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Abstract: In this work, a new time-frequency tool based on minimum-norm spectral estimation
is introduced for multiple fault detection in induction motors. Several diagnostic techniques are
available to identify certain faults in induction machines; however, they generally give acceptable
results only for machines operating under stationary conditions. Induction motors rarely operate
under stationary conditions as they are constantly affected by load oscillations, speed waves,
unbalanced voltages, and other external conditions. To overcome this issue, different time-frequency
analysis techniques have been proposed for fault detection in induction motors under non-stationary
regimes. However, most of them have low-resolution, low-accuracy or both. The proposed method
employs the minimum-norm spectral estimation to provide high frequency resolution and accuracy
in the time-frequency domain. This technique exploits the advantages of non-stationary conditions,
where mechanical and electrical stresses in the machine are higher than in stationary conditions,
improving the detectability of fault components. Numerical simulation and experimental results are
provided to validate the effectiveness of the method in starting current analysis of induction motors.

Keywords: fault detection; induction motors; signal processing; spectrogram; spectral analysis;
stator current; transient regime; time-frequency analysis

1. Introduction

Condition monitoring has become a critical issue in rotatory machines, and the induction machines
are not an exception. Induction motors (IMs) are widely used in industrial systems due to their excellent
performance, high robustness and low-cost. However, they are susceptible to many different types of
electrical and mechanical faults including, stator winding faults, rotor faults, bearing faults, etc. [1–5].
These faults can result in a wide range of detrimental and sometimes dangerous consequences, such as
reduced efficiency of the machine, increased wear on pulleys or belts, excessive energy consumption,
increased noise and vibration.

Several approaches based on the analysis of the stator current in a steady-state motor operation
have been studied for fault detection in induction machines. However, the monitoring of a steady-state
operation can produce false fault alarms due to superposition of different frequency components in
the stator current spectrum. To overcome this issue, different time-frequency analysis techniques have
been proposed for time-varying spectrum analysis, including Fourier-based schemes [6–9], application
of adaptive windows [10], adaptive scales [11], quadratic time-frequency (t, f ) distributions such
as the Wigner–Ville distribution [12–14], the use of (t, f ) atoms [15], continuous time-frequency
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tools [16], and parametric methods for power spectrum estimation [17–19]. Most of these methods
operate adequately only for long transients and at moderate noise levels. The time-frequency
representations based on the Fourier transform (FT) suffer from the major problem of poor
time-frequency resolution because of some important assumptions (stationarity of the signal,
integer digital frequencies, noise-free, and infinite observation data length) made in these methods.
The estimated time-varying spectrum results in a very noisy and diffuse version of the actual
spectrum [20,21]. (t, f ) decompositions based on quadratic operations of the observed data, such
as the Wigner–Ville distribution, are often able to accomplish a better resolution than FT-based
decompositions of approximately a factor of 2 in the (t, f ) sharpening of the distribution. However,
they are not suited for multi-component signals since false "cross-terms" appear between true signal
components [22]. The most recent methods of parametric power spectrum estimation are based
on statistical properties of the signal. Their resolution is high in frequency and independent of the
signal-to-noise ratio (SNR). However, this improvement is achieved in the presence of additional false
or “spurious” frequency components in the spectrum that may lead to an inaccurate fault diagnostic
of the machine.

In this paper, a time-frequency tool is proposed that can make an accurate and reliable assessment
of the presence of specific fault signatures in an induction motor starting current. To avoid spurious
signatures and obtain high resolution, the spectral estimator called Minimum Norm (Min-Norm)
is proposed to jointly estimate both frequency and magnitude of the time-varying stator current
components. Simulation and experimental results show the potentiality of the methodology as
a time-frequency decomposition technique that is suited for transient and stationary conditions.

2. Stator-Current Spectral Content

2.1. Induction Motor Faults

Most fault detection methods used in condition monitoring are based on frequency analysis
because induction motor’s behaviour is cyclic, and the most common faults encountered in the machine,
such as bearing faults, broken rotor bars, and misalignments, produce predictable frequencies in the
line current spectrum [23–25]. This work focuses on the detection of two of these failures.

2.1.1. Misalignment Fault

An air-gap eccentricity arises in a motor when its shaft and the shaft of the mechanical load
do not rotate on a common axis. Like shaft misalignment, belt misalignment results in an air-gap
eccentricity. This eccentricity causes a non-uniform distance between the stator and the rotor, giving rise
to unbalanced magnetic flux within the air gap. As a consequence, a group of harmonic components
arise in the stator current whose frequencies are given by:

fpsh(nd)
=

[
(kR± nd)

(1− s)
P

± v
]

fs, (1)

where nd = 0 for static eccentricity, nd = 1, 2, 3... the order of the dynamic eccentricity, s is the motor
slip, R is the number of rotor slots, k is an integer, P is the number of pole pair, v represents the
harmonics present in the power supply, and fs is the fundamental supply frequency [26–28]. Shaft
misalignment also introduces more spectral components in the low-bandwidth at frequencies:

fl = fs ± kρ fr, fr =
1− s

P
fs (2)

where fr is the machine rotating frequency, k is an integer and ρ is a scale factor when a reduction
coupling is present in the transmission chain.
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2.1.2. Rotor Fault

When a rotor bar is damaged, the rotor asymmetry causes amplitude modulation in the line
currents, torque pulsations, and speed oscillations [29–31]. The magnetic and electric asymmetries in
the rotor machine boosts up side-bands of the fundamental component at

fbb = fs (1± 2s) (3)

Therefore, misalignment and broken rotor bars can be detected by monitoring the fault-related
frequencies in the stator current.

3. Minimum-Norm

The Min-Norm is an advanced spectrum estimation technique for signal analysis. The method
assumes L observed data samples of a signal. At a certain time instant l the sequence can be modeled as:

Ss(l) =
K

∑
k=1

v(ψk)sk(l) + e(l), (4)

where sk(l) denotes the k-th component, v(ψk) is the frequency-dependent vector v(ψk) =[
1, eiψk , ..., eiψN−1

]T , and e(l) is observation noise. The vector v(ψk) can be viewed as a uniformly
sampled complex sinusoid of angular frequency ψk = 2π f /λs, where λs is the sampling frequency.
The fault detection problem in an IM can be viewed as a power spectral density estimation problem,
in which the fault-related frequencies f f and its amplitudes sk(l) need to be estimated from the
measured one-phase current.

Let A be the NxK Vandermonde matrix[32] and let s(l) = [s1(l), ..., sK(l)]
T the vector of

amplitudes. The signal model (4) can be written as:

Sx = V(ψ)As(l) + e(l), l = 1, ..., L. (5)

in the frequency-domain, the model can be expanded in terms of eigenvalues and eigenvectors of the
sample spectral covariance:

Sx = V(ψ)SV H(ψ) + σ2
w I, (6)

In practice, the eigenvalues and eigenvectors are not known and must be estimated from the
observed data. Then, Ŝx can be expanded as:

Ŝx =
N

∑
i=1

λiΦ̂iΦ̂
H
i , (7)

Ûs
∆
=
[
Φ̂1, Φ̂2, · · · , Φ̂D

]
, (8)

and
Ûn

∆
=
[
Φ̂D+1, Φ̂D+2, · · · , Φ̂N

]
(9)

where λi are the eigenvalues and Φ̂i are the eigenvectors, Ûn is the noise subspace, and Ûs the signal
subspace. Based on this decomposition, some algorithms were proposed using the signal or the noise
subspaces for spectral estimation, i.e., the multiple signal classification (MUSIC) algorithm utilizes all
of the noise subspace eigenvectors and a uniform weighting of the norms of the projections of v(ψ)
onto the estimated eigenvectors.

The Min-Norm spectral estimation technique uses only a single vector d in the noise subspace;
the estimate of ψk will be more accurate and zeros will be less likely to generate spurious sinusoids.
For this, the signal subspace is spanned by the columns of V . Defining a vector
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d = [d1 d2 ... dN ]
T (10)

that has the property that,
vH(ψi)d = 0, i = 1, 2, · · · , D, (11)

or equivalently,
ΦH

i d = 0, i = 1, 2, · · · , D, (12)

Then, the polynomial,

D(z) =
N

∑
k=1

dkz−(k−1), (13)

has zeros at,
zk = exp(jψk), i = 1, 2, · · · , D, (14)

vH(ψi)d = 0, i = 1, 2, · · · , D, (15)

finding d as a liner a combination of the N − D, the power spectral density will have zeros at
ψ1, ψ2, ..., ψD. It is required that d1 equal unity and minimize

Q(ψ) =
N

∑
k=1
|dk|2, d1 = 1. (16)

Minimizing Q(ψ), the Min-Norm null spectra [33] can be written as

Q̂MN(ψ) = |vH(ψ)d|2 = vH(ψ)ÛnWÛH
n v(ψ), (17)

where W = w
1
2 w

H
2 and d = Ûnw

1
2 interpreted as a weighted eigenspace algorithm. A pseudo-code

representation for practical implementation is given in Algorithm 1.

Algorithm 1: Min-Norm Spectral Estimation Algorithm
Data: Ss, K, p
Result: Q̂MN
begin

nm = [(K + 1), · · · , (p + 1)]
Tp = Toeplitz(Ss)

Fb =
[
Tp T∗pJm

]T

USV = SVD(Fb)

g = V(1, mn)
G = V(2 : p + 1, nm)

d = [1
(

g∗gT)−1 (G∗gT)]T
Q̂MN = 20log10|vH(ψ)d|2

where Tp denotes the Toeplitz matrix of p order [32] and Jm is a reflection matrix. It is possible to
compute the (t, f ) decomposition of Ss(l) by sectioning the measured signal into overlapping windows
and applying the Min-Norm spectral estimator to each frame.

4. Simulation Results

In this section, simulation experiments will illustrate the performance of the Min-Norm strategy
in terms of spectrum estimation accuracy when applied to the analysis of the signature of a motor
stator current. Some synthetic signals were created in the time-domain within the bandwidth [0, λs/2),
to simulate an IM stator current in a constant-speed regime. The sequence contains five sinusoids
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located at [ fl1− = 40 Hz, fbb− = 54 Hz, fs = 60 Hz, fbb+ = 66 Hz, fl1+ = 80 Hz], with amplitudes of
[−26 dB,−31 dB, 0 dB,−31 dB,−26 dB] respectively. The Min-Norm is compared with two benchmark
methods, the fast Fourier transform (FFT) and the MUSIC algorithm. The window observation
considered has a length of N = 256, and the noise is modeled as an additive zero-mean white noise
with variance σ2 = 0.08. Figure 1 illustrates the comparison of the true spectrum values and the spectral
estimation performance of the FFT algorithm, the MUSIC algorithm, and the Min-Norm method.
Spectra have been normalized to 0 dB at its maximum estimation value to facilitate the comparison.
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Figure 1. Comparison of spectra obtained from simulated data (IM stator current in white noise data
record length of N = 256), using: FFT, MUSIC, Min-Norm, and the true values.

Figure 1 shows that all methods obtain a good estimate of fs since its amplitude is the highest
of the time-sequence. However, it is not easy to distinguish in the FFT spectrum additional peaks
that would prove the existence of fbb− or fbb+. This is explained by the small observation window
length that reduces the FFT frequency resolution ∆ f = λs/N, resulting in a poor spectral estimate.
On the other hand, the MUSIC method produces a better spectral estimation (its frequency resolution
is better than FFT), which allows the observation of spectral peaks located at the sinusoidal frequencies
fl1−, fbb−, fs, fbb+, fl1+. However, it should be noted that their amplitudes differ significantly from
their true values and the noise floor is altered; also, spurious or fake frequencies appear in the spectrum
at 4, 48, 73, 95 and 112 Hz. On the contrary, the results reveal that the Min-Norm method achieves not
only a high-frequency resolution but also a good estimation accuracy of the amplitudes from relatively
small length data. This result confirms that this tool is suitable for the transient analysis of signals
from induction motors.

Time-Frequency Analysis of Stator Current

Broken rotor bar and misalignment faults can be detected in IM under stationary conditions by
observing the fault components fbb and fl . However, for certain transmission chain configurations,
the two frequency components can overlap between them in steady state producing false positive
or negative fault alarm because of constructive or destructive superposition of two or more components
located at the same frequency. By monitoring the fault components at the startup transient, it is possible
to accurate evaluate the fault components before they overlap with another frequency components
and avoid false fault alarms. Classical estimation techniques are not adequate to analyze the transient
current since its amplitude, frequency, and phase are time-variant. When the induction motor is started,
the frequency components that indicate a fault varies as the motor accelerates to its final operation
speed. The behavior of motor speed and slip are illustrated in Figure 2a,b for a startup transient with
a motor fed from line and by an inverter, respectively. It can be seen that for the inverter-fed IM,
the slip reaches smaller values faster than line-fed IM.
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Figure 3a shows the trajectories in the time-frequency plane of the main frequency fs and
fault-related harmonics during a direct startup. fs is fixed to the line frequency from the beginning,
and fault-related harmonics follow paths that separated from fs during the transient.

The case of an IM inverter-started following a linear profile is very different, as it is shown in the
(t, f ) representation of Figure 3b. The trajectories of fault components evolve close to fs and a high-
resolution technique is therefore necessary to distinguish the fault components.
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Figure 2. Representation of motor speed and slip during a startup transient, when the motor is started
by: (a) from the line, and (b) by an adjustable speed drive.
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Figure 3. Time-frequency representation of harmonic components during a startup transient of
an induction motor fed: (a) from the line, and (b) by an adjustable speed drive.

5. Experimental Setup

The experimental test bench consists of a squirrel cage induction motor by WEG (136APE48T
model) coupled to an alternator as a mechanical load. The experimental tests consist of startup
transients of the motor being fed by the grid line, and by an adjustable speed drive (ASD) by WEG
(CFW08 model). The ASD was programmed to supply a linear frequency ramp from 0 to a base
frequency of 60 Hz with a linear frequency variation. The induction motor and adjustable speed drive
specifications are presented in Appendixes A and B, respectively.

One phase current was measured for condition monitoring purposes with a sampling frequency
of 12.0 kHz. The tests were recorded for 8 seconds using a half-effect sensor model L08P050D15 from
Tamura and a 16-bit analog to digital converter. Three operating conditions of the induction machine
were experimented to test the proposed method. The first case of study is the healthy induction
motor. For the second case of study, the belt connecting the driver pulley and the driven pulley form
a misalignment angle of 10 degrees with respect to a horizontal reference of the aligned case. The latter
is when the rotor is damaged, for this case a broken bar is produced artificially by drilling a hole of
7.93 mm of diameter without harming the rotor shaft.

6. Experimental Validation

The short time minimum norm analysis examined the three study cases. To perform the data
acquisition and collection, a proprietary FPGA-based data acquisition system (DAS) was used.
The acquired measurements were processed by Matlab software in a personal computer with 8 GB
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RAM memory and a microprocessor Intel (R) Core (TM) i7. All the digital sequences of the stator
current were decimated from its original sampling frequency λs to a new sampling frequency λs

D
for selecting the frequency band analysis, and to reduce computational burden. The decimation
process was implemented with a cascade multi-stage approach to avoid spectral aliasing at the sample
rate conversion stage. The startup transient current of the stator was measured for the line-fed IM
and ASD-fed IM as shown in Figure 4. It should be noted that when the IM was started from the
line at constant rated frequency, an ovecurrent happens 7 times greater than rated current. However,
when the ASD was used, the starting current is limited and slightly higher than the rated current.
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Figure 4. Stator current experimental waveform during startup transient of induction motor feds by:
(a) Power grid. (b) Adjustable speed drive.

The Min-Norm-based (t, f ) decompositions of the stator current under ASD startup for: healthy,
shaft misalignment, and broken rotor bar are shown in Figure 5a–c, respectively. On the other hand,
in Figure 6a,c and Figure 4 are presented the (t, f ) analyses for the stator current when the motor
is started directly from the line for the same cases. The proposed methodology is implemented in
PC software. Each time-frequency decomposition has a size of 512 × 1155 points and the analyzed
bandwidth is [0, 128) Hz by 8 s.

fs

fl1-

PSHs fl2+

fl2-

fbb

fl1+

Figure 5. Min-Norm (t, f ) analysis of the starting current with the adjustable speed drive (ASD)
induction motor driving a rated load, for the case of: (a) Healthy motor. (b) Mechanical misalignment.
(c) Motor with one broken rotor bar.

6.1. ASD-Fed Startup Transient Analysis (0 to 60 Hz)

The (t, f ) analysis for the healthy IM case is shown in Figure 5a, where the principal components
inside the stator current spectrum are observed. It can be seen the main harmonic following a linear
profile provided by the ASD supply fs, the space-harmonics for the first eccentricity orders k = ±1,±2
in (2). The Min-Norm-based method also enables the observation of the Principal Slot Harmonics PSHs
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for v = ±3 and v = ±5 in (1). Notice that after the startup transient (next to the second 5), a frequency
signature appears parallel and near the fs component, which is a fact that may lead to a false-positive
indication of rotor fault if only the steady-state operation is analyzed. Figure 5b shows the (t, f )
analysis for the induction motor under shaft misalignment condition. It can be observed a significant
increase in the magnitude of the PSH components due to the asymmetry induced by the misalignment.
Moreover, it can be observed additional spectral lines around the fl for k = ±2 trajectories.

fl2-

fl2+

PSHs

fbb

Figure 6. Min-Norm (t, f ) analysis of the starting current with the line-fed induction motor driving
a rated load, for the case of: (a) Healthy motor. (b) Mechanical misalignment. (c) Motor with one
broken rotor bar.

The rotor bar defect is detected in the ASD-fed IM with the clear identification of the fault
harmonic located at fbb, as predicted in Section 2.1.2 by (3). Figure 5c shows the Min-Norm-based
decomposition, where the fault-pattern is clearly recognized evolving parallel and close to the fs

component. In this case, the (1 + 2s) fs known as Right side harmonic (RSH) oscillation is not present
due to inertia attenuation and its amplitude is so small that is submerged by the measurement noise.

6.2. Line-Fed Startup Transient Analysis

This section shows the ability of the Min-Norm-Based (t, f ) analysis to detect the presence of
fault indicators from short-duration transients, such as when a small motor is started from the line.
The results are presented in Figure 6. In these starting current spectra, the dominant component is the
power grid frequency, with a constant value of 60 Hz. Figure 6a illustrates the result of Min-Norm
analysis of a startup transient of the induction motor under healthy contion.

As a result of the short-time speed transient, all the space harmonics vary rapidly in frequency.
The principal slot harmonics reach high-frequency levels in less than a second, being difficult to notice
its trajectories. On the other hand, the evolution of the fl components is clearly visible and they are
symmetrically located at a distance from the fs, which is equal to ρk fr. In Figure 6b, it is shown that
when the transmission system is misaligned, the asymmetry produces (t, f ) oscillating components
in the vicinity of fl , for k = ±2. It is important to note that, during the steady-state IM operation,
the spectrum has a frequency component apparently located at (1− 2s) fs, even when the rotor is in
perfect health condition.

In contrast with the (t, f ) analysis of the induction motor under healthy condition in Figure 6a,
in Figure 6c the rotor failure is manifested by the clear appearance of a “V” pattern trajectory,
which corresponds to (1− 2s) fs in (3). Furthermore, Min-Norm-based (t, f ) decomposition permits
instant detection of a change in the mechanical load during the steady-state at second 5. The high (t, f )
resolution of the proposed method enables the instant visualization of the sudden change in frequency
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proportional to the slip variation in the induction motor and exhibits an increment in the amplitude of
(1− 2s) fs and in the fundamental component of the stator current.

In all the analyzed stator currents, the mixed eccentricity components fl are present due to the
non-absolutely symmetrical construction of the three-phase induction machine. A belt tensioning also
affects the transmission system and leads to shaft misalignment signatures.

7. Discussion

Figure 7 presents a comparison of the stator current analysis via short-time fourier transform
(STFT), short-time MUSIC (STM), and finally the proposed short-time Minimum Norm. This figure
demonstrates the effectiveness of the Short Time Minimum Norm (STMN) for improving the transient
analysis of induction machines, and for enhancing the identification of fault frequency components at
time variant conditions. The STFT analysis is presented in Figure 7a, where it can be seen that the (t, f )
decomposition is not capable of distinguishing the multiple trajectories of the stator current harmonic
content. Although STFT is simple to apply in comparison to other (t, f ) decomposition tools, it has
a poor frequency resolution and needs a wide window analysis to improve the spectrum estimation.

The experimental result in Figure 7b illustrates the (t, f ) decomposition by MUSIC analysis
and indicates that STM can detect misalignment components fl1− and fl1+. However, stator current
analysis via Min-Norm has the capability to identify the misalignment components and the rotor
fault frequency also. The proposed t-f tool provides a high frequency resolution analysis for a robust
condition monitoring of induction machines.The STMN tool can be used not only for stator current
analysis but also for voltage, magnetic flux, vibrations or another condition monitoring signal.

Figure 7. (t, f ) analysis of the starting current with the ASD-fed induction motor driving a rated load,
for the case of rotor fault. Time-frequency analysis by: (a) Short-Time Fourier Transform. (b) Short-Time
MUSIC. (c) Short-Time Minimum Norm.

8. Conclusions

In this paper, a new time-frequency analysis method has been proposed for fault detection in
induction motors. The proposed methodology is suited for transient analysis, since it provides an
improved sharpness time-frequency decomposition relative to classic methods. The results show that
the proposed methodology can precisely decompose the multi-component and time-variant signal of an
induction motor starting current, providing high time-frequency accuracy for fault detection purposes.
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Abbreviations

The following abbreviations are used in this manuscript:

ASD Adjustable Speed Drive
fbb Broken Bar frequency
FFT Fast Fourier Transform algorithm
fl Load frequency
fr Rotor frequency
fs Fundamental supply frequency
FT Fourier Transform
IM Induction Motors
LSH Left Side Harmonic
Min-Norm Minimum Norm
MUSIC Multiple Signal Classification
PSH Principal Slot Harmonics
ρ Reduction relation
RSH Right Side Harmonic
s Motor slip
SNR Signal to Noise Ratio
STFT Short Time Fourier Transform
STM Short Time MUSIC
STMN Short Time Minimum Norm
(t, f ) time-frequency

Appendix A

Three-phase induction motor rated characteristics: Rated power = 0.74 kW, Rated voltage =
230/460 V, Rated current = 2.9/1.4, Rated speed = 3355 r.p.m., Power factor = 0.87, Efficiency = 75.5%.

Appendix B

Adjustable speed drive characteristics: Rated output voltage: 220/240 V, Rated output current:
Start-up mode = Linear (v/ f ), Control mode: pulse width modulation (16 bits).
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