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Abstract: In this article, a novel maximum power point tracking (MPPT) controller for the
fast-changing irradiance of photovoltaic (PV) systems is introduced. Our technique utilizes a modified
incremental conductance (IC) algorithm for the efficient and fast tracking of MPP. The proposed
system has a simple implementation, fast tracking, and achieved steady-state oscillation. Traditional
MPPT techniques use a tradeoff between steady-state and transition-state parameters. The shortfalls
of various techniques are studied. A comprehensive comparative study is done to test various existing
techniques against the proposed technique. The common parameters discussed in this study are
fast convergence, efficiency, and reduced oscillations. The proposed method successfully addresses
these issues and improves the results significantly by using a proportional integral deferential (PID)
controller with a genetic algorithm (GA) to predict the variable step size of the IC-based MPPT
technique. The system is designed and tested against the perturbation and observation (P&O)-based
MPPT technique. Our technique effectively detects global maxima (GM) for fast-changing irradiance
due to the adopted GA-based tuning of the controller. A comparative analysis of the results proves
the superior performance and capabilities to track GM in fewer iterations.

Keywords: genetic algorithm (GA); photovoltaic (PV); maximum power point tracking (MPPT);
incremental conductance (IC); proportional integral deferential (PID); local maxima (LM); global
maxima (GM)

1. Introduction

Nonrenewable fossil fuel-based energy has been the driving force of economies, recent
advancements in technology, the availability of resources, global warming, and changing economic
models and the depletion of conventional resources [1] has pushed governments and researchers
to come up with novel ideas to address all the issues in single solution [2]. Renewable resources
are nowadays a significant addition to the ever-increasing demand for energy [3]. Biogas, wind,
solar, and wave energy are emerging at a fast pace and, among these, solar stands out due to its
high efficiency, low maintenance cost, and scalability. Renewable energy is the need of the hour.
Solar energy is expected to provide 1/3 of the world’s electrical energy demands by the year 2060.
All other forms of renewable energy resources are highly restricted to geographical availability. Wind,
geothermal, and tidal wave energy are highly localized. The only form abundant enough throughout
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the globe is solar energy. Rapidly falling manufacturing prices, technological improvement, favorable
governmental legislation, job creation, environmental concerns, and a low carbon footprint are the
reasons we have seen in recent years a tremendous increase in solar energy utility [4]. Academics
have researched it in this regard. In the year 2018, an 8.3% increase in renewable generation was
recorded. In solar energy, the focus of research work is on photovoltaics, concentrated solar power,
manufacturing, and scalability.

Among all renewable energy sources (RESs), solar is a noise-free, pollution-free, and inexhaustible
resource. PV systems are a growing industry. Since the advent of the solar cell in the 1970s,
the efficiencies of solar cells increased significantly. Solar energy is reliable, cheap, and abundant.
Operating temperature and irradiance significantly affect the power an array can deliver [5]. The solar
cell parameters are nonlinear by nature [6]. For a given pattern of shaded irradiance, the maximum
available power is associated with a unique point on the power-voltage (P–V) curve, commonly known
as the global maximum power point (GMPP), as shown in Figures 1 and 2. The control action is
applied to force the PV system to operate at the GMPP with the highest efficiency possible. MPPT
increases output power significantly. Dynamic irradiance complicates the task of maximum power
point tracking (MPPT) due to the existence of multiple local maxima (LM) [7]. The classical perturb
and observe (P&O) and incremental conductance (IC) cannot distinguish between local solutions due
to a single point of operation. At LM, P&O and IC produce oscillations and cause the dissipation of
available power. To minimize oscillations, the step size is reduced, which takes a toll on convergence
speed. On the other hand, a larger step size, although increasing rise time, results in higher oscillations
in the steady state. So, there is a tradeoff between convergence speed and efficiency.
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The effects of changes in temperature and irradiance are shown in Figures 1 and 2. The irradiance
has significant effects upon the current output (I). The magnitude of output power is directly
proportional to irradiance intensity. The temperature has a predominant effect upon the MPP point
and voltage, specifically open-circuit voltage (Voc). The output power is inversely proportional to the
operating temperature [8].

A PV system is shown in Figure 3. A DC-DC boost converter is utilized for load interface and
control action via a pulse width-modulated (PWM) control action provided by the duty cycle.
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Photovoltaic characteristics are dependent upon irradiance, weather conditions, operating
temperature, manufacturing technology, and mounting techniques [9]. Photovoltaic resources have
been utilized in domestic PV systems, commercial solar parks, satellites, and remote small-scale
utilities [10]. The efficiency of a PV system is a combination of the PV array (17–42%), inverter
(up to 95%), and MPPT (98%) [11]. Modern control systems focus on MPPT to improve efficiency.
Already existing systems also utilize improvised control with updated algorithms to maximize output.
MPPT techniques are classified into offline, online, and hybrid methods. The offline methods make use
of predefined parameters and mathematical models of a PV array to track MPPT and do not consider
actual output power. The drawbacks of such systems are that they cannot detect the maximum power
point during rapidly changing irradiance. Online methods, i.e., incremental conductance (IC) [12],
perturb and observe (P&O) [13], and hill climbing (HC), measure the actual output power. The input
and output power difference is utilized for decision making. Direct control is utilized to decide to
either increase or decrease control parameters. The hybrid methods are applied in two steps. In the
first step, general regression neural networks (GRNN), genetic algorithms (GAs), fuzzy, or artificial
neural networks (ANNs) integrated with PID controllers are optimized according to the desired
parameters. The second step involves the usage of optimized parameters for typical MPPT control
action [11,12,14–23].

Although these methods are effective in tracking GM, there are some problems, like multiple LM,
steady-state fluctuations, and oscillations that cannot be tackled. Heuristic algorithms like particle
swarm optimization (PSO) and multiple knapsack (MKP) are successfully used for the accurate
identification of global maxima (GM) [24]. In hybrid models of MPPT, advanced methods are used
to maximize PV outputs. P&O, HC, and IC are the most common MPPT techniques because of their
simplicity of implementation and integration with multiple heuristic algorithms to utilize power
management controllers with renewable energy resources effectively.

Starting from the development of the PV mathematical model, different techniques are used to
develop a comprehensive mathematical model of PV cells and arrays. This modeling is done based on
the predefined characteristics of the module. A more advanced approach also considers the real-time
changes in P–V characteristics due to temperature, changes in resistances due to load, etc. however,
a PV cell equivalent circuit model, single diode model, double diode model, simplified PV model,
and current source model are used to emphasize different controlling techniques in different types of
MPPT algorithms [25].
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The development of intelligent control and nature-inspired heuristic algorithms has enabled us to
tackle problems like hotspot formation, non-uniform temperature spikes, partial shading, and other
encapsulation failures that cause a loss of output power in a standard module. A defected module
degrades the performance of the array, and consequently the whole system starts to underperform.

A PID controller is utilized independently or in combination with P&O and IC to enhance the
transient and steady-state responses. To further enhance the output power and find global maxima,
PSO, GAs, and ant colony optimization (ACO) are used. The hybrid approach to tune PID-PI controllers
and DC-DC converters to obtain maximum power has been studied in several papers and they show
the superior performance in terms of computation power [26–28].

Modern controlling action includes robustness, accuracy, and the fast tracking of MPP. Variable
step size, fuzzy logic controllers (FLZ), Hybrid particle swarm optimization (HPSO), neural networks
(NNs), and GRNNs are utilized to implement real-time control action. Our study focuses on the
utilization of a modified GA to fine-tune a PID controller to optimize boost converter output for
tracking MPP [29].

An ANN-PI [30] controller is compared with IC in [31]. GMMPT PSO [32]-based models are
reviewed. An MPPT controller and its results are compared, exhibiting a better performance of
ANN-PI, especially under partial shading conditions (PSCs). An ANN-PI controller in [30] is compared
with an IC MPPT controller, and the results show a better performance of ANN-PI, especially under
PSCs. In [33], a GA-based MPPT is utilized. The work focuses on avoiding LM conventional MPPT
issues with a GA-based GM-based algorithm to avoid trapping the controller in LM. As for a P&O
system embedded in a GA, this system does not need pre-setup and can be applied to any PV
model. The successful tracking of MPP is achieved by locating global maxima [34]. In [35], a GA is
resettled/reinitialized at the start of every population, raising the question of genetic pool and crossover.
The initial population is reset in case of a large change in parameters like irradiance, temperature,
or load, which have to be compensated. The method of introducing an extremely small series resistance
in the mathematical model along with high crossover and mutation probabilities provides similar
functionality. Although it can help to find global maxima in a very small population, in case of higher
mutation and crossover steady-state responses, overshoot can be significantly higher. The larger
population requires more computational power. Ahmed et al. in [36] compared the performance of a
GA with GA-ANN power tracking efficiency while providing a better solution. Still, a lag in initial
controlling action by the GA-ANN is observed because of the first few iterations, during which control
action is not optimized. Although there are transient state lags, the steady-state response is better as
compared to an ANN. This is the reason PID-GA tuning has been preferred, which makes use of not
only predefined control action initially but it is also fine-tuned as the control action time progresses [37].
Chicken swarm optimization (CSO) is a new genetic algorithm based upon a biological algorithm in
which initial positions are arranged in chaotic sequence. Using this technique, the risk of falling into
an LM trap is avoided. Multiple peak curves are detected effectively and global maxima tracking is
done in a stable manner [38].

In light of the literature review, the existing techniques lack efficient MPPT tracking, slow
convergence, and exhibit oscillations around MPP. The common requirement from an MPPT controller
is fast GM tracking, high efficiency, robustness, and zero oscillations around MPP. The proposed GAIC
MPPT controllers successfully overcome the shortcomings of existing P&O controllers by the adaptive
change in step size of the modified IC. This is achieved by the offline tuning of PID gains by the GA to
enhance the online step size of the IC using GA. The comparative analysis shows the effectiveness
under fast varying irradiance and temperature case studies.

2. PV System Model and Characteristics

A single-diode equivalent model is presented in Figure 4. The nonlinear characteristics of
operating temperature and irradiance dynamics are also incorporated. The PV cell acts as a current
source when sunlight falls upon it. Ideally, it can be presented as a single diode model. To practically
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incorporate real behavior of the PV cell, a series (Rs) and a parallel resistance (Rsh) are added [11]. This
edition incorporates the leakage current losses, junction resistances, etc. The ideal is given in Equation
(1) and practical models are given by Equation (2) [39].

I = Ipv − Io exp
( Vd

nVt
− 1

)
(1)

I = Ipv − Io exp
(Vd − IRs

nVt
− 1

)
−

(
V − IRs

Rsh

)
(2)

where I is the output current, Io is the saturation current, V stands for voltage, k is the Boltzmann
constant (1.6021 × 10−23 J/K), Vt is the thermal voltage, and q is the electron charge (1.6021 × 10−19 C).
the parameters of Figure 4 are presented in Table 1.

Vt =
nkT

q
(3)
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Table 1. Symbols of PV cell nomenclature.

Symbol Description

I Output current
Id Diode current
Iph Cell current proportional to irradiance
Rsh Shunt resistance (parallel resistance)
Rs Series resistance
V Cell voltage
N Diode ideality factor

The drawback of a large step size is handled in modified IC-based step size MPPT. Improved
tracking in both the dynamic and steady state is still an issue. A new PID controller with a GA is
proposed in this paper to tune boost the converter’s input duty cycle for maximizing PV output
power, as shown in Figure 5. The results of the comparative study are studied and show remarkable
improvement as compared to classical MPPT in terms of response time, overshoot, and ripple [25].
A brief comparative study of literature review is given in Table 2.
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Table 2. Comparative study.

Reference Technique Content Remarks

Abdelghani [40] Adoptive P&O MPPT using GA-tuned PID controller of variable step size.
P&O algorithm for steady-state and dynamic response.

P. Seena [30] ANN-PI-based GA
ANN-PI controller is compared with the IC MPPT controller,
and results are compared, showing superior performance of

ANN-PI, especially under partial shading conditions.

Ramaprabha [33] GA-based MPPT
Work focuses on avoiding LM, a conventional MPPT issue,

with GA-based GM-based algorithm to avoid trapping of the
controller in LM.

Shaikh Y. Y. et al. [34] GA-P&O

A P&O system is embedded in a GA, this system does not
need pre-setup and can be applied to any PV model, it

exhibited successful tracking of MPP, successfully locating
global maxima.

Shankar et al. [41] CGA-PSO for MPPT
Deals with LM and successfully applied CGA-based HPSO
algorithm for MPPT. HPSO outperforms fixed-step tracking

algorithms (P&O).

Deshkar et al. [35] GA, P&O vs. IC

GA is resettled/reinitialized at the start of every population,
raising the question of genetic pool and crossover, which

means the authors give the idea to reset the initial population
in the case of any parameter like irradiance, temperature, or

load. Utilization of extremely small series resistance in a
mathematical model along with high crossover and high

mutation probabilities. It can help to find global maxima using
a small population, but because of higher mutation and
crossover steady-state responses, the overshoot can be

significantly higher. A larger population will require a lot of
computational power.

Liu et al. [31] GMMPT PSO based
models review

GMPPT is extensively studied, and various aspects are
highlighted, which conclude the superiority of PSO for the fast

and accurate identification of GM

Duy C. Huynh [42] P&O and IC
Implements a modified IC and CV algorithm to increase

convergence speed. Simulation results exhibit the superior
performance of IC over P&O under partial shading conditions.

Zhong Qiang Wu et al. [37] CSO-GA
Chicken swarm optimization uses a chaotic sequence to

initialize the population in search space. Hence, the risk of
falling into the LM trap is minimized.

Ankit et al. [43] FLC-IC
Shortcomings of classical P&O are minimized by utilizing an
FLC-based IC controller, steady-state response loss reduction

in the oscillation of power around MPP.

Ahmed et al. [36] GA-ANN

A comparison of GA and GA-ANN efficiency. The lag of
initial controlling action by the GA-ANN during initial

iterations is not optimized in transient state. The steady-state
response is better as compared to ANN. Due to this reason,

PID-GA is preferred for tuning of the duty cycle.

Boost Converter

The boost converter, as the name suggests, steps up the voltage. In the boost DC-DC converter,
the output voltage is higher than the input, including in the floating boost topology, where the input
does not share the reference to the input voltage. Converters are utilized in supply rails that require a
higher voltage as compared to the available DC sources similar to our case where we have to generate a
standard voltage output with high efficiency and an ultralow standby current with small size wearable,
portable, and reliable functionality in a PV module grid system. The PV module used in this study is
SunPower SPR-315E-WHT-D and its electrical characteristics are given in Table 3. The PV panel used
in this study is Equation (4) gives the relationship between control action and output [44].

D = 1−
Vin
Vo

(4)
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Table 3. Electric characteristics of SunPower SPR-315E-WHT-D 17.9 W/ft2 (192.9 W/m2).

Description SunPower SPR-315E-WHT-D

Maximum power
(
P ¬max

)
315 W

Peak efficiency 19.3%
Temperature coefficient of power −0.38%/K

Nominal operating cell temperature 45 ◦C
Voltage power

(
V ¬

max

)
54.7 V

Open circuit voltage (Voc) 64.6 V
Current at maximum power

(
I ¬max

)
5.76 A

Short circuit current
(
I ¬
SC

)
6.14 A

Temperature coefficient of Isc (0.065 ± 0.01)%/K
Temperature coefficient of Voc −0.18 V/K

3. Modified GA-IC

Many researchers have successfully implemented the P&O algorithm for MPPT [22,45]. Although
P&O successfully tracks with reasonable efficiency, in MPPT, it oscillates back and forth and causes
significant steady-state errors [12]. On the other hand, the new IC has the advantage of the determination
of MPP and the IC-based algorithm proposed has overcome the shortfall of P&O. The ratio of change in
output conductance is equal to the negative output conductance. Conductance is an electrical term and
is a ratio of current to voltage as given by Equation (5). At the MPP, the slope of the curve is zero [46].

dV/dI = −V/I


= −V/I at MPP
> −V/I le f t o f MPP
< −V/I right o f MPP

 (5)

The change in output power with respect to voltage is given by Equation (6).

dP
dV

= I +
VxdI
dV

(6)

3.1. Proposed GA-Based Adaptive Step Size IC MPPT

The main objective of the PV control system is to provide maximum output power for given
weather irradiation and temperature conditions. Energy optimization for the load is done by using
a DC-DC converter that provides a controlling interface between the PV array and load. The duty
cycle is utilized to produce a reference voltage for DC-DC boost converter pulse width modulation
(PWM). The duty cycle is modified by adding a fixed step size change to perform the controlling action.
This works presents a novel modified step size technique that utilizes a modification in the step size
of classical IC. GA is used to optimize the gain of the PID controller, which alters the magnitude of
step change (∆d) in both transition and steady states. This system is presented in the form of a block
diagram in Figure 5a.
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3.2. Genetic Algorithm

In biological evolution, species, depending upon their positive or negative success in reproduction
and survival in a particular environment, are successfully able to reproduce further and pass their
traits to future generations. Because the generation of variety and differential survival through
reproduction, evolution takes place. This is the basic biological evolution concept inspired by
evolutionary computation (EC). Genetic algorithms are computational models inspired by evolution.
The potential solution to a problem is encoded in chromosomes. Each chromosome carries a unique set
of traits, i.e., a solution for the application of recombination operators to preserve critical information.
Just like NNs, the GA is also considered as a function optimizer. To date, GAs have been applied to a
broad range of applications. The widespread applicability, inherent parallelism, and global perspective
are the main reasons for the popularity of GAs in the search for and optimization of problems.

3.3. GA-Based Tuning of PID Controller

A PID controller is utilized as an indirect control action. Each control parameter is encoded as a
binary string of chromosomes. The PID controller is mathematically given by Equation (7) [47].

u(t) = Kpe(t) + Ki

t∫
0

e(t)dτ+ Kd
de(t)

dt
(7)

where Kp is the proportional gain, Ki is the integral gain, and Kd is the derivative gain. Optimization is
done to minimize the e(t) given by Equation (8).

e(t) = SP− PV(t) (8)

where e(t) is the error in terms of reference or set point (SP) and process value (PV), t is the instantaneous
time, and τ is the variable of integration that takes values from 0→ t at the instant of operation.

A genetic algorithm is used to tune the gains of the PID controller. Parameters Kp, Kd, and Ki are
encoded as chromosome binary strings. Each chromosome is assigned 16 bits. The total length of the
string is 48 bits. Selection is applied to a group of chromosomes to obtain a mating pool. In the GA,
the main reason for obtaining a mating pool is to select healthy individuals for reproduction. In our
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case, the selection of parents is done on the basis of fitness proportionate selection, roulette selection
assigns a fitness to a possible solution in a population which is associated with the probability of the
selection of each chromosome. The solutions with higher fitness are less likely to be eliminated. It gives
a healthy first generation to begin with.

3.4. Operation of the GA

The GA starts with a string of fixed length code, representing possible solutions. Potential
solutions are known as chromosomes. Each chromosome is tested against a fitness function and
is assigned a fitness value. Afterward, three different operations are applied to the population of
chromosomes. These operations are:

1. Selection: the selection is applied to the population to obtain the fittest mating pool.
2. Crossover: crossover is an operation applied to the strings of the mating pool in which two

randomly selected strings swap some portion of the string between each other.
3. Mutation: in mutation, the lower bits of string data of an individual chromosome are inverted,

0–1 and 1–0, which generates newer traits and diversity in the solution space.

The iteration of these operations gives rise to a new generation. Every new generation represents
a better result or optimization of the solution. At the end of one iteration, the stopping criterion is
checked. The stopping criterion can be a predefined time limit, the number of iterations, or population
convergence. A flowchart of a GA is shown in Figure 6.
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3.4.1. Crossover

For the next generation, crossover is performed, and new individuals contain genetic material
from both of the parents. We applied single point crossover in our case, as illustrated by Figure 7.
Mutation, as shown in Figure 8, is a genetic operation by means of which it is ensured that bio-genetic
diversity in next generation is preserved.
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3.4.2. Mutation

The fitness is calculated for each chromosome by an equivalent real number binary magnitude
representing the gain signal of the PID signal. Each iteration gives a set of values passed to the PID
controller in order to compute the control signal of the system, as shown in Figure 9. The role of
mutation is to help us explore more of the solution space. Mutation is introduced by complementing
the lower nibble bits of the binary string. It stops the population from falling into local minima.
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3.4.3. Fitness Function

The fitness function is presented by Equation (9). Most fitness functions make use of overshoot,
rise time, settling time, steady-state error, or a combination of any of these criteria, and any one of these
can be potential fitness function. We have made use of a combination of scaling factor and integral
square error (ISE) [40]. The parameters α and β are both given equal preference, i.e., α = β = 0.5.

F = α·overshoot + β·ISE (9)

Peak overshoot is calculated using Equation (10).

peak overshoot =
ovpeak − ovss

ovss
·100% (10)

Overshoot is calculated using Equation (11).

overshoot = max
(
Pout − Pre f

)
(11)
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ISE is calculated using Equation (12).

ISE =

τ∫
0

(
Pre f − Pout

)2
dt (12)

3.5. Experimental Implementation of Modified GA-IC MPPT

Table 4 gives the parameters of the GA under implementation. Table 5 presents the optimized sets
of the PID controller. The size of the population increases efficiency but takes a toll on computation, so it
does iterations. The crossover probability makes use of the transfer of characteristics being transferred
to the next generation. Mutation introduces new traits. It diversifies the solution and eliminates
stagnation in each iteration. Figure 9 gives the detailed flow of proposed MPPT control action.

Table 4. GA parameters.

Description Values

Population size 20
Bits per chromosome 16

α = β 0.5
Maximum iterations 50
Mutation probability 0.01
Crossover probability 0.5

Table 5. Optimized sets of PID.

PID Optimized Sets Kp Ki Kd

PID set 1 1.103500 5.100353 0.317901
PID set 2 1.410877 6.370168 0.795014
PID set 3 1.604350 6.518304 0.320705
PID set 4 0.551218 7.206147 0.251951
PID set 5 0.705854 6.628310 0.196550

Up till now, the GA has been utilized to optimize the performance of the PID controller, and at
this stage, the PID controller and GA are operated in offline and online modes.

1. Offline mode: utilized in tuning PID gains (Figure 10).
2. Online mode: tested PID parameters are applied to track GM via incremental conductance.

The output of the PID controller controls the step size of incremental conductance block.

The updated IC block on each step generates the corresponding variable duty cycle signal.
The ratio of the duty cycle is the controlling factor of the DC-DC boost converter, which regulates the
output of the PV array at MPP.
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4. Results and Discussion

The proposed technique is extensively tested for the validation of robustness and applicability.
A comparison is made with classical P&O algorithm. The P-V and I-V curves represent the intrinsic
nonlinearity of the PV system. Two cases of irradiance and one for temperature will be discussed.
The input patterns of irradiance and temperature are given for case 1, case 2, and case 3 and are
presented in Figures 11–13, respectively. Table 6 gives the test pattern of the results. Case 1 deals with
sudden large change in input irradiance. Figure 11 shows the irradiance pattern. Sudden changes in
input irradiance are observed at random intervals. In case 2, a gradual change in irradiance at certain
random intervals is observed and dynamic operating temperature is dealt with in case 3. Figure 2
mimics the effects of changing temperature upon the standalone PV system.
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The results of experimental simulations show that a significant improvement is achieved in
minimizing oscillations, overshoot, and tracking time. Maximum average power, efficiency, response
time, tracking, ripple, and overshoot are discussed in this section. The maximum average power is
calculated for the entire period of simulation. Ripple and overshoot are observed and calculated at
the point where each algorithm first reaches closest to the MPP and then settles at the MPP. These
values vary in certain parameters, i.e., initialization, error signals, the rate of change of irradiance,
and initial step sizes. Response time shows the robustness of the control system. Meanwhile, settling
time represents the convergence of the applied technique. Faster settling improves the transient and
convergence steady-state responses of the implemented techniques.

Table 6. Test pattern signals.

Signal Duration (Time in s)
Values

Irradiance Temperature

Irradiation

0–1.5 1000 25
1.5–3 400 25
3–4.5 800 25
3.5–6 600 25

Temperature

12–14 1000 Random
14–16 1000 Random
16–18 1000 Random
18–20 1000 Random
20–22 1000 Random
22–24 1000 Random

4.1. Case 1

The pattern of irradiance is given in Figure 11, and initially in time period zero to 1.5 s, 1000 W/m2

irradiance is applied. Afterwards, abrupt changes in irradiance levels are observed at 1.5 s, 3 s, and 4.5 s.
The corresponding changes in irradiance are from 1000 W/m2 to 400 W/m2, 400 W/m2 to 800 W/m2

to 600 W/m2 to 400 W/m2 to 800 W/m2 respectively. GA-IC and P&O reach the MPP in 0.012854 and
0.0289 s, respectively, and the settling times around the MPP are 0.1754 s and 0.3285 s, respectively.
Similarly, the changes in irradiance at 1.5 s from 1000 W/m2 to 400 W/m2 forces both algorithms to
re-track the MPP. GA-IC takes 0.09 s, 0.03 s faster as compared to P&O, which takes 0.12 s to re-track
the MPP. The overshoot at 0.01285 s for GA-IC is 49.2% less than the 100.6 watts dissipated by P&O at
0.0289 s. The robustness of the proposed technique is evident from the faster tracking and even faster
settling time at the MPP. Ripples are reduced by 94.77%, which is a significant reduction. At 0.3142 s,
ripples are observed in Figures 14 and 15 with a magnitude that varies from 18–23 watts by P&O.
GA-IC ripples are reduced to 1–2 watts as shown in Figures 15 and 16, reducing ripple size by up
to 94%. A smoother output power is achieved as shown in Figure 17 power zoom. The voltage and
current transients are given by Figures 18–21.
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4.2. Case 2

This case gives the most effective test pattern for P&O to compete with the proposed GA-IC
technique. The irradiance pattern is presented by Figure 12, showing the gradual and continuous
increase in irradiance levels. Starting from t = 0 to 1 s and 700 W/m2, from 1–1.5 s it is gradually
changed from 700 W/m2 to 790 W/m2 and remains constant till 2.5 s. Similarly, it changes from 790 to
898 W/m2 in the next 0.5 s. Eventually, it reaches 1000 W/m2. The rate of change of in the irradiance is
kept at 216 watt/s. Fast recovery is needed to minimize power loss due to lag in tracking the MPP.
Tracking the MPP with efficiency is the desired outcome of this test pattern. The control action given by
duty cycle is compared in Figure 22 and detailed zoom in Figure 23. The efficiency of P&O and GA-IC is
98.5% and 99.2%, respectively, for power conversion as shown in Figures 24 and 25. The response time
of the proposed GA-IC is 14.78% faster. This indicates that the proposed technique is faster in terms of
tracking a gradually changing MPP. Moreover, the oscillations caused by P&O, which continuously
dissipate, on average, 26.8 watts of power, are reduced by 97.3%. This significant improvement in
design saves up to 25 watts of power, adding another 1% of efficiency in power conversion by MPPT.
Overshoot in both cases is designed to be at a minimum. This is done by gradually adding irradiance
from a lower to a high level. The reason for such a choice is to provide a good understanding of the
tracking capability of the GA-IC under a transitioning MPP. The voltage and current transients are
given by Figures 26–29.
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4.3. Case 3

Case 3 deals with the effects of temperature on the PV system. The duty cycle is given in
Figures 30 and 31. The voltage of the PV cell is inversely dependent upon the operating temperature.
An increase in temperature reduces the output voltage of the PV module, hence taking a toll on
the extractable PV power. A comparison between P&O and the GA-IC under test case 3 is given in
Figure 32. The results indicate the superior performance of the proposed technique over traditional
P&O. The GA-IC response time is 0.00365 s and the settling time is 0.062 s. P&O, on the other hand,
takes 0.0135 s and 0.1153 s, respectively. The GA-IC is, on average, 39% faster in tracking the MPP
in comparison to P&O. The overshoot for the GA-IC is 34.8% less as compared to P&O as shown in
Figure 33. Ripples are almost negligible, i.e., <1 watt. The GA-IC successfully reduced the oscillations
produced by P&O by 92.8%, adding 1.72% more power. The overall efficiency achieved by the proposed
technique is up to 98.4%, hence making this case another result for the superior performance in terms
of power convergence, robustness, and MPPT. The voltage and current transients along with detailed
behavior are given by Figures 34–37.
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Energy loss (%) 5.4% 0.91% 83%% 
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Settling time (s) 0.3285 0.1754 46.605%  

Ripple (%)  15.6 0.8 94.77%  
Overshoot (%) 100.6 51.1 49.2%  

Case 2 
Efficiency (%) 98.5% 99.2% 0.7%  

Energy loss (%) 1.5% 0.8% 20% 
Response time (s) 0.023 0.0196 14.782% 

Figure 34. Case 3 voltage comparison of modified GA-IC vs. P&O.
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5. Performance Comparison

This section deals with the overall comparison of the proposed GA-IC-based MPPT controller
with P&O in terms of tracking time, settling time, steady-state oscillations, ripples, and algorithm
complexity. Table 7 gives a comprehensive summary of the results.
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Table 7. Quantitative performance comparison of the GA-IC with P&O.

Case Parameters P&O GA-IC %age (Imp.)

Case 1

Efficiency (%) 94.6% 99.09% 4.49%
Energy loss (%) 5.4% 0.91% 83%%

Response time (s) 0.0289 0.01285 56.4%
Settling time (s) 0.3285 0.1754 46.605%

Ripple (%) 15.6 0.8 94.77%
Overshoot (%) 100.6 51.1 49.2%

Case 2

Efficiency (%) 98.5% 99.2% 0.7%
Energy loss (%) 1.5% 0.8% 20%

Response time (s) 0.023 0.0196 14.782%
Settling time (s) 0.0604 0.03515 47.8%

Ripple (%) 26.8 5 (w) 97.38%
Overshoot (%) 9 (w) 7.6 (w) 15.5%

Case 3

Efficiency (%) 96.68% 98.4% 1.72%
Energy loss (%) 3.32% 1.6% 51.81%

Response time (s) 0.0135 0.00365 32.83%
Settling time (s) 0.1153 0.062 46.34%

Ripple (%) 14 watt 1 watt 92.8%
Overshoot (%) 125 w 81.5 watt 34.8%

5.1. Tracking

The tracking of the MPP is the main objective of the PV control system. Figure 33 depicts
the relative performance for power, similarly, Figure 31 shows the duty cycle comparison. Mostly,
the comparisons made do not utilize absolute values. Rather they provide a range of operation which
gives indications of the relative superior performance. In this article, absolute values, the range of
operation, and statistical data analysis are done in order to establish the dominance of the proposed
technique based on strong evidence. All figures numerically indicate a superior performance in
tracking MPP and hence effectively maximizing absolute power. In terms of power, P&O performs
reasonably, yet the proposed GA-IC technique is proven to be better in attaining the MPP rapidly.
P&O step size can be increased or decreased to further enhance its tracking capability. P&O has a
fairly effective dynamic tracking but the proposed technique still outperforms P&O. The GA-IC takes
0.00365–0.062 s as compared to P&O, which takes 0.0135–0.3285 s to reach the MPP in the transient
state from zero output power to the MPP in applied cases. The GA-IC is 46.8–47% faster in tracking
the MPP.

5.2. Settling Time

Tracking and re-tracking need to be done when a sudden large change in irradiance or temperature
shifts the MPP significantly. Settling time is the time needed by a technique or algorithm to generate its
best output and consistently stay at the same point under a similar set of system conditions. The sudden
change in input parameters causes the displacement of the MPP, while already being at the MPP.
The robustness of an algorithm is tested when it re-tracks the MPP. P&O can detect a change in any
sampling time and hence provides good competition to the GA-IC. P&O and the GA-IC tackle this
problem by reinitializing control action to reach a new MPP. The control signal of P&O only tackles the
direction of change. It has the lowest compatibility with the scale of change. Re-initiation is mostly
avoided for small-scale changes in input conditions of the system under consideration. The good
re-tracking capability of the GA-IC is due to the control signal generated, which also takes the scale of
parameters to change, and a larger change generates a larger control signal change and it gradually
decreases as the difference between the operating point and the MPP decrease. The effect of this scheme
is quicker re-tracking. It takes 0.004–0.01 s to re-track as compared to P&O (0.05–0.35 s). The GA-IC is
up to 47% faster in re-tracking.



Energies 2020, 13, 4153 20 of 24

5.3. Steady-State Oscillations

The most advantageous region of operation for the PV system is in the steady-state region. P&O
loses 1.5% to 5.4% of PV array power. P&O has an efficiency average of up to 96.5% depending
upon the irradiance pattern and temperature. The proposed GA-IC, due to the effective exploitation
mechanism, reaches a maximum efficiency of up to 98.89%, significantly outperforming P&O. Usually,
the fluctuations and power oscillation amount to 0.018% of the total output power losses, hence it is
negligible at larger scales.

5.4. Ripples

P&O case 1, case 2, and case 3 generated ripple magnitudes of 15.6 W, 26.8 W, and 14 W, respectively.
The performance enhancement in output power is depicted in Figure 17 for case 1 and Figure 25 for
case 2. Analysis yields that power fluctuations continuously cause a loss of power. It amounts to a
minimum of 35 W at any instance of operation. Oscillations produced by the GA-IC are negligibly
small and cause a power dissipation of 1–5 W. Comparatively, the GA-IC achieves ripples/oscillations
up to 17 times smaller.

5.5. Algorithm Complexity

The complexity of an algorithm is gauged for the MPPT problem by implementing it in a
programming language according to the tuning of the number of parameters. The number of tunable
parameters in both cases is different. P&O has only one tunable parameter, which is step size ∆d.
Hence, it is said to be fairly simple. However, the GA-IC makes use of PID gains fine-tuned by the
GA. The process is described in Section 2. The gain parameters of the PID controller, Kp, Kd, and Ki,
are tuned by the GA. The complexity of the algorithm also contributes to its implementation in a
programming language, the computational power, and the hardware needed. The proposed technique
makes use of the same sensors as P&O and is executable in low-cost 8-bit microcontrollers. Hence, it is
evident that its cost-effective implementation is doable.

5.6. Results Summary

A new MPPT technique is introduced using GA-based PID tuning for the GA-IC MPPT control
system of a standalone PV system. The technique is tested against traditional P&O. A comprehensive
study is done and the results are discussed in detail in Tables 7 and 8. Case 1 and 2 tackle the
phenomenon of abruptly changing irradiance and gradually varying irradiance. Case 3 takes into
account the effects of varying the operating temperature. A detailed study in terms of statistical
analysis and experimental simulations are done, which shows that the proposed GA-IC technique
outperforms traditional P&O in performance, reliability, and efficiency. The main objectives achieved
by this study are:

1. Establishment of new GA-IC-based MPPT technique.
2. Application and validation of the GA-IC by experimental simulations.
3. Improvising power gain under gradually changing irradiance.
4. Setting up a cost-effective and easy to implement MPPT controller for small-scale standalone

PV systems.
5. Minimization of response time, overshoot, and ripples.
6. Successful integration of a variable IC with a GA for PV MPPT.
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Table 8. Qualitative analysis of MPPT technique for a variable step GA-IC.

Criterion Fixed Step Size P&O Variable Step Size P&O Proposed Variable
Step GA-IC Model

Initial parameter
requirement Yes Yes Yes

Periodic tuning No Yes No
Analog/digital Both Digital Digital

PV array dependence Yes Yes No
Sensors Yes Yes Yes

Complexity Least Moderate Moderate
Ability to track GM No No Yes

Steady-state power losses High Moderate Zero
Convergence speed Low High High
Computation power Low Low Low

Implementation Simple Moderate Moderate
Sensitivity Low Moderate High

6. Conclusions

In this study, a new MPPT technique is presented for standalone PV systems. GA is used
to tune the PID controller to generate the varying step size of the IC. The simulations and results
validate the reliability, functionality, and validity of the proposed model. The presented work
successfully overcomes the shortcomings of P&O. The simulation environment of varying irradiance
and temperature is compared with the fixed-step P&O algorithm. Three case studies, namely
fast-varying irradiance, continuously varying irradiance, and temperature are done. The results
solidify the superior performance of the proposed MPPT controller. In light of the results, it is safe to
conclude that the proposed MPPT controller outperforms the existing techniques in power tracking
efficiency by 4.49%, it achieves a 56.4% quicker response time, and ripples are reduced by 94.77%,
along with a 49.2% overshoot reduction as compared to optimized P&O.

The contributions of the article are:

1. Implementation of new MPPT technique for a standalone PV system.
2. The proposed technique successfully tracks the MPP for varying irradiance and

temperature conditions.
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Abbreviations

List of Abbreviations
PS Partial shading
GA Genetic algorithm
PID Proportional integral differential
MPPT Maximum power point tracking
IC Incremental conductance
P&O Perturb and observe
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Variables and Constants
I Output current
V Output voltage
IPV Cell current produced by actual solar arrays
Id Diode current
R s eq Equivalent series resistance
Rs Series resistance
Rp eq Equivalent parallel resistance
Rp Parallel resistance
Io Reverse saturation current
VT Thermal voltage of PV module
α Diode ideality factor
Ns Number of cells connected in series
Np Number of cells connected in parallel
k Boltzmann constant = 1.38073× 10−23 J/K
T Temperature of the p-n junction
q Electron charge = 1.6022× 10−19 C
D Duty cycle
∆d Step change
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