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Abstract: Short-term load forecasting (STLF) plays an important role in the economic dispatch of
power systems. Obtaining accurate short-term load can greatly improve the safety and economy of
a power grid operation. In recent years, a large number of short-term load forecasting methods have
been proposed. However, how to select the optimal feature set and accurately predict multi-step
ahead short-term load still faces huge challenges. In this paper, a hybrid feature selection method is
proposed, an Improved Long Short-Term Memory network (ILSTM) is applied to predict multi-step
ahead load. This method firstly takes the influence of temperature, humidity, dew point, and date
type on the load into consideration. Furthermore, the maximum information coefficient is used for
the preliminary screening of historical load, and Max-Relevance and Min-Redundancy (mRMR) is
employed for further feature selection. Finally, the selected feature set is considered as input of the
model to perform multi-step ahead short-term load prediction by the Improved Long Short-Term
Memory network. In order to verify the performance of the proposed model, two categories of contrast
methods are applied: (1) comparing the model with hybrid feature selection and the model which
does not adopt hybrid feature selection; (2) comparing different models including Long Short-Term
Memory network (LSTM), Gated Recurrent Unit (GRU), and Support Vector Regression (SVR) using
hybrid feature selection. The result of the experiments, which were developed during four periods in
the Hubei Province, China, show that hybrid feature selection can improve the prediction accuracy of
the model, and the proposed model can accurately predict the multi-step ahead load.

Keywords: short-term load forecasting; Max-Relevance and Min-Redundancy; Improved Long
Short-Term Memory network; multi-step ahead load; hybrid feature selection

1. Introduction

With the rapid development of the economy, the application of electricity in various aspects of
production and living has been becoming increasingly widespread [1]. Faced with the difficulty of
electrical energy storage, power plants need to generate electricity in accordance with the requirement
of the power grid [2]. Short-term load forecasting (STLF) can provide a decision-making basis for
generation dispatchers to draw up a reasonable generation dispatching plan [3], which plays a vital
role in the optimal combination of units, economic dispatch, optimal power flow, and power market
transactions [4]. However, the short-term load is sensitive to the external environment, such as climate
change, date types, and social activities [5]. The randomness of the load sequence is raised by these
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uncertainties [6]. Therefore, how to identify the strong correlation factors of the extracted load from
a host of influencing factors and realize the accurate prediction of the short-term load is an urgent
problem to be solved in this research.

STLF has a dramatic impact on the external environment [7]. The load can be affected by various
factors, such as temperature, weather, and date type [8]. When the temperature is in the extreme
position, electrical appliances for heating or cooling will bring about the increase of the consumption
of the load [9]. The type of date contributes to the change of the load by affecting the on-off state
of the plant [10]. Therefore, extracting effective features from the uncertain influencing factors of
load are able to lay the foundation for improving short-term load forecasting. Feature engineering
refers to the selection of a representative subset of features in the feature set [11]. These features are
highly correlated with the output variables and are the most common methods for extracting effective
features. Common feature selection methods consist of autocorrelation (AC), mutual information (MI),
ReliefF (RF), correlation-based feature selection (CFS), and so on [12]. Moon et al. used CFS to extract
relevant features for rainfall prediction [13]. The feature subset selected by this method can shorten the
training time of the model and reduce over-fitting. Yang et al. used the autocorrelation function (ACF)
to select features and used Least Squares Support Vector Machines to predict the load [14]. The existing
feature processing methods are formidable to ensure that the selected features are the optimal feature
subsets [15]. Therefore, this study uses a hybrid feature extraction method to solve the above problems.

For the same load forecasting case, the upper limit of prediction accuracy differs among
various features; for the same set of features, the performance of each prediction model is also
different [16]. For decades, an ocean of advanced methods has been proposed to predict the power
load [17]. The general prediction methods can be broadly divided into time series methods, machine
learning methods, and deep learning methods [18]. Compared with traditional time series methods,
these methods are relatively mature and there is no difficulty in implementing them [19]. These include
autoregressive integrated moving average (ARIMA) [20], exponential smoothing [21], semi-parametric
models (SPM) [22], multiple linear regression (MLR) [23], and so on. However, they are all based on
linear analysis and unable to accurately describe the specific trend of STLF [24].

As the research of machine learning is becoming a hot spot nowadays, these methods have
been applied to various prediction fields. Liu et al. put forward a runoff prediction method which
combines hidden Markov and Gaussian process regression [25]. Liu et al. proposes an ultra-short-time
forecasting method based on the Takagi–Sugeno (T–S) fuzzy model for wind power and wind speed.
This method employs meteorological measurements as input and can get accurate prediction results [26].
Machine learning also has a pleasurable effect on STLF [27]. Khwaja et al. presented an artificial
neural network (ANN) and ensemble machine learning to improve short-term load prediction [18].
Compared with traditional models, such as traditional exponential smoothing (ARMA), it performs
higher accuracy.

With the increasing development of artificial intelligence, a multitude of traditional machine
learning methods are unable to catch up with deep learning methods [28]. A high number of improved
deep learning models have also appeared one after another, and these models are applied to various
fields for predicting. Tao et al. developed the convolutional-based bidirectional gated recurrent unit
(CBGRU) method to forecast air pollution [29]. Liu et al. proposed the experimental Bayesian deep
learning model to predict the wind speed with good accuracy [30]. Similarly, deep learning showed
significant achievements in STLF [31]. Guo et al. developed Multilayer Perceptron (MLP) and Quantile
Regression (QR) for point prediction and probabilistic prediction of the short-term load [32]. The model
has a better forecasting accuracy in terms of measuring electricity consumption relative to the random
forest and gradient boosting model.

The prediction of time series by recurrent neural networks (RNN) has been adopted by more and
more people [33]. However, when RNN works out the long-term dependence problem, it would face
problems of gradient disappearance and gradient explosion [34]. To solve such problems, the Long Short
Memory Network (LSTM) was proposed by Hochreiter and Schmidhuber in 1997 [35]. The concepts
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of gate, input gate, output gate, and forget gate were proposed for the application of the network.
After years of testing, LSTM showed a more prominent contribution in timing prediction than RNN.
In recent years, numerous LSTM variants have been proposed. Zhang et al. unified the gates in the
LSTM network into one gate, and these gates share the same set of weights, thereby reducing training
time [36]. Pei et al. changed the structure in the LSTM network to achieve better prediction results and
shorter training time [37]. These variants of LSTM are well applied to short-term prediction.

Nowadays, most of the researches focus on single-step STLF. However, accurate multi-step
STLF has a more important significance for formulating generation scheduling plans [38]. It can
formulate longer-term plans for electric power dispatching, and reap greater benefits for electric power
operators [39]. This paper is devoted to the exploration of multi-step STLF. In order to test the limit
prediction ability of the model under the requirement of short-term load prediction accuracy, the model
is proposed to predict multi-step prediction of the power load in the Hubei Province. This study
provides technical support for a power system to formulate a generation plan.

Compared with the existing research of short-term load forecasting, the highlights and advantages
of our study are as follows:

(1) The model not only considers other influencing factors such as the environment on short-term
load forecasting, but also pays more attention to the influence of the historical load on the model
and adopts a two-stage feature selection method to select load features of 168 time periods from the
previous week;

(2) This paper proposes an Improved Long Short-Term Memory network for load prediction.
This network changes the characteristics of the original door and the transfer method of the cell.
Compared with the traditional LSTM, it has higher prediction accuracy;

(3) Most of the popular short-term load forecasting models predict the load of the next period
(hour-ahead or day-ahead). This article is dedicated to studying the load of the next multi-period
(multi-step ahead). This is more conducive to rationally arrange the power generation tasks of
the power station and ensure the stability of the power system operation. This research has more
practical significance.

2. Methodology

In this section, the method of feature selection used in this paper is first introduced. This method
is composed of the filter feature selection method and wrapper feature selection method. The specific
step and formula are shown in Section 2.1. The main predictive model, the Improved Long Short-Term
Memory network [37], is introduced in Section 2.2. Furthermore, the overall steps of the predictive
model and its flow chart are shown in Section 2.3.

2.1. Hybrid Feature Selection

In the study of load forecasting, there are plenty of influencing factors that affect it, such as
the previous load, the date type, temperature, dew point, and humidity. Establishing an accurate
load forecasting model should be combined with environmental factors and date types. When the
temperature is higher, the operating power of the refrigeration equipment will be greatly increased,
and it would directly affect the power load. When the temperature is lower, the opening of the
heating equipment would also have an impact. When it comes to holidays, the load impact of factory
shutdowns is also huge. Therefore, quantitative analysis of these factors is important for load changes.

For non-numeric features, such as date types, they should be quantified. The date types selected
in this article are workdays, rest days, and holidays. Such non-numeric features need to be encoded.
The maximum number of days for Chinese holidays is 7 days, so they can be mapped to the code as
shown in Table 1. Holiday1 represents a holiday for one day, and so on. Other numerical features are
normalized accordingly.
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Table 1. Mapping encoding for date type.

Date Type Workday Saturday Sunday Holiday1 Holiday2

Mapping encoding 1 2 3 4 5

Date type Holiday3 Holiday4 Holiday5 Holiday6 Holiday7

Mapping encoding 6 7 8 9 10

The effect of these factors above is complex. The maximal information coefficient (MIC) is
applied to measure the nonlinear dependence between factors and power load. The closer MIC is to 1,
the stronger the nonlinear dependence. The formula of MIC is given as follows:

I(x, y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (1)

where I(x, y) represents the mutual information coefficient between X and Y. p(x, y) is the joint
probability density of variable X and Y, and p(x) and p(y) are the marginal probability densities of
variables X and Y, respectively.

Peng et al. proposed a feature selection method named Max-Relevance and Min-Redundancy [40]
that could use mutual information scores to select features. The purpose is to punish the correlation of
features by their redundancy in the presence of other selected features. The correlation of feature set S
with class c is defined by the average of all mutual information values between each feature fi and
class c, as follows:

D(S, c) =
1
|S|

∑
fi∈S

I( fi, c). (2)

The redundancy of all features in set S is the mean value of all mutual information values between
feature fi and feature f j:

R(S) =
1

|S|2
∑
fi f j∈S

I( fi, f j). (3)

Combined with the constraints of the above two formulas, a parameter φ is defined to optimize D
and R simultaneously.

φ = max

 1
|S|

∑
fi∈S

I( fi, c)−
1

|S|2
∑
fi f j∈S

I( fi, f j)

. (4)

In practice, incremental search methods can be used to obtain near-optimal features. The formula
is as follows:

max
x j∈X−Sm−1

I(x j, c) −
1

m− 1

∑
xi∈Sm−1

I(x j, xi)

, (5)

where X represents the set of all features. Sm−1 represents the selected feature subset, and its feature
subset contains m− 1 features. This method is based on the selected features to find the feature that
maximizes the value of the above formula in the remaining feature space. In fact, each of the remaining
features is calculated and then sorted. Therefore, the essence of this method is to use a standard
(correlation–redundancy) to sort the features, but we need to select a feature subset firstly, then it can
be calculated. The search method is a first-order incremental search. This method can only sort the
remaining feature sets. It is better to put the first feature in the remaining feature set into the feature
subset rather than the later feature, but it cannot guarantee that the prediction accuracy after adding
the feature is better than before. In this paper, the load features are preliminarily screened by MIC
as a feature subset, and then the remaining features are sorted by the mRMR method. Add the first
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feature in the remaining feature set in the feature subset and put them into the model for prediction.
If the accuracy is improved, continue this process until the accuracy becomes lower.

2.2. Improved Long Short-Term Memory Network

LSTM was first proposed by Sepp Hochreiter and Schmidhuber in 1997 [35]. It is an advanced
version of Recurrent Neural Network (RNN). Compared with RNN, its essence lies in the introduction
of the concept of the cell state. The cell state of LSTM will determine which states should be left behind
and which states should be forgotten. The problem of the disappearance of the RNN gradient has been
solved. The LSTM network has three gates in the hidden layer (input gates, output gates, and forget
gates). Input gates control the input flow of the memory cell, and output gates control the output flow
into other cells. The role of forget gates is to selectively forget the information in the state of the cell.
The traditional LSTM network has a longer training time due to the complex structure. In order to
achieve the purpose of reducing network training time without affecting accuracy, the structure of
LSTM is improved, and the Improved Long Short-Term Memory Network (ILSTM) is proposed. ILSTM
combines input gates and forget gates into one new gate to reduce network complexity. The structure
of ILSTM network is shown in Figure 1. The forward propagation and formula of ILSTM in the t-th
period are elaborated as follows.
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Figure 1. Schematic diagram of the Improved Long Short-Term Memory (ILSTM) network structure.

Calculate shared gates

netut = Wu ·
[ht−1
Xt

]
+ bu = Wuh · ht−1 + Wux · xt + bu, (6)

ut = σ(netut). (7)
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Calculate current information state

net̃ct = Wc̃ ·
[ht−1
Xt

]
+ bc = Wc̃h · ht−1 + Wc̃x · xt + b̃c, (8)

c̃t = tanh(net̃ct). (9)

Update cell memory
Ct = (1− ut−1) ×Ct−1 + c̃t × ut. (10)

Calculate output gates

netot = Wo ·
[ht−1
Xt

]
+ bo = Woh · ht−1 + Wox · xt + bo, (11)

ot = σ(netot). (12)

Calculate output of hidden layer

ht = ot × tanh(ct). (13)

Calculate output of predicted value

zt = Wy · ht + by, (14)

yt = σ(zt). (15)

In the above formula, netut, net̃ct, netot, and zt are the state of the current stage. Wu, Wc, and Wo

are their weight matrices. bu, bc, and bo represent the bias vectors. xt, ut, c̃t, and ot are the input of
input layer, the shared gates, the information state, and output gates in the current period, respectively.
Ct and Ct−1 represent the cell state in the previous period and current period. The symbol · is the
multiplication of the matrix, and the symbol × is the multiplication between the elements in the
matrix. σ(x) is the activation function of Sigmoid(), and tanh(x) is the activation function of and Tanh().
Their calculated formula is elaborated as follows:{

σ(x) = y = 1
1+e−x

tanh(x) = y = ex
−e−x

ex+e−x
. (16)

Compared with LSTM, ILSTM cuts back the number of doors, reducing the variables needed to
be optimized in the weight matrix. In the way of memory cell update, ILSTM first activates the current
information state by using the activation function Tanh(). Next, it makes a linear combination of the
previous cell memory Ct−1 and current information state c̃t, using update gate ut as the weight of the
current information state c̃t and 1− ut as the weight of the previous cell memory Ct−1. The sum of the
two weights is equal to one. In this way, cell memory is updated.

2.3. The Framework of the Proposed Model

In the entire prediction model, the features are first preprocessed. Since the power load changes
periodically, the feature can be selected by referring to the period. The period of load change can be
regarded as one week, so the hourly power load (168 in total) within seven days is selected as the
preliminary feature of past load in this paper. First, we calculated MIC separately between the load of
this period (t) and the load of the previous 168 periods (t− 1, t− 2, . . . , t− 168). Features (MIC > 0.6)
were placed in the temporary feature subset, and features (MIC < 0.6) were placed in the candidate
feature subset. Next, the root mean square error (RMSE) was used to discriminate the prediction effect.
The mRMR method was adopted to select features under candidate subset and to add them to the
feature subsets until the prediction accuracy becomes low. The selected load features, environment
features, and date features were integrated to obtain the final feature set together and put into the ILSTM
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network for training. The prediction models were established for single step prediction, two-step
prediction, three-step prediction, and multi-step prediction, respectively. The complete framework
of the model is shown in Figure 2, and the Schematic diagram of multi-step prediction is shown in
Figure 3.
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3. Evaluation Criteria

In this paper, four indicators, including RMSE (Root Mean Square Error), MAE (Mean Absolute
Error), MAPE (Mean Absolute Percentage Error), and R2 (coefficient of determination) are adopted to
evaluate the prediction accuracy of the model. Specific formulas for each indicator are listed as shown
in Table 2.

Table 2. Specific instruction for each indicator.

Evaluation Criteria Definition Formula

MAE Mean Absolute Error MAE =

∣∣∣∣∣∣ T∑
i=1

∣∣∣yi −Yi
∣∣∣∣∣∣∣∣∣/N

MAPE Mean Absolute Percentage Error MAPE =

∣∣∣∣∣∣ T∑
i=1

∣∣∣(yi −Yi)/Yi
∣∣∣∣∣∣∣∣∣/N

RMSE Root Mean Square Error RMSE =

∣∣∣∣∣∣∣
√

N∑
t=1

(yi −Yi)
2/N

∣∣∣∣∣∣∣
R2 Coefficient of determination R2 =

∑N
i=1 (yi−Y)

2∑N
i=1 (Yi−Y)

2

N is the size of the test sample and yi refers to the i-th predicted value. Yi refers to the i-th observed
value and Y is the mean of observed value. The smaller the final MAE, MAPE, and RMSE, the higher
the prediction accuracy. The closer R2 is to 1, the higher the prediction accuracy.

In order to further evaluate the accuracy between the two different models, three indicators, PMAE,
PMAPE, and PRMSE, are applied. The specific formula is as follows:

PMAE =

∣∣∣∣∣MAE1 −MAE2

MAE1

∣∣∣∣∣× 100%, (17)

PMAPE =

∣∣∣∣∣MAPE1 −MAPE2

MAPE1

∣∣∣∣∣× 100%, (18)

PRMSE =

∣∣∣∣∣RMSE1 −RMSE2

RMSE1

∣∣∣∣∣× 100%. (19)
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In order to better evaluate the future operational risks generated by model predictions, we used
the standard deviation of the error S as a criterion. The specific formula is as follows:

S =

√√√√ n∑
i=1

(Xi −X)
2

n
. (20)

4. Case Study

In this section, we first introduce the basic data for the power load and the corresponding factors
applied to the model. In order to verify that the proposed model has high-precision prediction
results, four datasets are used for testing and compared with existing popular models. In addition,
multiple predictive period experiments further confirm the practicability of the model. In the predictive
model, all deep learning models are implemented using the keras framework, and SVR is implemented
using the “sklearn” framework in python.

4.1. Data Introduction

In this case, the power load and related influencing factors are first introduced. The data used
in this paper comes from the Huazhong Power Grid Corporation, which is the hourly load data for
2015 from the Hubei Province, China. In this year, the average annual temperature in Hubei was
about 18 degrees. January and February were the coldest times of the year. The minimum temperature
reached numbers below zero. The temperature became higher in July and August, and the highest
temperature reached 40 degrees and more. The power load in January and February was higher than
the annual average due to the application of heating equipment. From March to June, the temperature
has been stable below the average. In the summer, the large-scale application of the refrigeration
system seriously affected the power load. During this period, the power load was the highest in
the whole year. With the weather turned cooler from September to November, the load weakened
accordingly until the temperature began to rise steadily. The lowest power load of the year was the
Spring Festival due to factory holidays. The annual electrical load data and environmental data are
shown in Figure 4.Energies 2020, 13, x FOR PEER REVIEW 10 of 23 
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In order to better evaluate the performance of the model, the load data is divided into four datasets
according to the quarter. It can be seen from the figure that the first dataset shows a large fluctuation
range, the second dataset is relatively stable, the third dataset performs a high peak value, and the
power load in the fourth dataset drops sharply and then slowly rises. According to this classification,
the dataset can be better trained and is representative. The detailed parameters of the dataset are
shown in Table 3.

Table 3. Specific information of four datasets.

Set Date Range Sum Tr Te Max Min Mean

# 1 step = 1 h step MW MW MW

1 22 January 2015–21 March 2015 1416 1133 283 24,109 9536 16,580
2 21 March 2015–23 May 2015 1488 1197 297 18,719 12,334 15,922
3 22 June 2015–22 August 2015 1488 1191 297 27,692 12,521 18,891
4 21 September 2015–21 November 2015 1488 1191 297 19,329 11,287 15,934

In this paper, the data of the missing period is obtained by using the average value of the load of
the previous period and the load of the next period. The first 80% of the original dataset is used as
training data to train the model, and the other 20% is used as test data. The models are trained using
the cross-validation [41,42]. Tr, Te represents the number of training sets and test sets, respectively.
Sum represents the total number of datasets. Four datasets are shown in Figure 5.
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4.2. Feature Combination Selection

In the proposed method, the original load characteristics are pre-processed. Firstly, the load
characteristics of the dataset in the first seven days (168 time periods) are calculated for the maximum
information coefficient of the current period, and the features with a MIC value greater than 0.6 are
selected. The MIC value of the load of the first 168 periods and the current period load in dataset 1 to
dataset 4 are shown in Figures 6–9.
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T represents the period of the day when the load is to be predicted, T-1 represents the day before
the predicted load, IN1 represents the current load in the past hour, IN2 represents the current load for
the past two hours, and so on.

After the preliminary screening of features, make a second selection of the remaining feature.
The features including the environment features and the encoded date features are added to the
feature subset, and the features of the candidate subset are sorted by the mRMR method. The first
ranked feature is placed in the feature subset for training. If the prediction accuracy becomes higher,
the feature is retained, and continue the above process. If the accuracy becomes lower, stop the selection.
The selected feature tables under the four datasets are shown in Table 4, where t-n represents the load
characteristics of the previous n hours predicted at that time. The final feature set is used by the model
to make predictions.

Table 4. The final feature selection result of four datasets.

Dataset The Final Selected Historical Load Feature Set

Dataset 1 t-1, t-2, t-22, t-23, t-24, t-26, t-46, t-47, t-48, t-49, t-71, t-72, t-73, t-95, t-96, t-120, t-145

Dataset 2 t-1, t-2, t-23, t-24, t-25, t-47, t-48, t-49, t-72, t-96, t-120, t-143, t-144, t-167, t-168

Dataset 3 t-1, t-2, t-3, t-20, t-21, t-22, t-23, t24, t-25, t-26, t-28, t-45, t-48, t-72, t-74, t-166

Dataset 4 t-1, t-2, t-23, t-24, t-25, t-48, t-49, t-71, t-72, t-74, t-120, t-144, t-168

4.3. Parameter Settings

To validate the performance of the model, other popular models (LSTM, GRU, SVR) are used for
comparison. In order to achieve fairness, the parameters of different models should be chosen as much
as possible. The parameters selected in this article are all optimized with GA or some common values.
For the purpose of eliminating the error caused by randomness, each model is run multiple times to
average the results. The specific parameters are as shown in Table 5:
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Table 5. Parameter details of deep learning models.

Model Symbol Meaning Value Basis

LSTM
ILSTM
GRU

ni number of input layer nodes - total number of selected features

nh number of hidden layer nodes 8 select from common value
(4, 8, 16, 32, 100 . . . )

no number of output layer nodes 1 related to prediction output

η learning rate 0.1 select from common value
(0.1, 0.05, 0.01 . . . )

Tb size of batch 32 select from common value
(8, 16, 32, 50, 100 . . . )

Et epochs of training 1000 convergence

SVR Kernel1 kernel function Radial Basis a competitive kernel functions

C parameter in Radial Basis
Function of “sklearn” 1 obtained by GA in (−5,5)

4.4. Experiment Results and Discussion

In this section, the current popular models are compared with the proposed method to predict the
short-term load. The results of various models under the 1-step, 2-step, and 3-step load forecasting
will be introduced as follows, and MAE, MAPE, RMSE, and R2 are used to evaluate the accuracy of the
model. Cpu times of the algorithms (CT) is used to indicate the time required for model calculation,
and S is used to evaluate the future operational risks generated by model predictions

(1) The analysis of the one-step prediction
The prediction results of each model on the dataset are shown in Table 6. H-ILSTM represents

the model combined with hybrid feature selection and ILSTM. The detailed index comparison figure
for dataset 1 is shown in Figures 10 and 11. The figure shows the load forecast results of 96 time
periods in the test set for dataset 1. The bold words in the table represent the best prediction results
among the eight models. It can be clearly seen that the hybrid feature selection method has improved
the model to varying degrees in every dataset. Among them, the H-ILSTM model has the highest
prediction accuracy, and the value of the standard deviation of the prediction error is also the smallest.
Compared with the model which does not adopt a hybrid feature selection method, the specific
improvement effect of this model is shown in Table 7. The forecast accuracy improved by nearly 50%.
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Table 6. One-step prediction result of load. (The bold words in the table represent the best prediction
results among the eight models).

Model Metric ILSTM H-ILSTM GRU H-GRU LSTM H-LSTM SVR H-SVR

Dataset 10 times mean mean mean mean mean mean mean mean

Dataset 1

MAE 169.02 110.42 248.72 135.59 177.76 174.48 283.76 277.05

MAPE (%) 1.02 0.66 1.49 0.83 1.10 1.08 1.69 1.66

RMSE 221.12 150.78 304.46 175.46 216.78 213.83 349.58 339.62

S 142.57 102.66 175.60 111.35 124.06 123.61 196.44 204.17

CT (s) 28.7 183.4 27.8 176.4 31.2 199.2 <4 <10

Dataset 2

MAE 239.54 101.76 250.36 103.83 244.65 104.31 286.27 245.27

MAPE (%) 1.49 0.63 1.56 0.64 1.52 0.65 1.74 1.47

RMSE 302.91 133.58 311.37 136.29 306.78 139.01 348.36 305.88

S 185.39 86.53 185.34 88.26 169.22 152.99 198.51 182.81

CT 29.9 213.5 28.5 211.8 31.3 215.2 <4 <10

Dataset 3

MAE 372.16 171.07 375.37 181.11 433.59 244.20 477.71 457.58

MAPE (%) 1.91 0.89 1.92 0.93 2.25 1.28 2.48 2.38

RMSE 473.96 234.57 482.61 246.02 548.69 314.43 600.23 564.88

S 293.84 160.75 303.72 166.74 336.45 198.33 363.41 331.11

CT 29.6 241.3 28.4 233.2 30.8 250.7 <4 <10

Dataset 4

MAE 305.03 147.60 356.84 162.46 359.50 163.17 355.44 294.38

MAPE (%) 1.81 0.87 2.13 0.97 2.14 0.98 2.14 1.76

RMSE 386.59 193.97 472.53 211.94 474.18 206.97 430.76 367.59

S 237.89 125.97 310.12 136.20 309.53 127.53 243.25 214.38

CT 29.1 184.6 28.3 178.5 30.6 192.4 <4 <10
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Table 7. The promoting percentages of the ILSTM model by the H-ILSTM model of one-step prediction
for the load datasets 1–4.

Metric
H-ILSTM vs. ILSTM

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average

PMAE (%) 34.6 57.5 54.0 51.6 49.4
PMAPE (%) 35.2 57.7 53.4 51.9 49.55
PRMSE (%) 31.8 55.9 50.5 49.8 47.0

Compared with the recently popular model, H-ILSTM is also very competitive. As shown in
Table 8, the accuracy of this model is compared with other prediction models. The evaluation index
is the average of the four datasets. H-ILSTM has a better prediction effect than the original LSTM
network, and the prediction accuracy is improved by about 20%. Compared with machine learning,
the prediction accuracy has been significantly improved.

Table 8. The promoting percentages of the other models by the H-ILSTM model of one-step prediction
for the load datasets 1–4.

Metric
H-ILSTM vs. Other Models

Model H-LSTM H-GRU H-SVR

PMAE (%) Average 19.6 8.81 57.7
PMAPE (%) Average 20.9 9.16 57.6
PRMSE (%) Average 16.2 7.29 54.4

(2) The analysis of the two-step prediction
The prediction accuracy is reduced compared to the one-step prediction, but the model still

maintains a high accuracy. The two-step prediction results of various models under four data are
shown in Table 9. The bold characters in the table represent the best predictions among the eight
models. The comparison figure of forecast indicators is shown in Figures 12 and 13. The figure shows
the load forecast results of 96 time periods in the test set for dataset 2. Among them, H-ILSTM predicted
the best performance under the four datasets.
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Figure 12. The use of hybrid feature selection has greatly improved the model prediction, and
the relative value of each prediction evaluation index of the ILSTM model is shown in Table 10.
Compared with not using the hybrid feature selection method, the average Mean Absolute Error (MAE)
predicted by this method is improved by 23.8, Mean Absolute Percentage Error (MAPE) is improved
by 21.6, and Root Mean Square Error (RMSE) is improved by 23.9. Based on this, it shows that this
feature extraction method plays an important role in two-step prediction.
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Table 9. The two-step prediction result of the load. (The bold characters in the table represent the best
predictions among the eight models).

Model Metric ILSTM H-ILSTM GRU H-GRU LSTM H-LSTM SVR H-SVR

Dataset 10 times mean mean mean mean mean mean mean mean

Dataset 1

MAE 354.27 310.27 395.41 351.28 552.05 359.59 534.43 360.45

MAPE (%) 2.14 1.91 2.41 2.12 3.44 2.21 3.08 2.19

RMSE 440.27 381.02 497.34 431.13 688.78 427.23 671.32 446.83

S 261.39 221.52 301.67 249.94 411.90 230.69 406.27 264.05

CT 30.6 218.7 29.6 211.3 32.4 227.9 <4 <10

Dataset 2

MAE 180.61 150.24 311.38 204.95 206.08 167.64 522.45 449.95

MAPE (%) 1.13 0.93 1.93 1.27 1.28 1.05 3.16 2.69

RMSE 236.22 204.82 379.76 262.87 266.66 226.95 665.46 544.82

S 152.24 139.21 217.38 164.61 169.22 152.98 412.16 372.41

CT 31.3 214.5 29.9 209.6 33.4 227.5 <4 <10

Dataset 3

MAE 378.55 374.19 582.46 567.02 496.69 403.60 940.28 862.53

MAPE (%) 1.97 1.96 3.01 2.95 2.59 2.07 2.02 4.63

RMSE 483.24 476.49 738.45 714.51 609.84 507.43 1138.19 1037.32

S 300.37 295.79 453.93 434.76 353.84 307.56 641.34 576.25

CT 30.1 245.2 29.2 239.8 31.8 258.3 <4 <10

Dataset 4

MAE 364.16 266.12 531.51 286.39 569.86 339.79 683.93 447.88

MAPE (%) 2.21 1.62 3.19 1.75 3.39 1.99 4.06 2.65

RMSE 433.49 328.13 622.11 351.39 657.78 446.29 850.01 571.76

S 235.17 191.97 323.30 203.61 328.54 289.34 413.45 355.41

CT 29.8 211.9 28.7 204.5 31.5 220.6 <4 <10
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Table 10. The promoting percentages of the ILSTM model by the H-ILSTM model of two-step prediction
for the load datasets 1–4.

Metric
H-ILSTM vs. ILSTM

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average

PMAE (%) 12.4 16.8 11.5 26.9 14.3
PMAPE (%) 10.7 17.7 0.5 26.7 13.9
PRMSE (%) 13.4 13.3 1.4 24.3 13.1

Compared with other models, the H-ILSTM model has improved to varying degrees under the
four datasets. The improvement indicators are shown in Table 11.

Table 11. The promoting percentages of the other models by the H-ILSTM model of the two-step
prediction for the load datasets 1–4.

Metric
H-ILSTM vs. Other Models

Model H-LSTM H-GRU H-SVR

PMAE (%) Average 13.3 19.9 44.4
PMAPE (%) Average 12.2 19.4 43.7
PRMSE (%) Average 18.4 13.3 43.4

(3) The analysis of the three-step prediction
The model can still maintain a relatively high prediction accuracy. The three-step prediction

results of various models under four data are shown in Table 12. The bold characters in the table
represent the best predictions among the eight models. The comparison figure of forecast indicators is
shown in Figures 14 and 15. The figure shows the load forecast results of 96 time periods in the test set
for dataset 4.

Table 12. The three-step prediction result of the load. (The bold characters in the table represent the
best predictions among the eight models).

Model Metric ILSTM H-ILSTM GRU H-GRU LSTM H-LSTM SVR H-SVR

Dataset 10 times mean mean mean mean mean mean mean mean

Dataset 1

MAE 385.52 285.34 733.02 412.41 494.94 327.30 510.79 415.80

MAPE (%) 2.34 1.72 4.35 2.57 3.01 1.96 3.09 2.54

RMSE 482.87 368.93 941.59 567.71 609.44 409.37 606.43 522.47

S 290.74 233.85 590.99 390.15 355.60 245.87 326.87 316.36

CT 31.2 251.6 30.3 244.5 33.3 261.2 <4 <10

Dataset 2

MAE 323.27 274.36 442.72 285.55 346.39 326.96 472.42 432.51

MAPE (%) 1.97 1.71 2.71 1.83 2.12 2.06 2.83 2.62

RMSE 410.71 339.47 505.04 377.23 412.12 399.43 572.83 538.19

S 254.45 201.22 287.45 247.48 224.56 230.59 325.69 321.82

CT 32.4 216.7 31.5 211.5 34.4 228.3 <4 <10

Dataset 3

MAE 526.94 441.86 697.81 592.74 740.51 563.40 1353.54 1126.86

MAPE (%) 2.84 2.59 3.71 3.08 3.91 2.96 7.44 6.23

RMSE 662.62 542.86 835.41 738.31 904.13 701.23 1645.26 1419.27

S 403.58 316.93 461.87 442.61 521.41 419.49 940.19 866.78

CT 31.8 285.3 30.2 277.6 34.1 306.3 <4 <10
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Table 12. Cont.

Model Metric ILSTM H-ILSTM GRU H-GRU LSTM H-LSTM SVR H-SVR

Dataset 4

MAE 519.84 322.51 605.03 343.10 596.31 387.91 704.34 658.48

MAPE (%) 3.13 1.94 3.77 2.08 3.56 2.31 4.14 3.89

RMSE 620.89 393.39 703.87 408.06 727.20 478.73 868.85 826.37

S 341.42 226.64 377.84 217.12 418.34 281.92 511.23 501.58

CT 31.1 216.7 29.8 209.3 33.6 230.4 <4 <10
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The use of the hybrid feature selection method has slightly improved the ILSTM model, and each
forecast evaluation index has been improved by more than 20%. The details are shown in Table 13.
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Table 13. The promoting percentages of the ILSTM model by the H-ILSTM model of the three-step
prediction for the load datasets 1–4.

Metric
H-ILSTM vs. ILSTM

Dataset 1 Dataset 2 Dataset 3 Dataset 4 Average

PMAE (%) 25.9 15.1 16.1 37.9 23.8
PMAPE (%) 26.5 13.1 8.8 38.0 21.6
PRMSE (%) 23.6 17.3 18.1 36.6 23.9

Compared with other models, the average value of each evaluation index under the four datasets
has increased by about 15%. The details are shown in Table 14.

Table 14. The promoting percentages of the other models by the H-ILSTM model of the three-step
prediction for the load datasets 1–4.

Metric
H-ILSTM vs. Other Models

Model H-LSTM H-GRU H-SVR

PMAE (%) Average 16.8 16.5 44.9
PMAPE (%) Average 14.4 15.6 43.9
PRMSE (%) Average 16.3 18.8 45.1

(4) The analysis of the multi-step prediction
This section mainly tests the limit prediction ability of the H-LSTM model proposed in this paper.

Make predictions of multi-step for four datasets, respectively, and establish prediction thresholds. If the
prediction accuracy is less than this threshold, the prediction is stopped. This threshold is evaluated
using the decision coefficient R2. The result is shown in Figure 16.
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It can be seen from the figure that the model performs best under dataset 2 and can accurately
predict the load in the next 24 h. In dataset 1 and dataset 4, the model can more accurately predict the
load for the next 24 periods. The performance in dataset 3 is general and can only be predicted for
the next 6 h. Due to the large fluctuations in the peaks, the model has a slightly insufficient ability to
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predict such multi-steps. Compared with dataset 1, dataset 2, and dataset 4, the model has a good
prediction performance for such datasets. Both can accurately predict the load in the next 6 h, and thus
can more accurately predict the load in the next 24 h. The model also has room for improvement under
load datasets with large fluctuations

(5) Comparison experiment between the proposed model and the persistence model
A good baseline for time series forecasting is the persistence model. This is a predictive model

in which the last observation is persisted forward. This method uses the “today equals tomorrow”
concept [43]. In order to better evaluate the effect of the proposed method, we conducted a test
comparison between the proposed method and the persistence model, and used MAE, MAPE, RMSE,
and R2 for evaluation. This section shows the experiment of single-step prediction in dataset 1.
Figure 17 shows the prediction effects of the two models. The evaluation indicators are listed in
Table 15. In terms of indicators, the persistence model is close to the proposed model on R2. All other
indicators are worse than the proposed model.
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Table 15. Evaluation criteria for single-step prediction under dataset 1.

Model
Single-Step Prediction for Dataset 1

MAE MAPE (%) RMSE R2

H-ILSTM 110.71 0.67 150.95 0.993
Persistence model 546.46 3.36 730.65 0.991

5. Conclusions

STLF has a very important leading role in the power grid. In order to improve the accuracy of
short-term load forecasting, this paper first starts from feature engineering, taking into account the
relevant factors that affect the load, such as weather conditions and date types, and the hybrid feature
selection is adopted. The improved LSTM network is used for multi-step prediction. The datasets of
four time periods in the Hubei Province are selected and compared with the LSTM, GRU, and SVR
models using the hybrid feature selection method. The effects of model prediction are reflected
through MAE, RMSE, MAPE, and R2. PMAE, PMAPE, and PRMSE are used to reflect the difference of
prediction results between models. From the experimental results, the prediction accuracy of the
ILSTM model using the hybrid feature selection method is higher than the ILSTM model without this
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method in four datasets on average by more than 20%. The accuracy of the H-ILSTM model is about
15% higher than that of other models using the hybrid feature selection method. We also tested the
multi-step prediction ability of the proposed model, which has a satisfactory performance. To sum up
the following conclusions:

(1) The hybrid feature selection method can improve the prediction accuracy of the model;
(2) The ILSTM model is better than other traditional forecasting models in short-term load forecasting;
(3) The H-ILSTM model has a good prediction effect in multi-step prediction.

Therefore, the proposed method has a very eye-catching performance in short-term multi-step
load forecasting, which can more accurately predict the load in the next few periods. This model is
competitive in this field.

The proposed model also has some shortcomings. When selecting features, it only considers the
optimal combination of historical loads. Other influencing factors are just normalized as one of the
inputs of the model. Secondly, it takes a lot of time to select features. We will gradually improve these
issues in future research.
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