consensus about its negative
impacts. Among them, the affectation of ecosystems, decrease of biodiversity, soil erosion, extreme
changes in temperature, sea level rise, and global warming have been identified. Likewise, impacts on
economy, human healthy, food security and energy consumption are expected [1,2].

Specifically, air temperature forecasting has been a crucial climatic factor required for many
different applications in areas such as agriculture, industry, energy, environment, tourism, etc. [3].
Some of these applications include short-term load forecasting for power utilities [4], air conditioning
and solar energy systems development [5,6], adaptive temperature control in greenhouses [7],
prediction and assessment of natural hazards [8], and prediction of cooling and energy consumption in
residential buildings [9,10]. Therefore, there is a need to accurately predict temperature values because,
in combination with the analysis of additional features in the subject of interest, they would help
to establish a planning horizon for infrastructure upgrades, insurance, energy policy, and business
development [11].
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Along with other atmospheric parameters, air temperature values are measured near the surface
of earth by trained observers and automatic weather stations. In particular, the World Meteorological
Organization facilitates the creation of worldwide standards for instrumentation, observing practices
and measurements timing in order to ascertain the homogeneity of data and statistics [12]. Empirical
strategies have been developed for temperature forecasting, obtaining accurate results. Their high
accuracy and reliability have been very dependent on the acquired data, where most of them follow
data quality standards and quality measures [13–17].

In particular, this area has become a significant field of applications of Machine Learning (ML)
techniques, due to the difficulties with achieving a high accuracy in the temperature prediction.
In particular, it has been proved that the volatility of temperature time series obeys nontrivial
long-range correlation, presenting a nonlinear behavior [18]. In addition, these time sequences have a
considerable spatial, temporal, and seasonal variability [19].

In literature, many ML-based approaches have been explored in forecasting applications.
Specifically, in the air temperature time series analysis, Artificial Neural Networks (ANN) and
Support Vector Machines (SVM) are the most widely implemented strategies. In particular, most
of the ANN models, developed to predict temperature values, are represented by the MultiLayer
Perceptron Neural Networks (MLPNN) and Radial Basis Function Neural Networks (RBFNN) [20–32],
with the Levenberg–Marquardt and Gradient Descent being the most used optimization algorithms.
With regard to SVM models, most of the works developed in the field involve Radial Function Base
Kernels [33–38]. In terms of performance, at a global scale, SVM has reported better performance
metrics in comparison with classical ANNs [39] from 1 to 20 steps-ahead. In contrast, at a regional
scale, recent Deep Learning (DL) approaches have been proposed, reporting high accuracy values.
Specifically, Convolutional and Long Short Term Memory (LSTM) Recurrent Neural Networks (RNN)
have been used to forecast hourly air temperature with significantly small errors for 1-step ahead [40].
In turn, a similar approach was proposed by Roesch and Günther [41] to overview annual, monthly,
and daily patterns associated with air temperature time series.

The primary aim of this study is to review the ML techniques proposed in the literature for air
temperature forecasting and to identify research gaps. To the best of our knowledge, this is the first
review in the literature of ML-based techniques focused specifically on the problem of air temperature
prediction, taking into account global and regional points of view. This paper is organized as follows.
In Section 2, the most used ML-based strategies are described and the relevant associated concepts are
introduced. In Sections 3 and 4, the comparison of the temperature forecasting ML-based strategies,
at global and regional levels, is presented. Finally, conclusions and research gaps in temperature
forecasting are discussed in Section 5.

2. Overview of Machine Learning Based Strategies and Forecast Performance Factors

ML is defined as a branch of the Artificial Intelligence field. The main objective of the algorithms
developed in this area is to obtain a mathematical model that fits the data. Once this model represents
accurately known data, it is used to perform the prediction using new data. In this way, the learning
process involves two steps: the estimation of unknown parameters in the model, based on a given
data-set, and the output prediction, based on new data and the parameters obtained previously.

In this way, ML strategies find models between inputs and outputs, even if the system dynamics
and its relations are difficult to represent. For this reason, this approach has been widely implemented
in a great variety of domains, such as pattern recognition, classification, and forecasting problems.
There are three common methods implemented in ML:

• Supervised Learning, which has information of the predicted outputs to label the training set
and is used for the model training.

• Unsupervised Learning, which does not have information about the desired output to label
the training data. Consequently, the learning algorithm must find patterns to cluster the input data.

• Semi-supervised Learning, which uses labeled and unlabeled data in the training process.
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• Reinforcement Learning, which uses the maximization of a scalar reward or reinforcement signal
to perform the learning process, being positive or negative based on the system goal. Positive
ones are known as “rewards” while negative ones are known as “punishments”.

Considering the large amount of ML-based approaches developed in forecasting applications,
this work is focused on the most widely implemented ML strategies in temperature prediction: ANN
and SVM. Although these methods are trained in a supervised way, neural network algorithms,
capable of unsupervised training, could be included as well [42].

In particular, it is important to note that the most used input features in this field include
the previous values of temperature as well as relative humidity, solar radiation, rain, and wind speed
measurements. On the other hand, the prediction evaluation measures, more frequently used in these
works, to assess the performance of these algorithms, have included the Mean Absolute Percentage
Error (MAPE), the Mean Absolute Error (MAE), the Median Absolute Error (MdAE), the Root Mean
Squared Error (RMSE), and the Mean Squared Error (MSE). Other indices, proposed in the literature,
can be used as the correlation coefficient R (Pearson Coefficient), or the index of agreement d which are
usually normalized in the (0–1) range [43]. These algorithms and their particularities will be discussed
in the following subsections.

2.1. Artificial Neural Networks

Specifically, ANNs have been widely used for classification and forecasting applications in
meteorology due to their accurate results solving pattern recognition, nonlinear function estimation,
and optimization problems [44]. The accuracy of their results is based on the ANN’s capability to
characterize nonlinear relationships and the availability of historical data of meteorological variables,
making them an attractive analysis tool for researchers around the world.

The perceptron is the basic structural element of an ANN. The inputs associated with this
component are scaled by weights (Wi), added over the n inputs xi, translated by a bias (b) and passed
through an activation function f . The perceptron transfer function can be written as:

y = f
( n

∑
i=1

Wjixi + b
)

. (1)

Perceptrons can be combined to form a MultiLayer Perceptron Neural Network (MLPNN).
In general, the inner structure of these ANNs in prediction problems is composed by n inputs, mk units
for a single or k multiple hidden layers and a single output unit. The input layer receives the data-set for
each class by means of its units that characterize the input features. The unit values of the hidden layers
are defined by the sum of multiplications between the previous layer units and weights of the links
connected to that node. Finally, the output layer is the final processing and its units represent the
classes to be recognized or the variable to be predicted. An example of the mapping input x-output y
function for an ANN with one hidden layer is defined by Equation (2:

y = g
( m1

∑
j=1

Wj f
( n

∑
i=1

Wjixi + bj

)
+ c
)

, (2)

where g and c represent the activation function and bias for the output layer, respectively. With this
rationale in mind, more complex architectures which include multiple hidden layers could be
considered. Weights vector W characterizes the nonlinear mapping and is defined during the learning
process to match the desired outputs, minimizing a defined error function; this stage is commonly
called training. Each of the m hidden neurons are defined by an activation function that usually is
represented by one of the following functions:

• Tangent Hyperbolic Function: f (x) = (ex−e−x)
(ex+e−x)

,
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• Sigmoid Function: f (x) = 1
1+e−x ,

• Rectified Linear Unit (ReLU) Function: f (x) =max(0, x),

• Gaussian Function: f (x) = e−x2
,

• Linear Function: f (x) = x,

For prediction applications, in general, the output activation function is considered linear.
During the generalization stage, called “recalling”, the validation on a different data-set is performed
in order to evaluate the ANN performance with the weights calculated during the learning process.
For temperature prediction, an example of the relationship input x-output y, considering the previous
values of temperature as the input features, is presented in Equation (3):

T∗(t + ∆t) =
m

∑
j=1

Wj f
( l

∑
i=0

WjiT∗(t− i)
)

(3)

As can be seen in Equation (3), the ANN representation is equivalent to the classic nonlinear
auto-regressive (AR) model for prediction purposes. In this way, l can be calculated using
the auto-mutual information factor like in the AR models case. Careful attention must be given
to the size of training data in order to obtain the best performance during the neural network analysis.
The use of few training samples could not be sufficient to compute weights that allow the generalization,
while a too large number could cause the data over-fitting and require much more time for learning.
A more detailed description of this method may be found in [45,46].

A broad variety of ANN architectures have been proposed for forecasting tasks. Alternative to
MLPNN, a RBNN has been widely explored in air temperature forecasting. This architecture differs
from the MLPNN in that the input layer is not weighted, and, based on this representation, the first
hidden layer nodes receive each full input value with no modifications. Additionally, just the activation
function is generally adjusted, which in most cases is set by a Gaussian activation function. In general,
RBNNs involve a simpler training process because they contain fewer weights than classical MLPNNs,
which leads to a good generalization and high noise tolerance.

In the ANN research line, an ML area called Deep learning (DL) has been widely implemented in
many fields and applications. DL-based ANN is an approach which includes at least two nonlinear
transformations (hidden layers). Their advantages lie in the ability to handle big data, and to
automatically extract relevant features [47]. Different DL-based architectures have been implemented in
forecasting applications; however, they have not been widely explored for the analysis and prediction
of air temperature time series. Some examples of the architectures used in prediction tasks are
the Recurrent Neural Networks (RNN) and the Convolutional Neural Networks (CNN). RNN, on one
hand, uses the internal state of the network at the previous output as input to the model, following
a chained module structure, so that the information is recurrently analyzed. Figure 1 shows this
dependence structure, where A is a repeating module and xt, ht the input and output at time t,
respectively. In traditional RNNs, this module will consist only of a single ANN.

A A A A⇒A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

Figure 1. RNN structure.
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CNNs, on the other hand, are a kind of ANN developed for feature extraction. Originally
developed for two-dimensional data and image recognition, these networks perform a series of
operations on the data matrix to reduce its size. One-dimensional CNN are widely used in time series
forecasting problems to identify patterns on time-sequenced data.

2.2. Support Vector Machines

SVM algorithm, on the other hand, has been considered one of the most robust and accurate
strategies among the ML-based approaches. It is a kernel-based technique developed by [48] and has
been used in forecasting, classification, and regression applications. The main objective of SVM is
to map the input data x into a high-dimensional feature space by means of a nonlinear mapping
and generate an optimal hyper-plane w.x + b = 0 in this new space. In contrast to the ANN strategy
which uses the training error in the optimization process, SVM seeks to minimize an upper bound of
the generalization error. In order to obtain the optimal hyper-plane {x ∈ S(w, x) + b = 0}, the norm of
the vector w must be minimized while the margin defined between the 2 classes 1

||w|| is maximized:

min
i=1,..,n

|(w, x) + b| = 1. (4)

The SVM regression estimating function to get the predicted output y∗ from the input data-set x
is given by:

y∗ = f (x, α, α∗) =
N

∑
i=1

(αi − α∗i )K(xi, xj) + b, (5)

where K(xi, xj) is the kernel function commonly defined as:

• A Linear kernel: K(xi, xj) = xT
i xj,

• A Polynomial kernel: K(xi, xj) = (γxT
i xj + r)d,

• A Radial kernel: K(xi, xj) = exp(−γ||xi − xj||2),
• A Sigmoid kernel: K(xi, xj) = tanh(γxT

i xj + r),

where d, r ∈ N and γ ∈ R+ are constant. αi and α∗i are Lagrange multipliers, which are solutions of
a quadratic programming problem and satisfy the Karush–Kuhn–Tucker conditions. These coefficients
are calculated by maximizing the following form:

− ε
N

∑
i=1

(α∗i + αi) +
N

∑
i=1

yi(α
∗
i − αi) (6)

− 1
2

N

∑
i=1

N

∑
j=1

(α∗i + αi)× (α∗j − αj)K(xi, xj),

subject to ∑N
i=1(α

∗
i − αi) = 0 with 0 ≤ α∗i , αi ≤ C. The parameter C defines the smoothness of

the approximating function and ε determines the error margin to be tolerated. Lagrange multipliers αi
and α∗i act as forces pushing the estimating values towards the desired output value y. The parameter
b (or bias parameter) in Equation (5) requires the direct derivation of Karush–Kuhn–Tucker conditions
that lead with the quadratic programming problem described. More details of this approach can be
found in [49,50].

These ML-based solutions have become an alternative approach to conventional techniques
and have been used in a number of meteorological forecasting applications [51–53]. It should be noted
that the impact of coupling these strategies with other tools, such as principle component analysis,
Kalman Filter, fuzzy logic, among others, has been studied as an interesting improvement in the
estimation process performance [54–56].
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2.3. Evaluation Measures

Based on the fact that a standard evaluation measure has not been defined for prediction,
the comparison among the different forecasting strategies has become difficult. This is mainly due to
the different time horizons and scales of the estimated data and the variability of the meteorological
time series for diverse locations. However, some measures have been proposed to compare
the predicted output ŷ with the observed data y. The most widely used measures to evaluate the ML
strategies, implemented for forecasting tasks, are:

• Mean Absolute Error (MAE): This measure is an error statistic that averages the distances between
the estimated and the observed data for N samples:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (7)

• Median Absolute Error (MdAE): This measure is defined as the median of the absolute differences
|y− ŷ| for any N pairs of forecasts and measurements:

MdAE = Median(|y− ŷ|) (8)

• Mean Square Error (MSE): This measure is defined as the average squared difference between the
predicted and the observed temperature data, for N samples:

MSE =
1
N

N

∑
i=1
|yi − ŷi|2 (9)

• Root Mean Square Error (RMSE): This measure is the standard deviation of the difference between
the estimation and the true observed data (See Equation (10)). This measure is more sensitive to
big prediction errors:

RMSE =

√√√√ 1
N

N

∑
i=1
|yi − ŷi|2 (10)

Although these measures have been widely used in forecasting tasks due to their simplicity,
main drawbacks reported are focused on the scale dependency [57], the high influence of outliers in
the prediction evaluation [58], and their low reliability [59], evidenced by the variability of the results
when a different fraction of data are evaluated.

In addition to these error measures, percentage errors have been calculated as well during
the evaluation in the forecasting domain. This group of measures includes:

• Mean Absolute Percentage Error (MAPE): This measure offers a proportionate nature of error
with respect to the input data. It is defined as:

MAPE =
1
N

N

∑
i=1

|yi − ŷi|
yi

× 100 (11)

• Root Mean Square Percentage Error (RMSPE) RMSPE is calculated according to:

RMSPE =

√√√√ 1
N

N

∑
i=1

|yi − ŷi|2
yi

× 100 (12)



Energies 2020, 13, 4215 7 of 28

These kinds of measures are unit-free, have good sensitivity when small changes are present in
data, and do not show data asymmetry [60]. In addition, these measures involve divisions by a number
equal or close to zero, with errors that could be indeterminate or excessively large, and have very low
outlier protection compared to other measures which have bounds for errors [59,61].

An additional group based on relative measures contains functions calculated as a ratio of
mentioned above error measures by means of the estimated forecasting and reference models data.
In this group, it is possible to find:

• Relative Mean Absolute Error (RMAE): This measure is computed as:

RMAE =
MAE
MAE∗

(13)

where MAE and MAE∗ are calculated by using Equation (7) for the forecasting model and the
reference model, respectively.

• Relative Root Mean Square Error (RRMSE): This measure is calculated in a similar way to the
RMAE, but in this case using the error defined in Equation (10):

RMAE =
RMSE
RMSE∗

(14)

This approach, in general, establishes the number of cases when the evaluated forecasting model
is superior to the reference but does not give an assessment of the difference value [62].

Likewise, additional indices have been used in the evaluation of the forecasting systems.
Among them, the correlation coefficient R (Pearson Coefficient) has been defined as the co-variance
between the estimated ŷ and the observed y data over the product of their standard deviations (Sŷ, Sy):

P =
1

N − 1

N

∑
i=1

(yi −mean(y)
Sy

)( ŷi −mean(ŷ)
Sŷ

)
(15)

The Index of Agreement d, on the other hand, is calculated by the expression:

d = 1−
[ ∑N

i=1(yi − ŷi)
2

∑N
i=1(|yi −mean(ŷi)|+ |ŷi −mean(ŷi)|2

]
(16)

Based on the d-statistic, the closer the index value is to one, the better the agreement between
the observed and the predicted data.

Based on the fact that each evaluation measure has the disadvantage that could guide an inaccurate
evaluation of the prediction process, it has been proved that is not possible to choose only one measure.
Shcherbakov et al. [62] recommend using the error measures and correlation coefficients when
the analyzed time series have the same scale and when a data pre-processing has been performed.
In addition, although percentage measures have been widely used in forecasting tasks, they do not
recommend them due to their non-symmetry.

An additional topic that has been widely considered during the result evaluation of ML models
is the Statistical Significance Analysis (SSA). While, in most applications, they have been used to
select the best ML model, this tool also supports the interpretation of prediction results. In general,
ML-based strategies are commonly validated using re-sampling approaches like k-fold cross-validation
from which mean skill scores are directly computed and compared. Although this approach is very
simple, it could be misleading as it is difficult to know if the difference between mean skill scores is
real or the result of a statistical fluke. In this context, SSA is proposed to overcome this limitation
and quantify the likelihood of the samples of skill scores being measured, given the assumption that
they were drawn from the same distribution. If this hypothesis (often called null hypothesis) is rejected,
it indicates that the difference in skill scores is statistically significant. As such, SSA is considered very
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useful to improve both model reliability and results interpretation and presentation during the model
selection process. Forecasting applications have included, for instance, normality tests to confirm that
data-sets are (or are not) normally distributed, parametric statistical significance tests for normally
distributed results, or non-parametric statistical significance tests for more complex distributions
of results.

2.4. Input Features, Time Horizon, and Spatial Scale

ML strategies have become an alternative approach to conventional techniques and are used in
a number of different applications for modeling, prediction, and forecasting of temperature values.
For the particular case of forecasting applications, three considerations on the input features can be
envisioned to characterize the model:

• The model is based on other meteorological or geographical variables (e.g., solar radiation, rain,
relative humidity measurements, among others).

• The model only takes into account the historically observed data of temperature as system input.
• The model takes a combination of both temperature values and other parameters, to perform

the prediction.

Likewise, it is important to underline that one of the most intuitive criteria that impacts
the prediction performance is the forecast time horizon (known as the look-ahead or lead time).
The forecast time horizon in temperature prediction, defined as the length of time into the future for
which prediction is performed, is characterized in terms of a long-term and a short-term estimation.
The n-months ahead forecasts are designated as long-term forecasts. Alternatively, the short time
horizon is defined as a n-hours or n-days ahead prediction.

An additional factor that has a significant impact on forecast performance is the spatial
scale. Due to the well-known aggregation effect, forecasts for geographically diverse stations,
which aggregate in a global scale prediction, usually have smaller errors than the forecasts for
individual meteorological stations in a regional scale. Local effects, which are more random, are often
more difficult to predict in the temperature trends. In this way, this paper reports the air temperature
values forecasting, performed at a global and regional scale. Specifically, at a regional level, hourly, daily
and monthly predictions have been envisioned, based on the particular applications of the different
forecasting systems.

3. Long-Term Global Temperature Forecasting

Different research papers have reported that the climate will warm over the coming century, as a
reaction to the changes in the anthropogenic emissions of CO2 [63]. Then, there is an increasing
involvement of science and scientists to characterize the impacts of global climate change on
decadal [64] or longer time scales [65], in order to structure prospects for global policy actions.
This variability has been studied in response to the Global mean Temperature rise that the earth
has been experienced since pre-industrial times. Therefore, this section details the application of
ML-based strategies in global temperature forecasting using a variety of meteorological variables.

Miyano and Girosi [20] applied an MLPNN using back-propagation and the generalized delta
rule, a stochastic gradient descent algorithm, to predict Global Temperature (GT) variations. They used
45 data points (1861–1909) for training and tested the approach by means of three data-sets: 1910–1944,
1910–1964, and 1910–1984 obtaining a RMSE of 0.12 ◦C, 0.13 ◦C and 0.15 ◦C, respectively.

Knutti et al. [66] propose a neural network based climate model to predict ranges for climate
sensitivity. Data used for the estimation process include the observed surface warming over
the industrial period and estimates of global ocean heat uptake. The neural network structure
implemented includes 10 neurons, Sigmoid and Linear activation functions for the input and the hidden
layer, respectively, and the Levenberg–Marquardt algorithm as optimizer strategy. Although the
surface warming calculated from the climate model fits well with observations, some features like
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the almost constant temperatures found in 1940–1970 and the strong warming after 1980 are not
well simulated.

Pasini et al. [67] used an ANN for GT anomalies estimation based on global physical-chemical
forcing and circulation patterns. The GT is estimated as a function of parameters combination
obtained from natural/anthropogenic forcings and an inter-connected ocean-atmosphere circulation
pattern (called El Niño Southern Oscillation—ENSO) since 1866 (See Figure 2). Solar Irradiance (SI)
and Stratospheric Optical Depth (SOD) are considered as indices of natural forcings on the climate
system, while CO2 concentration and sulfate emissions are characterized as anthropogenic forcings.
The MLPNN includes a single layer with few (four or five) hidden neurons. It is trained by
means of the generalized Widrow–Hoff rule based on gradient descent and momentum terms and
the activation function is a normalized sigmoid proposed in [68]. The authors explain the physical
relationship between inputs and targets by excluding some inputs–target pair from the training set.
Once the network is trained, they use the excluded pairs as a validation/test set in order to assess
the modeling performance on new cases that are unknown to the network. The model performance
of the GT estimation strategy is presented in terms of the linear correlation coefficient R of 0.877;
the highest value obtained among four scenarios proposed of input variations: Natural, Anthropogenic,
Natural + anthropogenic, Natural + anthropogenic + ENSO.

Figure 2. ANN model to estimate Global Temperature.

Fildes and Kourentzes [69] presented an empirical evaluation of univariate and multivariate
forecasting methods used to predict GT. In particular, they assessed the CO2 emissions inclusion in
a nonlinear multivariate neural network, by means of data obtained from the annualised HadCrut3v
(a data-set of land and ocean temperatures), and total carbon emissions from fossil fuels, between
1850 and the forecast origin. The authors developed an ANN model with a single hidden layer and
carried out an evaluation of the suitable amount of hidden nodes (between 1–30). They identified 11
and 8 nodes to be convenient for the univariate and multivariate ANN, respectively. The nonlinearities
were modeled using the hyperbolic tangent activation function and the optimizer implemented was
the Levenberg–Marquardt algorithm. Multivariate ANN (GT and CO2) for 1–4-step-ahead forecasts
gets MAEs (MdAEs) of 0.104 (0.088), 0.101 (0.088) and 0.088 (0.70) for the periods 1939–2007, 1959–2007
and 1983–2005, respectively. For the 10-step-ahead forecasts, in the periods 1948–2007, 1968–2007
and 1992–2005 gets 0.165 (0.176), 0.154 (0.143) and 0.078 (0.053) and for the 20-step-ahead, for the same
periods, 0.230 (0.206), 0.249 (0.228) and 0.169 (0.124), respectively.

In contrast to the ANN models, Abubakar et al. [39] proposed an SVM model to forecast the
global land-ocean temperature (GLOT). Data analyzed, including rain, pressure, GT, wind speed and
relative humidity, were collected from NASA’s GLOT index for the period between 1880 and 2013.
SVM model was kerneled with a Radial kernel Function and the optimal values applied for C, ε, γ
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and learning ratio η were 68, 0.001829, 65, and 0.06, respectively. Finally, a support vector of 7613 was
chosen based on its accuracy. The performance of the model was compared with an MLPNN with one
hidden layer and 11 hidden neurons, trained by means of a Levenberg–Marquardt learning algorithm.
In the hidden and output layers, they included sigmoid and linear activation functions. Experimental
results show MSE and RMSE of 0.004519 and 0.00121 for SVM and 0.08912 and 1.657110 for MLPNN,
respectively.

Hassani et al. [70], on the other hand, predict Global Temperatures by means of 12 parametric
and non-parametric univariate (only GT) and multivariate (GT and global CO2 emission) models.
Among the multi-regressive and the nonparametric spectral estimation algorithms, commonly used in
time-series forecasting, they analyze the Neural Network Performance using the GT data obtained
from the Goddard Institute for Studies (GISS), and the CO2 data from the Carbon Dioxide Information
Analysis Centre. The ANN implemented for the analysis is a feed-forward neural network with a single
hidden layer and one hidden node. The algorithm used for training is the rprop+ and the activation
function is a sigmoid. RRMSE obtained in this paper is 0.67 average for 1 to 10 steps ahead, showing
higher error values compared with other competing models.

Table 1 shows the results of ANN based methods used in GT prediction. In this list, the papers
propose different architectures changing input definitions, structure and training algorithms to
improve the forecasting accuracy. Although a lot of work have been done for regional estimation of
temperature, based on SVM and ANN, most GT forecasting ML-based strategies are focused on ANN.
However, taking into account the comparison between SVM and ANN in GT prediction, developed by
Abubakar et al. [39], results show a best performance for the SVM model reporting the lowest MSE
and RMSE values.

Table 1. Representative papers related to Global Surface Temperature Prediction based on ANN

Reference Input Dataset Hidden Training Activation Evaluation Criteria/Time HorizonNeurons Algorithm Function

[20] GT [71] 4 Generalized Sigmoid 1-step RMSE = 0.12 ◦C
Delta Rule

[66]

Surface

10 MSE ≈ 0.5 ◦KWarming, [72] Levenberg Sigmoid
Global Ocean [73] -Marquardt -Linear
Heat Uptake

[67]

SI-SOD [73],

4.5
R = 0.877

CO2-Sulfate [74], Widrow- Normalized
ENSO [75], Hoff Rule Sigmoid

[76]

1-4-step MAEs(MdAEs) = 0.088 (0.70) ◦C
[69] GT-CO2 [77] 11.8 Levenberg Tanh 10-step MAEs(MdAEs) = 0.078 (0.053) ◦C

-Marquardt 20-step MAEs(MdAEs) = 0.078 (0.053) ◦C

[39]

Rain, Pressure

[77] 11 1-step MSE(RMSE) = 0.0891(1.6571) ◦CWind Speed, Levenberg Sigmoid
GT, Relative -Marquardt -Linear

Humidity

[70] GT-CO2 [77] 1 rprop+ Sigmoid 1-step RRMSE = 0.67 ◦C

4. Regional Temperature Forecasting

Considering the strong potential impacts on climate, in response to the increase of CO2 emissions,
global temperature forecasting models have been proposed (e.g., General Circulation Models) in order
to find strategies to mitigate the possible environmental and economic damages [78].

The resolution of these models is not high enough to give better characterizations in a regional
scale. In this case, historical measurements of individual meteorological stations have been used
to study the climate change in specific areas. In this section, research developed in air temperature
forecasting, at a regional scale with different time horizons, are described.
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4.1. Hourly Temperature Forecasting

Accurate forecasting of Hourly Temperature (HT) has an important number of different
applications, ranging from electricity load forecasting to crop loss prevention. The inaccuracy and lack
of measured HT data avoid any measure to mitigate the damage obtained from extreme temperature
events. HT prediction has been studied in different research papers [21,22].

One of the initial ANN-based schemes applied in this field was developed by Hippert et al. [21].
In this work, a hybrid forecasting system, combining a simple autoregressive model and an MLPNN,
was structured to predict hourly temperatures using past observed temperatures, forecasts obtained
from the linear model, extreme temperatures forecasts, provided by the Weather Service, and the hour
(codified as a sinusoid in order to stress its cyclical nature). The analyzed data were collected from
a weather station in Rio de Janeiro, Brazil in 1997. In the experiments, AR and ARMA models were
tested in conjunction with the MLPNN. For the period February (20–24) and the combinations AR+
MLPNN and ARMA + MLPNN, MAPE values were 2.82 and 2.66, respectively. These results are
considerably lower than those obtained with only linear models.

Tasadduq et al. [22] implemented an MLPNN for the estimation of hourly mean values of
temperature 24 h in advance. Full year hourly values of temperature are used during the MLPNN
training for a coastal location—Jeddah, Saudi Arabia. The MLPNN includes only one input node,
associated with the temperature of the previous day at the same hour, and is validated with the
data from three different years, excluding the one used for training. The MPD calculated for every
experiment is 3.16%, 4.17%, and 2.83%, respectively.

Lanza and Cosme [23] proposed a hybrid strategy for HT prediction based on a RBFNN, initialized
by means of a Regression Tree. In this approach, each terminal node of the tree is connected to one
hidden unit of the RBFNN. The system inputs are the current coded hour and the temperature to predict
the next HT. Data used during the validation process were recorded in the Great Energy Predictor
Shootout II in Texas during the period 20 May to 20 August. The proposed model is compared with
a linear AutoRegressive with eXogenous inputs (ARX) model, showing a better performance with
an MAE equal to 0.4466 ◦C in contrast to 0.5247 ◦C. It is important to note that a good consideration
(at least for load prediction) is to obtain an MAE less or around 0.5 ◦C.

Abdel-Aal [3], on the other hand, estimates next-hour and next-day HT by training an Abductive
Artificial Neural Network (AANN) on 5 years of data (1 January 1985–12 October 1989) and validating
on data for the 6th year (1990). The data-set used includes the measured HT data from the Puget power
utility in Seattle. For the next-day hourly forecasting model, 24 models for each hour of the day were
implemented to estimate the following day HT in one step. Every model has the same set of inputs:
24 hourly temperatures on (d− 1)-day (T1, T2,...,T24), the measured minimum (Tmin) and maximum
(Tmax) temperatures on (d− 1)-day, and the estimated minimum (ETmin) and maximum (ETmax)
temperatures for d-day. In the same way, for the next-hour HT estimation, 24 models were implemented
based on the full HT data on (d− 1) day (T1, T2,...,T24). In addition, every available HT on d day up
to the preceding hour (NT1, NT2,...,NTh−1) are used together with the measured minimum (Tmin)
and maximum (Tmax) values for the (d− 1)-day and the minimum (ETmin) and maximum (ETmax)
estimated temperatures for the d-day. Next,-hour and next-day hourly models obtained an overall
MAE of 1.68 and 1.05 ◦F, respectively. These results were compared with an MLPNN, using a node
configuration equal to 28-6-1 and a sigmoid transfer function, indicating inferior performance in
contrast to the abductive model.

Maqsood et al. [24] used an ensemble of MLPNN, RBFN, Elman Recurrent Neural Network
(ERNN), and Hopfield model (HFM), obtained by means of a constructive algorithm, to predict
the 24-h-ahead weather parameters for winter, spring, summer, and fall seasons. The input and output
parameters used for this analysis were related to HT, Wind Speed, and Relative Humidity values,
collected at the Regina Airport by the Meteorological Department in Canada in 2001. The performance
of this approach was contrasted with every strategy separately and results showed that the ensemble
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of neural networks produced the most accurate forecasts.The proposed strategy can be easily
implemented to address HT forecasting applications without increasing the computation complexity.

The research reported by Smith et al. [25] included the evaluation of 30 models of MLPNN to
forecast HT values up to 12 hours ahead. Input data are composed by five weather variables: HT,
Relative Humidity, Wind Speed, Solar Radiation, and rainfall acquired from stations located in southern
and central growing regions of Georgia. MLPNN architectures analyzed in this work are based on
the Ward-style, which is a network with multiple node types and activation functions. These models
had a linear input layer, three equally-sized and a single, logistic output node, which represents
the HT at some prediction horizon. In this case, they carried out an analysis based on the training set
sizes, obtaining six models (instantiated by 30 networks) with different training patterns. The most
accurate network was trained over 50,000 samples and obtained an MAE of 1.51 ◦C for a 4-h model.
In addition, they performed a comparison for the same model with and without seasonal input terms.
The most accurate model was found to be with seasonal inputs. Based on the same architecture,
the authors proposed an automated year-round temperature prediction [26] using training sets of
1.25 million patterns. In this case, they also evaluated the accuracy effect of adding rainfall input
terms, concluding that these additional inputs did not increase the prediction accuracy. The MAE
calculation for the year-round forecasting system varied from 0.516 ◦C for 1-h horizon to 1.873 ◦C
for 12-h horizon. Recently, Jallal et al. [27] proposed an autoregressive MLPNN-based model with
delayed exogenous input sequence to analyze the global solar radiation to predict the air temperature
in a half hour scale. The analyzed dataset contains the measurements at the weather station Agdal that
is installed in the Agdal garden, Marrakesh, Morocco for the year 2014, and the model reports an MSE
value of 0.272.

In contrast, SVM regression was introduced in HT prediction by Chevalier et al. [33] in 2011.
In this study, identical inputs and subsets of the historical data described in [26] were included in
the analysis. For the SVM regression algorithm, the penalty factor C was set to 25 and the kernel
used during the experiments was a radial-based function. In this study, the kernel was arbitrarily
selected because it has been shown to be a good general purpose kernel [79]. Results showed that,
for a reduced training set with 300,000 patterns, the SVM strategy was slightly more accurate than
the MLPNN-based method. However, the MLPNN model predicted more accurately when the number
of training patterns increased to 1.25 million (See Table 2).
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Table 2. Representative papers related to Hourly Temperature Prediction.

Reference Input Region ML Algorithm Configuration Evaluation Criteria/Time Horizon

[21] HT Brazil ARMA+MLPNN Hidden nodes = 10, Algorithm = Levenberg–Marquardt,
Activation Function = Tanh-Linear 1-step MAPE = 2.66%

[22] T(d− 1, h− 1) Saudi Arabia MLPNN Hidden nodes = 4, Algorithm = Batch learning 1-step MPD = 3.16%, 4.17%, 2.83%

[23] coded h, T (h− 1) Texas RBFNN RBF = Multi-quadratic, Model Selection = Bayesian
Size (hyperrectangles, RBF centres) = 10 1-step MAE = 0.4466 ◦C

[3]
(T{1,2,...,24}(d− 1)),

Tmax, Tmin, ETmax, ETmin
(NT{1,2,...,h−1}(d)

Seattle AANN
Models range from (single element-single layer) to

(Five-input, two-element, two-layer)
Complexity Penalty Multiplier = 1

Next,-h MAE (MAPE) = 1.68 F (3.49%)
Next,-d MAE (MAPE) = 1.05 F (2.14%)

[24] HT, Wind Speed and Relative Humidity Canada MLPNN+RBFN
+ERNN+HFM

(MLPNN, ERNN): Hidden nodes = 45
Algorithm = one-step secant

Activation Function: Tanh, sigmoid
(RBFN): 2 hidden layers, 180 nodes

Activation Function: Gaussian

24-step Winter MAE = 0.0783 ◦C
24-step Summer MAE = 0.1127 ◦C
24-step Spring MAE = 0.0912 ◦C

24-step Fall MAE = 0.2958 ◦C

[25]
Up to prior 24 h: HT, Wind Speed

Rain,Relative Humidity
Solar Radiation (10 k–400 k)

Georgia

Ward MLPNN
Hidden Layer = 3 parallel slabs

Hidden nodes: (2–75) nodes per slab
Activation Function = Gaussian, Tanh, Sigmoid

1-step MAE = 0.53 ◦C
4-step MAE = 1.34 ◦C
8-step MAE = 2.01 ◦C

12-step MAE = 2.33 ◦C

[33] Radial-basis function kernel
ε = 0.05, C = 25, γ = 0.0104

1-step MAE = 0.514 ◦C
4-step MAE = 1.329 ◦C
8-step MAE = 1.964 ◦C

12-step MAE = 2.303 ◦C

[26]
Up to prior 24 h: HT,Wind Speed

Rain, Relative Humidity
Solar Radiation (1.25 million)

Ward MLPNN
Hidden Layer = 3 parallel slabs

Hidden nodes: 120 nodes per slab
Activation Function = Tanh

1-step MAE = 0.516 ◦C
4-step MAE = 1.187 ◦C
8-step MAE = 1.623 ◦C

12-step MAE = 1.873 ◦C

[33] SVM Radial-basis function kernel
ε = 0.05, C = 25, γ = 0.0104

1-step MAE = 0.513 ◦C
4-step MAE = 1.203 ◦C
8-step MAE = 1.664 ◦C

12-step MAE = 1.922 ◦C

[27] Global Solar Radiation Morocco AR + MLPNN 2 hidden layers (5 and 8 neurons)
Activation function = tanh 1-step MSE = 0.272 ◦C

[34]
Relative humidity, Precipitation

Pressure, Global Radiation
HT, Wind Speed and Direction

Spain SVM Banks 4 SVMs for: zonal, mixed, meridional, transition
Gaussian Function Kernels

1-step RMSE = 0.61 ◦C
2-step RMSE = 0.94 ◦C
4-step RMSE = 1.21 ◦C
6-step RMSE = 1.34 ◦C
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Table 2. Cont.

Reference Input Region ML Algorithm Configuration Evaluation Criteria/Time Horizon

[35] Th−1, Th−2, Th−3, Th−4 Saudi Arabia

LS-SVM Radial-basis function kernel
Optimal combination (C,γ) for a MSE = 0.0001 1-step MAPE = 1.20%

MLPNN Hidden layers = 2, Hidden Nodes = 24, 19 1-step MAPE = 2.36%

RBFNN Hidden layers = 1, Hidden Nodes = 22 1-step MAPE = 1.98%

RNN Hidden layers = 1, Hidden Nodes = 17 1-step MAPE = 1.62%

PNN Hidden layers = 3, Hidden Nodes = 4, 3, 2 1-step MAPE = 1.58%

[80]

Previous 24 h values of HT, barometric
pressure, humidity and wind speed

Nevada

SDAE Hidden Layers = 3, Hidden nodes = 384
Learning Rate = 0.0005, Noise = 0.25 1-step RMSE = 1.38%

MLPNN Hidden Layers = 3, Hidden nodes = 384
Learning Rate = 0.1 1-step RMSE = 4.19%

[40]

Surface temperature and pressure, wind,
rain, humidity snow, and soil temperature

Simulated Data

LSTM 5 layers, activation functions: linear, tanh
Learning Rate = 0.01, Adam Optimizer 1-step MSE = 0.002041361◦K

CRNN 5 layers (Filter size: 32, 64, 128, 256,512)
Learning Rate = 0.01, Adam Optimizer 1-step MSE = 0.001738656◦K
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In the same line of thought, Ortiz-García et al. [34] present a HT prediction system (up to 6 h
ahead) based on SVM regression banks, constructed using synoptic information of the data by means
of the Hess–Brezowsky classification (HBC) algorithm. For this study, seven meteorological variables
were acquired from the Barcelona-El Prat International Airport automatic station (1 January 2009 to
31 December 2009), in a mean hourly scale. The authors grouped the SVM bank in terms of four
synoptic variables, which characterize the atmospheric flow and weather patterns: three main groups
of circulation types (zonal, mixed and meridional), and one group to cover unclassified situations
called the transition situation. Then, the samples are divided and different SVMs are trained for each
group. The next value predicted is obtained by checking the current synoptic situation and then
applying the suitable SVMs. The authors show that this solution performs better than an alternative
prediction method based on the Extreme Learning Machine (ELM) algorithm.

Mellit et al. [35] proposed an alternative variation of the traditional SVM called LS-SVM (Least
Squares-Support Vector Machine), which solves linear equations instead of the classic quadratic
programming problem . The data-set recorded for the air temperature prediction were acquired
at Medina city (Kingdom of Saudi Arabia) during the period from 1 January–31 December 2011 with
a mean hourly scale. For a single-step (1 h ahead) prediction, inputs in these experiments were
associated with the previous four HT values (Th−1, Th−2, Th−3, Th−4). Finally, the authors evaluated
the effectiveness of the designed LS-SVM predictor in comparison with other ANN architectures
(e.g., MLPNN, RBFNN, Recurrent Neural Network (RNN) and Probabilistic Neural Network (PNN)),
concluding that the LS-SVM and PNN predictors offer more accurate results than other investigated
ANN architectures.

Although most of the Deep Learning applications have been focused on classification problems,
some research has successfully applied this approach in solving prediction problems. Recently,
Hossain et al. [80] applied Stacked Denoising Auto-Encoders (SDAE) to predict HT based on the prior
24 h of HT meteorological data in northwestern Nevada. The results show a significant improvement
in the HT prediction domain, as it achieves 97.94% accuracy compared to a simple ANN which
achieves 94.92% accuracy. In addition, Hewage et al. [40] proposed a temporal modeling approach to
perform the prediction based on convolutional and Long Short Term Memory (LSTM) recurrent neural
networks. The validation is carried out with weather parameters obtained from GRIB data using
the weather research and forecasting model. In particular, the surface temperature from January 2018
to May 2018 and for June 2018 are used for training, and test, respectively. A lower MSE is obtained for
the LSTM network in comparison with the convolutional ANN-based approach.

Table 2 shows the results of ML methods used in hourly temperature forecasting. In this summary,
it can be seen that research involving ANN and SVM give similar results in terms of prediction,
but it can be deduced that SVM approaches are easier to use than ANN, considering the number of
parameters to adjust. In addition, the optimization process for SVM could be automatic while it is
more complex for the best improvements of the ANN case. However, although a few research papers
have been developed using Deep Learning strategies, the latest advances have considerably improved
the accuracy rates in this particular application.

4.2. Daily Temperature Forecasting

In particular, Daily Temperature (DT) forecasting is a relevant issue in the energy field, since this
specific variable can be used for load forecasting [81] or to estimate solar radiation [82], which is
an important factor for photovoltaic farms and devices. In this case, when the predicted loads are
not accurate, the power market participants are forced to buy higher-priced electricity or to sell
lower-priced electricity [36]. In that context, short-term load forecasting is an important topic for the
power system risk management. In literature, a relevant amount of research has addressed the study of
DT forecasting by means of ML strategies. In this sense, Pal et al. [28] proposed to use a Self-Organizing
Feature Map (SOFM) to find clusters in the data, and, based on these results, the training of an MLPNN
for each cluster was carried out. The authors collected nine meteorological variables from the Regional
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Meteorological Centre in Calcutta, India, for the period 1983–1995. In this case, input features vector
contains the information of the previous three days for the daily temperature prediction. Finally, a
comparison with a single RBFNN and MLPNN was developed, showing that the proposed hybrid
SOFM-MLP network consistently performs better than conventional networks.

Likewise, Maqsood and Abraham [29] presented a comparative analysis of different ANN
architectures (MLPNN, RBFN, and ERNN) and a proposed ensemble of these models. These strategies
are trained and tested using daily weather data of temperature, wind speed, and relative humidity in
southern Saskatchewan, Canada for the year 2001. According to the authors, the proposed ensemble
approach produced the most accurate forecast, while the MLPNN was the architecture that obtained
relatively less accurate results during the temperature forecasting. A similar analysis was proposed
by Ustaoglu et al. [30] to forecast daily mean, maximum, and minimum temperature in Turkey.
In this survey, the authors implemented three different ANN-based strategies: MLPMM, RBFNN,
and a Generalized Regression Neural Network (GRNN). For most of the experiments involved in this
work, RBFNN performances were quite satisfactory providing close estimates compared with GRNN
and MLPNN.

In the same line of research, Hayati and Mohebi [31] proposes an alternative configuration for
the MLPNN architecture to predict the one-day-ahead temperature for Kermanshah city, west of
Iran. In this study, a three layer MLPNN with six hidden neurons was trained and tested using
ten years (1996–2006) of meteorological measurements. Based on the fact that Back Propagation
training algorithms are generally quite slow for practical problems, they improved the convergence
times by implementing the scaled conjugate gradient.

The same architecture was proposed by Dombaycı and Gölcü [7] to predict mean ambient
temperatures in Denizli, southwestern Turkey in the period 2003–2006. Final configuration differences
with the previous work lie in the optimization algorithm used for the implementation and the inputs
selected for the forecasting system. In order to define the optimal parameters associated with
the MLPNN architecture, Abhishek et al. [32] developed a performance analysis of the maximum
DT forecasting system while varying the number of hidden layers, neurons, and transfer functions.
The data analyzed in this work were collected from the station Toronto Lester in Ontario, Canada from
period 1999–2009. Experimental results showed the best performance for a configuration defined by
a 5 hidden-layer network with 10 or 16 neurons and a tan-sigmoid transfer function. An alternative
Elman ANN approach was proposed by Afzali et al. [83] to predict mean, minimum, and maximum
temperature during the years 1961–2004 in Kerman city, located in the south east of Iran. The one-day
and one-month ahead air temperature is predicted slightly more precisely with this approach compared
to the traditional MLPNN. Furthermore, Husaini et al. [84] proposed a Recurrent Higher Order Neural
Network (RHONN) called Jordan Pi-Sigma Network (JPSN) to predict next-day temperature using
measurements of five years (2005–2009) from the Malaysian Meteorological Department. More accurate
results are found using this strategy, in comparison with classical MLPNNs.

In addition, a combination of classical MLPNN with the Wavelet Neural Network (WNN) has
been presented for DT forecasting by Rastogi et al. [85] and Sharma and Agarwal [86]. In the research
developed by Rastogi et al. [85], the input is associated exclusively with DT values, while Sharma and
Agarwal [86] considered the cloud density as well. Both works analyzed the data obtained in Taipei
during the years 1995–1996. Experimental results reported MAE values in the range of 0.7–0.9 and
0.25–0.62 in June, July, August, and September, for [85] and [86], respectively. These values represent
better results in comparison to different time-variant fuzzy time series models. Mori and Kanaoka [36];
on the other hand, they introduced SVM regression to predict daily maximum air temperature.
The proposed method was applied to nine input variables for real data acquired from AMEDAS
(Automated Meteorological Data Acquisition System of the Japan Meteorological Agency) in Tokyo,
for summer time from 1999 to 2001.

The authors showed that, by using the SVM-based approach, the average error of 1-day ahead
maximum air temperature is reduced by 0.8% and 0.1% in comparison with an MLPNN and an RBFNN.
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However, this conclusion was drawn with models that were trained on a relatively small data-set
containing 366 patterns and validated with 122 patterns. In a similar way, Radhika and Shashi [37]
proposed an SVM to predict the maximum DT based on the daily maximum temperatures for a span
of previous n days (2 to 10), measured by the University of Cambridge for the period from 2003
to 2008. Results were compared with an MLPNN, showing that, based on a proper selection of
configuration parameters, SVM performs better than classical approximations of ANN. An analogous
proposal has been put forward by Paniagua-Tineo et al. [38], which employed an SVM approach to
model and predict maximum DT in several European countries. Weather related features, in this case,
included a 10-year period of data for temperature, precipitation, relative humidity, and air pressure,
specifically synoptic situation of the day and monthly cycle. The authors showed that this approach
performed well when compared with MLPNNs. In this line, Wang et al. [87] improved the SVM-based
temperature prediction model through the implementation of a heuristic global optimization method
called Particle Swarm Optimization (PSO). The resulting PSVM approach was validated on daily
minimum temperature values from 2005 to 2009 in Beijing. The experimental results showed that
the proposed strategy performs better than some other SVM model such as Generalized Support Vector
Machine (GSVM) and basic SVM using a considerably small sample size.

In order to enhance the performance of the SVM models for this particular task, some previous
DT values have been included in the prediction system. However, taking into account several weather
variables for some locations and for several days generates a large feature vector, which makes it
necessary to establish a feature selection strategy to decrease the model complexity. In this way,
Karevan et al. [88] presented a combination of k-Nearest Neighbor and Elastic Net (EN) to reduce
the number of features. This study carries out the minimum and maximum temperature forecasting
from one to up to six days ahead for Brussels, considering data from 70 stations, most of which are
located in North America, Europe, and East Asia, during a period from the beginning of 2007 until
mid 2014. Results are compared with an LS-SVM algorithm to show the accuracy improvement of the
proposed approach.

In more recent research, Karevan and Suykens [89] takes into account the spatio-temporal
properties of the same data-set to carry out the feature selection, by means of an algorithm called
Least Absolute Shrinkage and Selection Operator (LASSO). A similar analysis to that described above
was developed in this work for one to up to three days ahead in DT prediction for Brussels, based
on meteorological data from 10 cities. The experimental results show that Spatio-Temporal LASSO
improves, in most cases, the performance in comparison with the LS-SVM approach. However, results
are not compared with the strategy proposed in [88].

A few research papers focused on Deep Learning have been developed in this field. Recently,
Roesch and Günther [41] presented a Recurrent Convolutional Neural Network (RCNN), trained
and tested on 25 years of climate data, to forecast meteorological attributes, such as temperature,
pressure, and wind velocity. The authors used the ERA-Interim re-analysis of the European Centre for
Medium-Range Weather Forecast (ECMWF) to get the data for training and evaluation.

In particular, around Zurich (Switzerland), they extracted a time series in a 7 × 7 grid, based on
spatial features. The application developed in this work allowed for overviewing annual, monthly,
and daily patterns associated with the time series. Based on the previously described research, Table 3
summarizes the ML methods used in daily temperature forecasting.
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Table 3. Representative papers related to Daily Temperature Prediction.

Ref. Input Region Algorithm Configuration Evaluation Criteria/Time Horizon

SOFM+ Hidden layer = 1, Hidden Nodes = 10 Error (Max DT) ≤ 2 ◦C in 88.6% cases
For 3 previous days: 2 measures MLPNN Activation Function= Sigmoid Error (Min DT) ≤ 2 ◦C in 87.3% cases

[28] of mean sea level and vapor Calcutta MLPNN Hidden layer = 1, Hidden Nodes = 15 Error (Max DT) ≤ 2 ◦C in 83.8% cases
pressures, and relative humidity, Activation Function= Sigmoid Error (Min DT) ≤ 2 ◦C in 85.2% cases

Max DT, Min DT, Rainfall RBFNN Size (RBF centres) = 50 Error (Max DT) ≤ 2 ◦C in 80.65% cases
Error (Min DT) ≤ 2 ◦C in 81.66% cases

MLPNN Hidden layer = 1, Hidden Nodes = 45 MAPE = 6.05% RMSE = 0.6664 ◦C
Levenberg–Marquardt Algorithm MAE = 0.5561 ◦C

ERNN Hidden layer = 1, Hidden Nodes = 45 MAPE = 5.52% RMSE = 0.5945 ◦C
[29] Average DT, Wind Speed and Canada Levenberg–Marquardt Algorithm MAE = 0.5058 ◦C

Relative Humidity RBFNN Hidden = 2, RBF Nodes = 180 MAPE = 2.49% RMSE = 0.2765 ◦C
Gaussian Activation Function MAE = 0.2278 ◦C

Ensemble Arithmetic mean and weighted MAPE = 2.14% RMSE = 0.2416 ◦C
average of all the results MAE = 0.1978 ◦C

MLPNN Levenberg–Marquardt Algorithm Mean RMSE (Tmean) = 1.7767 ◦C
Daily mean, maximum Hidden Layers = 1, Hidden Nodes = 5 Mean RMSE (Tmin,Tmax) = 2.21, 2.86 ◦C

[30] and minimum temperature Turkey RBFNN RBF Nodes = 5–13 Mean RMSE (Tmean) = 1.79 ◦C
Spread parameter= 0.99 Mean RMSE (Tmin,Tmax) = 2.20, 2.75 ◦C

GRNN Spread Parameter = 0.05 Mean RMSE (Tmean) = 1.817 ◦C
Mean RMSE (Tmin,Tmax) = 2.24, 2.87 ◦C

Daily Gust Wind, mean, minimum and maximum DT, Hidden layer = 1, Hidden Nodes = 6
[31] precipitation, mean humidity, mean pressure, Iran MLPNN Scaled Conjugate Gradient MAE ≈ 1.7 ◦C

sunshine, radiation and evaporation Activation Function (Hidden/Output) = Tanh-Sig /Pure Linear

Month of the year, day of the month Hidden layer = 1, Hidden Nodes = 6, Levenberg–Marquardt RMSE (train) = 1.85240 ◦C
[7] and Mean DT of the previous day Turkey MLPNN Algorithm, Activation Function = Tanh-Sig RMSE (test) = 1.96550 ◦C

[32] Previous 365 DT Toronto MLPNN Hidden layer (nodes) = 5 (10–16), Levenberg–Marquardt MSE = 0.201 ◦C
Algorithm, Activation Function = Tanh-Sig

ERNN Hidden Layers = 1, Hidden Nodes = 15 MSE (Max DT) = 0.008 ◦C
Previous Mean, Maximum and Levenberg-Marqardt Algorithm MAE (Max DT) = 0.064 ◦C

[83] Minimum DT Iran MLPNN Activation Function (hidden) = Tanh-Sig MSE (Max DT) = 0.008 ◦C
Activation Function (output) = Pure Linear MAE (Max DT) = 0.067 ◦C

[84] Mean DT Malaysia JPSN Hidden Nodes = 2–5, Gradient Descent Algorithm MSE, MAE = 0.006462, 0.063458 ◦C

MLPNN Activation Function (Hidden/Output) = Sigmoid/Pure Linear MSE, MAE = 0.006549, 0.063646 ◦C
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Table 3. Cont.

Ref. Input Region Algorithm Configuration Evaluation Criteria/Time Horizon

[85] Previous DT Window Size = 3, Hidden Layers = 2 MAE = 0.7–0.9 ◦C

[86] Previous DT and cloud Density Taipei WNN Feed Forward Back Propagation, Learning Rate = 0.01 MAE = 0.25–0.62 ◦C

Maximum, minimum and average DT, Average and SVM Mahalanobis Kernel, ε = 0.1, γ = 0.1 MAPE = 2.6%

[36] Minimum Daily Humidity, Maximum Daily Wind Speed, Tokyo MLPNN Hidden layer = 1, Hidden Nodes = 12, Learning Rate = 0.2 MAPE = 3.4%

Daily Wind Direction and Daylight, Daily Isolation RBFNN RBF Nodes = 12, Learning Rate = 0.05 MAPE = 2.7%

[37] 5 previous values of DT Cambridge SVM Radial Basis Function, Grid Search for optimal C, γ, ε MSE = 7.15

MLPNN Hidden layer = 1, Hidden Nodes = 2*num_inputs+1 MSE = 8.07

Maximum, minimum DT, global radiation, 10 stations SVM Gaussian Kernel RMSE (Norway) = 1.5483 ◦C
[38] precipitation, sea level pressure, relative humidity, in Grid Search for optimal C, γ, ε

synoptic situation and monthly cycle Europe MLPNN Levenberg–Marquardt algorithm, Sigmoid Activation Function RMSE (Norway) = 1.5711 ◦C

[87] Previous Minimum DT Beijing PSVM Gaussian Kernel, σ = 12.2658, γ = 5.5987, Psize =100 MSE = 1.1026 ◦C

SVM Gaussian Kernel, σ = 9.2568,γ = 8.9874 MSE = 1.3058 ◦C

K-M+EN k ∈ {10, 17, 27} 1-step MAE(MaxT) = 1.07, (MinT) = 1.15 ◦C
[88] +LS-SVM v ∈ {0.2, 0.5, 0.8} 6-step MAE(MaxT) = 1.73, (MinT) = 1.50 ◦C

Minimum and maximum DT, LS-SVM Radial Function Base Kernel 1-step MAE(MaxT) = 1.35, (MinT) = 1.38 ◦C
precipitation, humidity, wind Brussels Parameter Tuning: Cross-Validation 6-step MAE(MaxT) = 2.03, (MinT) = 2.34 ◦C

speed and sea level pressure ST-LASSO L1 Penalization 1-step MAE(MaxT)=2.11, (MinT)=1.33 ◦C
+LS-SVM v ∈ {0.2, 0.5, 0.8} 3-step MAE(MaxT) = 2.44, (MinT) = 2.01 ◦C

[89] LS-SVM Radial Function Base Kernel 1-step MAE(MaxT) = 2.21, (MinT) = 1.38 ◦C
Parameter Tuning: Cross-Validation 3-step MAE(MaxT) = 2.40, (MinT) = 2.02 ◦C

[41] Temperature, Wind and Surface Pressure Zurich RCNN 8 Convolutional Filters (3× 3) + MAE = 0.88 ◦K
Max Pooling (2× 2) + 2 LSTM RNN
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4.3. Monthly Temperature Forecasting

Climate change impact assessment requires a data analysis based on the temporal resolution
at which impacts occur [90]. In this way, the evaluation of the current status and the future integrity
of diverse environmental features (fauna and flora), required to assess the climate change, involve
the construction of monthly and annual mean temperature models.

For this purpose, Bilgili and Sahin [91] predicted Long Term monthly air temperature using
an MLPNN in Turkey. Inputs in this model were associated with geographical variables (latitude,
longitude, and altitude) from 76 measuring stations and time. During the validation, the values
determined by the ANN model were compared with the actual data (1975–2006), obtaining a minimum
MAE of 0.508 ◦C. These geographical inputs also were analyzed by Kisi and Shiri [92] to predict
long-term monthly air temperature in Iran. In the study, they evaluated the performance of a classical
ANN and an Adaptive Neuro-Fuzzy Inference System (ANFIS) model, which is a combination of an
adaptive ANN and a Fuzzy Inference System (FIS). Through the evaluation process, they illustrated
that ANN strategy performed better than ANFIS in the test period based on the values of RMSE,
MAE, and other coefficient statistics. In the same way, De and Debnath [93] implemented an MLPNN
to predict the mean monthly surface temperature in the monsoon months (June, July, and August)
over India. In this case, three models were developed associated with each monsoon month for both
maximum and minimum temperature for the period 1901–2003. In the majority of the cases, prediction
error was below 5%.

In the same line, Ashrafi et al. [90] used the MLPNN approach to predict mean temperature
values in Iran . However, in this case, input values were associated with the mean temperature,
dew point temperature, relative humidity, wind speed, solar radiation, cloudiness, rainfall, station
level pressure, and green house gases of nine different climatic regions. In order to predict monthly
mean temperature, the system analyzed one month, six months, 12 months, and 24 months before
recorded data. In addition, the authors implemented three optimization methods: back-propagation
(BP), Genetic Algorithm (GA) and combined GA-Particle Swarm Optimization (PSO), showing a better
performance in the BP results. Research developed by Afzali et al. [83], described in the previous
section, addressed the monthly temperature prediction as well. In this case, an ENN was proposed as
a suitable solution, in comparison with the MLPNN.

On the other hand, Liu et al. [94] introduced the application of Wavelet coefficients (WT),
based on SVM, to predict the air temperature in Tangshan monthly. During the experiments, the
authors analyzed the monthly temperature data from 1960 to 2010, indicating that the accuracy
obtained by means of an SVM method based on wavelet transform is significantly higher than
that based on SVM and MLPNN-based models. In this context, Salcedo-Sanz et al. [95] examined
the performance of SVM and MLPNN in the problem of monthly mean air temperature prediction
in Australia and New Zealand. In this work, the authors analyzed data from a total of eight stations
in Australia, three urban stations (1900 to 2010), and five rural stations (1910 to 2010), and other two
stations in New Zealand (1930 to 2010). A performance comparison with MLPNN was carried out
to show the accuracy improvement of using SVM. A similar study was presented more recently by
Papacharalampous et al. [96]. In this work, the authors evaluated SVM and MLPNN techniques to
forecast mean monthly temperature observed in Greece. During the evaluation, the authors assessed
the one and twelve-step ahead forecasting performance of the algorithms. Based on the findings,
they suggest that neural networks algorithm can produce forecasts of many different qualities for a
particular individual case, in comparison with the SVM algorithm. This fact can be evidenced in the
RMSE values, which range from 0.63 ◦C to 6.05 ◦C for the MLPNN case and from 0.73 ◦C to 2.30 ◦C for
the SVM approach.

5. Discussion and Research Gaps Identification

The comparative evaluations developed in the papers reported in this work show different
factors that affect the ML strategies performance. Among them, the input features, the optimization
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algorithms, the configuration parameters, and the corresponding evaluation measures are of the
utmost importance. Air temperature forecasting systems have used meteorological and geographical
variables as input parameters.

Among them, it can be mentioned: maximum, minimum, and average temperature, precipitation,
pressure, Mean Sea Level, Wind Speed and Direction, Relative Humidity, Sunshine, Evaporation,
Daylight, Time (Hour, day or Month), Solar Radiation, cloudiness, CO2 emissions, latitude, longitude,
and altitude. However, the maximum, minimum, and mean values of temperature are found to be
the common parameter for all the research. In fact, a relevant amount of works use only these features
as model inputs.

Taking into account that prediction accuracy is strongly dependent on the time period, the time
horizon, and the location of the weather stations analyzed during the validation and other criteria, it is
difficult to conclude about the quality of the estimations based only on the accuracy metrics (RMSE,
MSE, MAE, etc). In this way, in order to perform the accuracy comparison of different prediction
system, it is better to use a common data-set in the validation stage. In this context, Tables 1–4 show,
when the paper reported the evaluations, the comparative results between SVM and ANN-based
strategies for the same data-set.

Most of the research developed in this area (monthly, daily and hourly) are focused on ANN
strategies (57%) in comparison with the other widely used strategy SVM (43%). However, it is possible
to see that, when SVM and ANN were compared, in most cases, SVM reported a better performance
compared with classical ANN-based strategies.

Diverse ANN models (i.e., MLPNN, RBFNN, ERNN, GRNN, JPSN, RCNN, SDAE) have
been proposed for air temperature forecasting, the MLPNN and the RBFNN being the most used
architectures for the ANN-based Approaches. Levenberg–Marquardt and Gradient Descent are
the most used optimization algorithms, with Levenberg–Marquardt showing a better performance
due to its learning rate and the smaller prediction errors. Likewise, the most used combination
of activation functions reported is the Hyperbolic Tangent or the Sigmoid for the hidden Layer
and the Pure Linear for the output Layer. For SVM-based approaches, Radial Function Base Kernels
are the most implemented functions. In addition, a considerable amount of works use Grid Search
or Cross-validation as a strategy to set the hyper-parameters involved.

Issues related to time series modeling are addressed in these research works during
the corresponding algorithm’s implementation. As a particular case, the data-set size is limited
by the amount of measurements acquired for the analysis, unless underlying physical models or
alternative simulations systems are used for data generation [40]. As such, DL-based approaches,
for instance, require the acquisition of long time series or complementary simulation systems to
generate enough samples to perform the training-validation process. In addition, in the research works
reviewed in this paper, authors have analyzed one, two, three, or more years of temperature data as
available to build ML-based models, and the training and testing data sets have a size of minimum
three years and one year, respectively, in order to predict air temperature accurately.

Based on the published literature, the parameters that impact the most on the forecasting are
many, so it could be problematic to take exactly the results of the parameter evaluation from other
research. Based on this idea, in order to draw reliable conclusions, these reported parameters just
could give an idea of the methodology developed, but they should be assessed for a data-set obtained
from a new location.

In this review, some of the proposed approaches also use variations or combinations of
strategies, as it can be seen in Tables 1–4. Based on the evaluation results, the ensemble of strategies
or the significant variations offers a better accuracy than single classical algorithms but again the best
combined strategy is difficult to define, due to the data-set changes. A considerable amount of work
is required in order to determine the best ANN or SVM based methodology among those available,
or the possible equivalence. In any case, this task is very difficult based only on the limited cases
reported in the literature.
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Table 4. Representative papers related to Monthly Temperature Prediction

Ref. Input Output Region Algorithm Configuration Evaluation Criteria/Time Horizon

Hidden Layer = 1, Hidden Nodes = 32
[91] Turkey MLPNN Levenberg–Marquardt algorithm 1-step MAE = 0.508 ◦C

Latitud, Longitude, Monthly Activation Function (Hidden) = Log-Sig

Altitude, Month Temperature Hidden Layers = 1, Hidden Nodes = 15 Station with Min RMSE = 1.53 ◦C
[92] Iran MLPNN Levenberg-Marqardt Algorithm Station with Min MAE = 1.27 ◦C

Activation Function = Tanh-Sig

January to May Max and Min Hidden Layer = 1, Hidden Nodes = 2 June MAE(Tmin, Tmax) = 0.0154, 0.0197 ◦C
[93] maximum and minimum Monthly India MLPNN Steepest Descent algorithm July MAE (Tmin, Tmax) = 0.0107, 0.0162 ◦C

temperature Temperature Learning rate = 0.9 Aug MAE (Tmin, Tmax) = 0.01013, 0.0099 ◦C

For 1, 6, 12 and 24 months before: BP- Not Specified MSE (Testing) = 0.0196 ◦C
Mean temperature, dew point MLPNN

[90] temperature, relative humidity, Monthly Iran GA- Not Specified MSE (Testing) = 0.0224 ◦C
wind speed, solar radiation, , Temperature MLPNN

cloudiness, rainfall, station level PSO- Not Specified MSE (Testing) = 0.0228 ◦C
pressure and green house gases MLPNN

Monthly ERNN Hidden Layers = 1, Hidden Nodes = 15 1-step MSE (Tmin, Tmax) = 0.081, 0.060 ◦C
Previous Mean, Maximum and Mean, Levenberg-Marqardt Algorithm 1-step MAE (Tmin, Tmax) = 0.228, 0.193 ◦C

[83] Minimum Temperature Max, and Iran MLPNN Activation Function (hidden) = Tanh-Sig 1-step MSE (Tmin, Tmax) = 0.083, 0.064 ◦C
Min Temperature Activation Function (output) = Linear 1-step MAE (Tmin, Tmax) = 0.223, 0.201 ◦C

WT+ C = 10–20, ε = 0.1–0.5 Min. MSE = 0.0937 ◦C
SVM σ = 0.05–0.55, Radial basis Kernel

[94] Mean Monthly Temperature Monthly Tangshan C = 10–20, ε = 0.1–0.5 Min. MSE = 0.5451 ◦C
Temperature SVM σ = 0.05–0.55, Radial basis Kernel

Not Specified Min. MSE = 1.0076 ◦C
MLPNN

SVM Gaussian Kernel Mean MAE = 1.0073 ◦C
Monthly Australia Grid Search for optimal C, γ, ε

[95] Mean Monthly Temperature Temperature and New MLPNN Levenberg– Marquardt algorithm 1-step Mean MAE = 1.0662 ◦C
Zealand Activation Function = Logistic

SVM Gaussian Kernel 1-step Mean RMSE = 1.31 ◦C
Monthly C = 1 and ε = 0.1

[96] Mean Monthly Temperature Temperature Greece MLPNN Hidden Layers = 1, Hidden Nodes=5 Mean RMSE = 1.7 ◦C
Activation Function = Logistic
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Considering these preliminaries, the research gaps that can be identified in this review, to continue
with the research in this field, are summarized as:

• Most of the research presented in this review is focused on the local analysis of the air temperature.
However, there is not an extensive study about the anomalies prediction of temperature at
a global level by means of these ML-based approaches. Taking into account the robust data
currently available in diverse web sites, different ML-strategies and input features could be used
to accurately predict temperature anomalies at the global level.

• Research reported at the regional level has not deeply analyzed the dependency of the temperature
values of the surrounding area in the temperature estimation. A study oriented to analyze
the impact of using temperature values of surrounding stations as inputs, based on the distance
each other, could be of particular interest.

• A large number of the works described in this review do not include a time horizon analysis.
The lack of these results makes it difficult to have a better idea of the accuracy of the method
proposed. Likewise, a set of evaluation measures must be calculated in order to facilitate
the comparison with other methods which may use the same data-set.

• Taking into account that accuracy results strongly depend on the data-set analyzed,
a comprehensive study of the influence of the data-set size for training and testing should
be done to offer a more fair comparison between strategies.

• A comparative analysis with all the available ANN-based techniques (MLPNN, RBFNN, ERNN,
GRNN, JPSN, RCNN, and SDAE) and SVM variations (LS-SVM, PSVM, WT+SVM) should be
carried out in order to determine the best strategy and algorithms to forecast air temperature for
different time horizon. In this sense, as well as it is developed in other areas, a competition using
a complete standard data-set could help in this objective.

• The effect analysis of each variable, such as maximum, minimum, and average temperature,
precipitation, pressure, Mean Sea Level, Wind Speed and Direction, Relative Humidity, Sunshine,
Evaporation, Daylight, Time (Hour, day or Month), Solar Radiation, geographical variables
(latitude, longitude, and altitude), cloudiness, and CO2 emissions, used in the prediction is
required to be taken into account to increase the temperature prediction accuracy.

• A further study about the feature selection, based on their relevance, should be performed.
Different strategies, such as Automatic Relevance Determination, closely-related sparse Bayesian
learning, or Niching genetic algorithm have not been taken into account.

• Recently, Deep Learning strategies have shown a great performance for classification tasks [97].
However, a few studies have proven, with promising results, that prediction could be accurately
done by means of these techniques. More further analysis should be developed in this area.

• For the evaluation of RNN, the size of the time series required to accurately predict a single
value of temperature should be studied. Likewise, a comprehensive study about the structure of
the recurrent unit should be included.

• In-depth analysis using statistical significance tests is required in order to assess the forecasting
model’s performance in terms of its ability to generate both unbiased and accurate forecasts.
In these cases, the respective accuracy is evaluated by using both error magnitude and directional
change error criteria.
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Abbreviations

The following abbreviations are used in this manuscript:

AANN Abductive Artificial Neural Network
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
AR Auto-Regressive
DT Daily Temperature
EN Elastic Net
ENSO El Niño Southern Oscillation
ERNN Elman Recurrent Neural Network
GLOT Global Land-Ocean Temperature
GSVM Generalized Support Vector Machine
GT Global Temperature
HFM Hopfield model
HT Hourly Temperature
JPSN Jordan Pi-Sigma Network
LASSO Least Absolute Shrinkage and Selection Operator
LS-SVM Least Squares-Support Vector Machine
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MdAE Median Absolute Error
ML Machine Learning
MLPNN MultiLayer Perceptron Neural Network
MSE Mean Squared Error
PNN Probabilistic Neural Network
PSO Particle Swarm Optimization
RBFNN Radial Basis Functions Neural Network
RCNN Recurrent Convolutional Neural Network
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SDAE Stacked Denoising Auto-Encoders
SI Solar Irradiance
SOD Stratospheric Optical Depth
SOFM Self-Organizing Feature Map
SVM Support Vector Machine
WNN Wavelet Neural Network

References

1. Tol, R.S. Estimates of the damage costs of climate change. Part 1: Benchmark estimates. Environ. Resour. Econ.
2002, 21, 47–73. [CrossRef]

2. Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.;
Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate
Change: Geneva, Switzerland, 2014.

3. Abdel-Aal, R. Hourly temperature forecasting using abductive networks. Eng. Appl. Artif. Intell. 2004,
17, 543–556. [CrossRef]

4. Li, S.; Goel, L.; Wang, P. An ensemble approach for short-term load forecasting by extreme learning machine.
Appl. Energy 2016, 170, 22–29. [CrossRef]

5. Ruano, A.E.; Crispim, E.M.; Conceiçao, E.Z.; Lúcio, M.M.J. Prediction of building’s temperature using neural
networks models. Energy Build. 2006, 38, 682–694. [CrossRef]

6. García, M.A.; Balenzategui, J. Estimation of photovoltaic module yearly temperature and performance based
on nominal operation cell temperature calculations. Renew. Energy 2004, 29, 1997–2010. [CrossRef]

http://dx.doi.org/10.1023/A:1014500930521
http://dx.doi.org/10.1016/j.engappai.2004.04.002
http://dx.doi.org/10.1016/j.apenergy.2016.02.114
http://dx.doi.org/10.1016/j.enbuild.2005.09.007
http://dx.doi.org/10.1016/j.renene.2004.03.010


Energies 2020, 13, 4215 25 of 28

7. Dombaycı, Ö.A.; Gölcü, M. Daily means ambient temperature prediction using artificial neural network
method: A case study of Turkey. Renew. Energy 2009, 34, 1158–1161. [CrossRef]

8. Camia, A.; Bovio, G.; Aguado, I.; Stach, N. Meteorological fire danger indices and remote sensing. In Remote
Sensing of Large Wildfires; Springer: Berlin/Heidelberg, Germany, 1999; pp. 39–59. [CrossRef]

9. Ben-Nakhi, A.E.; Mahmoud, M.A. Cooling load prediction for buildings using general regression neural
networks. Energy Convers. Manag. 2004, 45, 2127–2141. [CrossRef]

10. Mihalakakou, G.; Santamouris, M.; Tsangrassoulis, A. On the energy consumption in residential buildings.
Energy Build. 2002, 34, 727–736. [CrossRef]

11. Smith, D.M.; Cusack, S.; Colman, A.W.; Folland, C.K.; Harris, G.R.; Murphy, J.M. Improved surface
temperature prediction for the coming decade from a global climate model. Science 2007, 317, 796–799.
[CrossRef]

12. World Meteorological Organization. 2019. Available online: https://public.wmo.int/en/our-mandate/
what-we-do (accessed on 1 February 2019).

13. Penland, C.; Magorian, T. Prediction of Nino 3 sea surface temperatures using linear inverse modeling.
J. Clim. 1993, 6, 1067–1076. [CrossRef]

14. Penland, C.; Matrosova, L. Prediction of tropical Atlantic sea surface temperatures using linear inverse
modeling. J. Clim. 1998, 11, 483–496. [CrossRef]

15. Johnson, S.D.; Battisti, D.S.; Sarachik, E. Empirically derived Markov models and prediction of tropical
Pacific sea surface temperature anomalies. J. Clim. 2000, 13, 3–17. [CrossRef]

16. Newman, M. An empirical benchmark for decadal forecasts of global surface temperature anomalies. J. Clim.
2013, 26, 5260–5269. [CrossRef]

17. Figura, S.; Livingstone, D.M.; Kipfer, R. Forecasting groundwater temperature with linear regression models
using historical data. Groundwater 2015, 53, 943–954. [CrossRef]

18. Bartos, I.; Jánosi, I. Nonlinear correlations of daily temperature records over land. Nonlinear Process. Geophys.
2006, 13, 571–576. [CrossRef]

19. Bonsal, B.; Zhang, X.; Vincent, L.; Hogg, W. Characteristics of Daily and Extreme Temperatures over Canada.
J. Clim. 2001, 14, 1959–1976. [CrossRef]

20. Miyano, T.; Girosi, F. Forecasting Global Temperature Variations by Neural Networks; Technical Report;
Massachusetts Institute of Technology, Cambridge Artificial Intelligence Laboratory: Cambridge, MA,
USA, 1994.

21. Hippert, H.S.; Pedreira, C.E.; Souza, R.C. Combining neural networks and ARIMA models for hourly
temperature forecast. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural
Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for the New Millennium,
Como, Italy, 27 July 2000.

22. Tasadduq, I.; Rehman, S.; Bubshait, K. Application of neural networks for the prediction of hourly mean
surface temperatures in Saudi Arabia. Renew. Energy 2002, 25, 545–554. [CrossRef]

23. Lanza, P.A.G.; Cosme, J.M.Z. A short-term temperature forecaster based on a novel radial basis functions
neural network. Int. J. Neural Syst. 2001, 11, 71–77. [CrossRef]

24. Maqsood, I.; Khan, M.R.; Abraham, A. An ensemble of neural networks for weather forecasting. Neural
Comput. Appl. 2004, 13, 112–122. [CrossRef]

25. Smith, B.A.; McClendon, R.W.; Hoogenboom, G. Improving air temperature prediction with artificial neural
networks. Int. J. Comput. Intell. 2006, 3, 179–186.

26. Smith, B.A.; Hoogenboom, G.; McClendon, R.W. Artificial neural networks for automated year-round
temperature prediction. Comput. Electron. Agric. 2009, 68, 52–61. [CrossRef]

27. Jallal, M.A.; Chabaa, S.; El Yassini, A.; Zeroual, A.; Ibnyaich, S. Air temperature forecasting using artificial
neural networks with delayed exogenous input. In Proceedings of the 2019 International Conference on
Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez, Morocco, 3–4 April 2019.

28. Pal, N.R.; Pal, S.; Das, J.; Majumdar, K. SOFM-MLP: A hybrid neural network for atmospheric temperature
prediction. IEEE Trans. Geosci. Remote. Sens. 2003, 41, 2783–2791. [CrossRef]

29. Maqsood, I.; Abraham, A. Weather analysis using ensemble of connectionist learning paradigms. Appl. Soft
Comput. 2007, 7, 995–1004. [CrossRef]

30. Ustaoglu, B.; Cigizoglu, H.K.; Karaca, M. Forecast of daily mean, maximum and minimum temperature
time series by three artificial neural network methods. Meteorol. Appl. 2008, 15, 431–445. [CrossRef]

http://dx.doi.org/10.1016/j.renene.2008.07.007
http://dx.doi.org/10.1007/978-3-642-60164-4_4
http://dx.doi.org/10.1016/j.enconman.2003.10.009
http://dx.doi.org/10.1016/S0378-7788(01)00137-2
http://dx.doi.org/10.1126/science.1139540
https://public.wmo.int/en/our-mandate/what-we-do
https://public.wmo.int/en/our-mandate/what-we-do
http://dx.doi.org/10.1175/1520-0442(1993)006<1067:PONSST>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(1998)011<0483:POTASS>2.0.CO;2
http://dx.doi.org/10.1175/1520-0442(2000)013<0003:EDMMAP>2.0.CO;2
http://dx.doi.org/10.1175/JCLI-D-12-00590.1
http://dx.doi.org/10.1111/gwat.12289
http://dx.doi.org/10.5194/npg-13-571-2006
http://dx.doi.org/10.1175/1520-0442(2001)014<1959:CODAET>2.0.CO;2
http://dx.doi.org/10.1016/S0960-1481(01)00082-9
http://dx.doi.org/10.1142/S0129065701000503
http://dx.doi.org/10.1007/s00521-004-0413-4
http://dx.doi.org/10.1016/j.compag.2009.04.003
http://dx.doi.org/10.1109/TGRS.2003.817225
http://dx.doi.org/10.1016/j.asoc.2006.06.005
http://dx.doi.org/10.1002/met.83


Energies 2020, 13, 4215 26 of 28

31. Hayati, M.; Mohebi, Z. Application of artificial neural networks for temperature forecasting. World Acad. Sci.
Eng. Technol. 2007, 28, 275–279.

32. Abhishek, K.; Singh, M.; Ghosh, S.; Anand, A. Weather Forecasting Model using Artificial Neural Network.
Procedia Technol. 2012, 4, 311–318. [CrossRef]

33. Chevalier, R.F.; Hoogenboom, G.; McClendon, R.W.; Paz, J.A. Support vector regression with reduced
training sets for air temperature prediction: A comparison with artificial neural networks. Neural Comput.
Appl. 2010, 20, 151–159. [CrossRef]

34. Ortiz-García, E.; Salcedo-Sanz, S.; Casanova-Mateo, C.; Paniagua-Tineo, A.; Portilla-Figueras, J. Accurate
local very short-term temperature prediction based on synoptic situation Support Vector Regression banks.
Atmos. Res. 2012, 107, 1–8. [CrossRef]

35. Mellit, A.; Pavan, A.M.; Benghanem, M. Least squares support vector machine for short-term prediction of
meteorological time series. Theor. Appl. Climatol. 2013, 111, 297–307. [CrossRef]

36. Mori, H.; Kanaoka, D. Application of support vector regression to temperature forecasting for short-term
load forecasting. In Proceedings of the 2007 International Joint Conference on Neural Networks, Orlando,
FL, USA, 12–17 August 2017.

37. Radhika, Y.; Shashi, M. Atmospheric Temperature Prediction using Support Vector Machines. Int. J. Comput.
Theory Eng. 2009, 55–58. [CrossRef]

38. Paniagua-Tineo, A.; Salcedo-Sanz, S.; Casanova-Mateo, C.; Ortiz-García, E.; Cony, M.; Hernández-Martín, E.
Prediction of daily maximum temperature using a support vector regression algorithm. Renew. Energy
2011, 36, 3054–3060. [CrossRef]

39. Abubakar, A.; Chiroma, H.; Zeki, A.; Uddin, M. Utilising key climate element variability for the prediction of
future climate change using a support vector machine model. Int. J. Glob. Warm. 2016, 9, 129–151. [CrossRef]

40. Hewage, P.; Trovati, M.; Pereira, E.; Behera, A. Deep learning-based effective fine-grained weather forecasting
model. Pattern Anal. Appl. 2020, 1–24. [CrossRef]

41. Roesch, I.; Günther, T. Visualization of Neural Network Predictions for Weather Forecasting. Comput. Graph.
Forum 2018, 38, 209–220. [CrossRef]

42. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2009.
43. Duveiller, G.; Fasbender, D.; Meroni, M. Revisiting the concept of a symmetric index of agreement for

continuous datasets. Sci. Rep. 2016, 6, 19401.
44. Kalogirou, S.A. Artificial neural networks in renewable energy systems applications: A review.

Renew. Sustain. Energy Rev. 2001, 5, 373–401. [CrossRef]
45. Haykin, S. Neural Networks; Prentice Hall: New York, NY, USA, 1994; Volume 2.
46. Haykin, S.S.; Haykin, S.S.; Haykin, S.S.; Elektroingenieur, K.; Haykin, S.S. Neural Networks and Learning

Machines; Pearson Education: Bengaluru, India, 2009; Volume 3.
47. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
48. Vapnik, V. The Nature of Statistical Learning Theory; Springer Science & Business Media: New York, NY,

USA, 2013.
49. Cristianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and other Kernel-Based Learning

Methods; Cambridge University Press: Cambridge, MA, USA, 2000.
50. Gunn, S.R.; Support vector machines for classification and regression. In ISIS Technical Report; University of

Southampton: Southampton, UK, 1998; Volume 14, pp. 5–16.
51. Mellit, A. Artificial Intelligence technique for modelling and forecasting of solar radiation data: A review.

Int. J. Artif. Intell. Soft Comput. 2008, 1, 52–76. [CrossRef]
52. Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables:

A review of modelling issues and applications. Environ. Model. Softw. 2000, 15, 101–124. [CrossRef]
53. Argiriou, A. Use of neural networks for tropospheric ozone time series approximation and forecasting—

A review. Atmos. Chem. Phys. Discuss. 2007, 7, 5739–5767. [CrossRef]
54. Wang, W.; Xu, Z.; Weizhen Lu, J. Three improved neural network models for air quality forecasting.

Eng. Comput. 2003, 20, 192–210. [CrossRef]
55. Ko, C.N.; Lee, C.M. Short-term load forecasting using SVR (support vector regression)-based radial basis

function neural network with dual extended Kalman filter. Energy 2013, 49, 413–422. [CrossRef]
56. Topcu, I.B.; Sarıdemir, M. Prediction of compressive strength of concrete containing fly ash using artificial

neural networks and fuzzy logic. Comput. Mater. Sci. 2008, 41, 305–311. [CrossRef]

http://dx.doi.org/10.1016/j.protcy.2012.05.047
http://dx.doi.org/10.1007/s00521-010-0363-y
http://dx.doi.org/10.1016/j.atmosres.2011.10.013
http://dx.doi.org/10.1007/s00704-012-0661-7
http://dx.doi.org/10.7763/IJCTE.2009.V1.9
http://dx.doi.org/10.1016/j.renene.2011.03.030
http://dx.doi.org/10.1504/IJGW.2016.074952
http://dx.doi.org/10.1007/s10044-020-00898-1
http://dx.doi.org/10.1111/cgf.13453
http://dx.doi.org/10.1016/S1364-0321(01)00006-5
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1504/IJAISC.2008.021264
http://dx.doi.org/10.1016/S1364-8152(99)00007-9
http://dx.doi.org/10.5194/acpd-7-5739-2007
http://dx.doi.org/10.1108/02644400310465317
http://dx.doi.org/10.1016/j.energy.2012.11.015
http://dx.doi.org/10.1016/j.commatsci.2007.04.009


Energies 2020, 13, 4215 27 of 28

57. Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688.
[CrossRef]

58. Shcherbakov, M.; Brebels, A. Outliers and anomalies detection based on neural networks forecast procedure.
In Proceedings of the 31st Annual International Symposium on Forecasting, ISF, Prague, Czech Republic,
26–29 June 2011.

59. Armstrong, J.; Collopy, F. Error measures for generalizing about forecasting methods: Empirical comparisons.
Int. J. Forecast. 1992, 8, 69–80. [CrossRef]

60. Banhatti, A.G.; Deka, P.C. Effects of Data Pre-processing on the Prediction Accuracy of Artificial Neural
Network Model in Hydrological Time Series. In Urban Hydrology, Watershed Management and Socio-Economic
Aspects; Springer International Publishing: Cham, Switzerland, 2016; pp. 265–275. [CrossRef]

61. Chen, C.; Twycross, J.; Garibaldi, J.M. A new accuracy measure based on bounded relative error for time
series forecasting. PLoS ONE 2017, 12, e0174202. [CrossRef]

62. Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A. A survey of
forecast error measures. World Appl. Sci. J. 2013, 24, 171–176.

63. Solomon, S.; Qin, D.; Manning, M.; Averyt, K.; Marquis, M. Climate Change 2007—The Physical Science
Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press:
Cambridge, MA, USA, 2007; Volume 4.

64. Lee, T.C.; Zwiers, F.W.; Zhang, X.; Tsao, M. Evidence of decadal climate prediction skill resulting from
changes in anthropogenic forcing. J. Clim. 2006, 19, 5305–5318. [CrossRef]

65. Stott, P.A.; Kettleborough, J.A. Origins and estimates of uncertainty in predictions of twenty-first century
temperature rise. Nature 2002, 416, 723. [CrossRef]

66. Knutti, R.; Stocker, T.; Joos, F.; Plattner, G.K. Probabilistic climate change projections using neural networks.
Clim. Dyn. 2003, 21, 257–272. [CrossRef]

67. Pasini, A.; Lorè, M.; Ameli, F. Neural network modelling for the analysis of forcings/temperatures
relationships at different scales in the climate system. Ecol. Model. 2006, 191, 58–67. [CrossRef]

68. Pasini, A.; Pelino, V.; Potestà, S. A neural network model for visibility nowcasting from surface observations:
Results and sensitivity to physical input variables. J. Geophys. Res. Atmos. 2001, 106, 14951–14959. [CrossRef]

69. Fildes, R.; Kourentzes, N. Validation and forecasting accuracy in models of climate change. Int. J. Forecast.
2011, 27, 968–995. [CrossRef]

70. Hassani, H.; Silva, E.S.; Gupta, R.; Das, S. Predicting global temperature anomaly: A definitive investigation
using an ensemble of twelve competing forecasting models. Phys. A Stat. Mech. Its Appl. 2018, 509, 121–139.
[CrossRef]

71. Jones, P.; Wigley, T.; Wright, P. Global temperature variations between 1861 and 1984. Nature 1986, 322,
430–434. [CrossRef]

72. Jones, P.; New, M.; Parker, D.E.; Martin, S.; Rigor, I.G. Surface air temperature and its changes over the past
150 years. Rev. Geophys. 1999, 37, 173–199. [CrossRef]

73. University of East Anglia. Climatic Research Unit. 2019. Available online: http://www.cru.uea.ac.uk/
(accessed on 1 March 2019).

74. GesDisc. Solar Irradiance Anomalies. 2019. Available online: http://www.soda-pro.com/ (accessed on
1 March 2019).

75. GISS. Stratospheric Aerosol Optical Thickness. 2019. Available online: https://data.giss.nasa.gov/
modelforce/strataer/ (accessed on 1 March 2019).

76. NCEI. Ocean Carbon Data System (OCADS). 2019. Available online: https://www.nodc.noaa.gov/ocads/
(accessed on 1 March 2019).

77. NASA. GISS Surface Temperature Analysis (GISTEMP v3). 2019. Available online: https://data.giss.nasa.
gov/gistemp/index_v3.html (accessed on 1 March 2019).

78. Xuejie, G.; Zongci, Z.; Yihui, D.; Ronghui, H.; Giorgi, F. Climate change due to greenhouse effects in China
as simulated by a regional climate model. Adv. Atmos. Sci. 2001, 18, 1224–1230. [CrossRef]

79. Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification. 2003. Available online:
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (accessed on 1 March 2019).

80. Hossain, M.; Rekabdar, B.; Louis, S.J.; Dascalu, S. Forecasting the weather of Nevada: A deep learning
approach. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, 12–17 July 2015. [CrossRef]

http://dx.doi.org/10.1016/j.ijforecast.2006.03.001
http://dx.doi.org/10.1016/0169-2070(92)90008-W
http://dx.doi.org/10.1007/978-3-319-40195-9_21.
http://dx.doi.org/10.1371/journal.pone.0174202
http://dx.doi.org/10.1175/JCLI3912.1
http://dx.doi.org/10.1038/416723a
http://dx.doi.org/10.1007/s00382-003-0345-1
http://dx.doi.org/10.1016/j.ecolmodel.2005.08.012
http://dx.doi.org/10.1029/2001JD900134
http://dx.doi.org/10.1016/j.ijforecast.2011.03.008
http://dx.doi.org/10.1016/j.physa.2018.05.147
http://dx.doi.org/10.1038/322430a0
http://dx.doi.org/10.1029/1999RG900002
http://www.cru.uea.ac.uk/
http://www.soda-pro.com/
https://data.giss.nasa.gov/modelforce/strataer/
https://data.giss.nasa.gov/modelforce/strataer/
https://www.nodc.noaa.gov/ocads/
https://data.giss.nasa.gov/gistemp/index_v3.html
https://data.giss.nasa.gov/gistemp/index_v3.html
http://dx.doi.org/10.1007/s00376-001-0036-y
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://dx.doi.org/10.1109/IJCNN.2015.7280812


Energies 2020, 13, 4215 28 of 28

81. Pardo, A.; Meneu, V.; Valor, E. Temperature and seasonality influences on Spanish electricity load.
Energy Econ. 2002, 24, 55–70. [CrossRef]

82. Samani, Z. Estimating solar radiation and evapotranspiration using minimum climatological data. J. Irrig.
Drain. Eng. 2000, 126, 265–267. [CrossRef]

83. Afzali, M.; Afzali, A.; Zahedi, G. The Potential of Artificial Neural Network Technique in Daily and Monthly
Ambient Air Temperature Prediction. Int. J. Environ. Sci. Dev. 2012, 3, 33–38. [CrossRef]

84. Husaini, N.A.; Ghazali, R.; Nawi, N.M.; Ismail, L.H. Jordan Pi-Sigma Neural Network for Temperature
Prediction. In Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany,
2011; pp. 547–558. [CrossRef]

85. Rastogi, A.; Srivastava, A.; Srivastava, V.; Pandey, A. Pattern analysis approach for prediction using Wavelet
Neural Networks. In Proceedings of the 2011 Seventh International Conference on Natural Computation,
Shanghai, China, 26–28 July 2011. [CrossRef]

86. Sharma, A.; Agarwal, S. Temperature Prediction using Wavelet Neural Network. Res. J. Inf. Technol.
2012, 4, 22–30. [CrossRef]

87. Wang, G.; Qiu, Y.F.; Li, H.X. Temperature Forecast Based on SVM Optimized by PSO Algorithm.
In Proceedings of the 2010 International Conference on Intelligent Computing and Cognitive Informatics,
Kuala Lumpur, Malaysia, 22–23 June 2010. [CrossRef]

88. Karevan, Z.; Mehrkanoon, S.; Suykens, J.A. Black-box modeling for temperature prediction in weather
forecasting. In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN),
Killarney, Ireland, 12–17 July 2015. [CrossRef]

89. Karevan, Z.; Suykens, J.A.K. Spatio-temporal feature selection for black-box weather forecasting.
In Proceedings of the 24th European Symposium on Artificial Neural Networks, ESANN 2016, Bruges,
Belgium, 27–29 April 2016.

90. Ashrafi, K.; Shafiepour, M.; Ghasemi, L.; Araabi, B. Prediction of climate change induced temperature rise in
regional scale using neural network. Int. J. Environ. Res. 2012, 6, 677–688.

91. Bilgili, M.; Sahin, B. Prediction of Long-term Monthly Temperature and Rainfall in Turkey. Energy Sources
Part A Recover. Util. Environ. Eff. 2009, 32, 60–71. [CrossRef]

92. Kisi, O.; Shiri, J. Prediction of long-term monthly air temperature using geographical inputs. Int. J. Climatol.
2013, 34, 179–186. [CrossRef]

93. De, S.; Debnath, A. Artificial neural network based prediction of maximum and minimum temperature in
the summer monsoon months over India. Appl. Phys. Res. 2009, 1, 37. [CrossRef]

94. Liu, X.; Yuan, S.; Li, L. Prediction of Temperature Time Series Based on Wavelet Transform and Support
Vector Machine. J. Comput. 2012, 7. [CrossRef]

95. Salcedo-Sanz, S.; Deo, R.C.; Carro-Calvo, L.; Saavedra-Moreno, B. Monthly prediction of air temperature
in Australia and New Zealand with machine learning algorithms. Theor. Appl. Climatol. 2015, 125, 13–25.
[CrossRef]

96. Papacharalampous, G.; Tyralis, H.; Koutsoyiannis, D. Univariate Time Series Forecasting of Temperature
and Precipitation with a Focus on Machine Learning Algorithms: A Multiple-Case Study from Greece.
Water Resour. Manag. 2018, 32, 5207–5239. [CrossRef]

97. Gamboa, J.C.B. Deep learning for time-series analysis. arXiv 2017, arXiv:1701.01887.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/S0140-9883(01)00082-2
http://dx.doi.org/10.1061/(ASCE)0733-9437(2000)126:4(265)
http://dx.doi.org/10.7763/IJESD.2012.V3.183
http://dx.doi.org/10.1007/978-3-642-20998-7_61
http://dx.doi.org/10.1109/icnc.2011.6022288
http://dx.doi.org/10.3923/rjit.2012.22.30
http://dx.doi.org/10.1109/icicci.2010.24
http://dx.doi.org/10.1109/ijcnn.2015.7280671
http://dx.doi.org/10.1080/15567030802467522
http://dx.doi.org/10.1002/joc.3676
http://dx.doi.org/10.5539/apr.v1n2p37
http://dx.doi.org/10.4304/jcp.7.8.1911-1918
http://dx.doi.org/10.1007/s00704-015-1480-4
http://dx.doi.org/10.1007/s11269-018-2155-6
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Overview of Machine Learning Based Strategies and Forecast Performance Factors
	Artificial Neural Networks
	Support Vector Machines
	Evaluation Measures
	Input Features, Time Horizon, and Spatial Scale

	Long-Term Global Temperature Forecasting
	Regional Temperature Forecasting
	Hourly Temperature Forecasting
	Daily Temperature Forecasting
	Monthly Temperature Forecasting

	Discussion and Research Gaps Identification
	References

