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Abstract: The aim of this paper is to determine which type of control loop is better for each
particular type of standard voltage source inverter (VSI) load (static, dynamic, nonlinear rectifier
resistive-capacitive RC load). A comparison of three different types of controllers for single-phase VSIs
is presented. The first two are of the single input single output (SISO)/proportional-integral-derivative
controller (PID) and coefficient diagram method (CDM) types, and the third is of the multi-input
single output (MISO)/passivity-based control (PBC) type. The selections of the gains for SISO and
MISO controllers are presented, including the problem in the choice of PBC controller gains caused
by the imperfection of the pulse width modulation (PWM) modulator. For a standard nonlinear
rectifier RC load, the new control quality factor (CQF) is defined to distinguish the properties of the
controllers. The results show the superiority of the MISO-PBC controller for the RC load; however,
for a linear dynamic load, the MISO-PBC performed worse than the SISO-PID or CDM. Therefore,
the choice between either a simple and inexpensive SISO with one measurement trace or an expensive
MISO with three measurement traces depends on the purpose of the VSI. The initial simulations and
measurements of the experimental models are presented and discussed.

Keywords: voltage source inverter; passivity-based control; control quality; nonlinear load; pulse
width modulation; control systems; power conversion systems

1. Introduction

There are many different types of control systems that are used in voltage source inverters
(VSIs) for uninterruptible power supply (UPS) systems. A serious problem is selecting the best
control for dedicated applications. The solution can be a single input single output (SISO) system,
in which only the output voltage is measured and controlled, while the output current is treated
as an independent disturbance [1–3]. However, the output voltage has an influence on the output
current, which creates an additional feedback loop. It is possible to calculate the shift of the poles of
the characteristic equation of a closed-loop system when we consider this additional feedback loop
and determine the final stability of an actual system [4,5]. The distortion of the input DC voltage
of the inverter that results from operating different types of DC/DC converters (e.g., impedance
networks that cooperate with photovoltaic (PV) modules) should also be considered [6,7]. The main
advantage of an SISO solution is its simplicity and low cost because only one trace measuring output
voltage with galvanic isolation is required. There have been some improvements to SISO using double
control loops—a fast inner loop, e.g., a proportional-integral-derivative controller PID [8,9] or the
coefficient diagram method (CDM) [10–12], and an outer loop that is only used to damp harmonic
distortions, e.g., a repetitive controller (RPC) [13–18]. A repetitive controller is a discrete-time harmonic
generator [14] that is plugged into the outer feedback loop, which works perfectly in the steady state
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with a standard nonlinear RC load [19] while minimizing the output voltage static error (it damps
the fundamental harmonic). However, it has one feature that can be a disadvantage for dynamic
load changes: it remembers a disturbance from the previous fundamental cycle (the basic RPC has a
register in which all of the previous fundamental cycle’s values are stored) and even after the output
disturbance vanishes, it still tries to damp it by distorting the output voltage. Therefore, a solution with
an RPC cannot be compared with the fast multi-input instantaneous controllers. The inner feedback
loop cooperates with the RPC best in the outer loop if its magnitude Bode plot is almost flat up to the
Nyquist frequency.

A much more sophisticated system is a multi-input single output (MISO) system (Figure 1),
in which the output current, the output filter inductor current, and the output voltage are measured
and all of them are used as the input variables of the output voltage controller. In this case, the output
current is also treated as a disturbance because the state-space matrix of the VSI does not depend
on the particular load. However, in the case of MISO, we measure the output current (treated as a
space variable or a measured disturbance [20]), which renders the problem of the missed feedback
loop (output voltage—output current) unimportant.

The assignment of a linear or nonlinear plant model is the basic problem in control loop design.
The inverter plant has some nonlinearity. The dead time Tdt of switching transistors in the H-bridge is
one of the reasons for distortions of the output voltage [4] (a little step decrease in output voltage occurs
when the inductor current changes direction) and can be taken into account in the nonlinear model of
the inverter [21]. However, for the standard Tdt ≤ 0.5 µs (for Metal-Oxide Semiconductor Field-Effect
Transistors MOSFET, it can be tens of ns) and for the switching frequency fs = 20 kHz (switching cycle
Ts = 50 µs), the decrease in the fundamental harmonic of the output voltage is approximately only
Tdt/Ts ≤ 1%. The problem of the influence of the nonlinear characteristic of the inductor in the inverter
output filter on the design of the adaptive control loop (with calculation of the nonlinear inductance
characteristic) is presented in [22]. However, the change in the coil’s inductance and its equivalent
serial resistance as a function of the amplitude and the frequency of its magnetizing current depends
on the core material. For contemporary alloy-powder materials (e.g., Sendust (MS)/Super-MSS™ [23]),
the exemplary change of inductance is about 5%, and the equivalent serial resistance is low in the
operating point [24]. Therefore, it has no serious impact on the VSI model. The solution of the
state-space equations of the pulse width modulation (PWM)-controlled VSI results in the nonlinear
(exponential) dependency of the state-space variables on the switching on (duty) time [25]. In [26],
the nonlinear control function is approximated by the Fourier series. The nonlinear modeling of the
inverter using Hammerstein’s approach (by means of the black-box identification method) is presented
in [27]. All the approaches that take into account the nonlinearity of the inverter slightly increase the
accuracy of its modeling; however, it has been shown that a linear approximation of VSI results in
quite a satisfactory compatibility of the linear theory and the experimental model measurements and
enables the easily understandable design of the control loop. Modeling the inverter as linear was
practiced for many years (e.g., [1]) and resulted in the control design keeping low distortions of the
output voltage for standard loads. We do not consider the thermal dependencies of the inductance,
assuming that we work in standard ambient temperature conditions and that self-heating results in a
stabilized temperature of the coil.

Estimating the quality of the VSI output voltage is also a challenge. The most common method
for estimating static load distortions of the output voltage is to use the total harmonic distortion
(THD) coefficient, which is simply the ratio of the root mean square (RMS) value of a set of the
higher than the first harmonics of the output voltage to the RMS value of the fundamental harmonic.
The problem is that this is an averaged value and the spectrum of harmonics cannot be discussed using
it. The distortions of the VSI output voltage after dynamic load changes [19] are defined by means
of the over- or undershoots of the output voltage and the settling time. There are some approaches
that use wavelet analysis to present more complex distortions of the output voltage [28]. In systems
with a discrete-time pulse width modulation (PWM) control, in which the delay of some (at least one)
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switching cycles is unavoidable, the output voltage over- or undershoots are mainly the result of an
insufficient capacitance in the VSI output filter (the feedback loop is important but to a lesser degree)
because the system works in at least one switching period after the step decrease/increase in the load
without control. For a sufficiently high output filter capacitance value, all of the properly designed
SISO and MISO controllers reduced the distortions of the output voltage for the dynamic load to a
similar degree. However, the settling time was different. Therefore, it seems that the most significant
comparison of controller features can be done using a nonlinear RC load. A comparison of the distorted
input inverter DC voltage in the case of the cooperation of a VSI with an impedance network for the
discontinuous current mode (DCM) of a network was previously presented in [7]. Because the THD
or the weighted THD (WTHD) [29] coefficients only show the averaged values, we will now analyze
the spectrum of the harmonics of a single-phase VSI with selected control systems and attempt to
determine which spectrum is the most appropriate for controlling a VSI. The newly defined control
quality factor (CQF) will be used in order to permit a clear estimation of the SISO and MISO controller
properties (Figure 1). Section 2 presents an analysis of the frequency range, in which the features of
the controllers will be compared when considering the magnitude of the VSI output filter. Section 3
presents the approach to the discrete-time modeling of the VSI. Section 4 presents the exemplary SISO
controllers of the VSI, and the MISO passivity-based control (PBC) PBC-IPBC2 is described in Section 5.
Special attention was paid to selecting the PBC gains that were used in the simulations. Section 6 is
devoted to a comparison of the SISO and MISO controllers for standard loads using an experimental
VSI model. The main aim of the paper is to determine which type of control loop is more suitable for
each particular type of standard load (static, dynamic, nonlinear rectifier RC load).

2. Analysis of the Frequency Range of the Controller Features

The transfer function of a simple continuous SISO model (Figure 1) of VSI (Figure 2) is calculated
in Equation (1). Let us assume that in the steady state VOUT = VREF and kV = 1.
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VOUT(s) =
G(s) exp(−sTs)FLC(s)

1+kvFl f (s)G(s) exp(−sTs)FLC(s)
VREF(s)

+
MFLC(s)

1+kvFl f (s)G(s) exp(−sTs)FLC(s)
∆VDC(s)+

+
−ZOUT(s)

1+kvFl f (s)G(s) exp(−sTs)FLC(s)
IOUT(s)

(1)

In the simplified continuous model (Figure 2), for Ts << Tm (switching period Ts, fundamental
period Tm), we can omit the delay, exp(−sTs), of the PWM modulator (Figure 1). The transfer function
of the changes ∆VDC in the VDC voltage supplying the VSI can decrease the result of the distortion
of the DC voltage from the impedance network [6,7]. The output impedance of the VSI without a
feedback loop ZOUT is calculated in Equation (2), where RLF is an equivalent serial parasitic resistance
of the VSI bridge and the filter choke. In further calculations, we will assign kV = 1.

ZOUT( jω) =
RLF + jωLF

(1−ω2LFCF) + jωCFRLF
(2)

We neglect the equivalent serial resistance (ESR) RCF of the capacitor CF. There is a problem
with estimating the damping coefficient ζF when a load current is modeled as an independent current
source. Therefore, the damping coefficient ζF will be calculated in Equation (3) for a case in which
the nominal load resistance RLOAD is present in the transfer function of the VSI. For RLF << RLOAD,
the output filter transfer function is calculated in Equation (3),

FLC( jω) ≈
1

(1−ω2/ωF02) + j2ξFω2/ωF02 , where ωF0 =
1

√
LFCF

, ξF =
1
2
(RLF

√
CF
LF

+
1

RLOAD

√
LF
CF

) (3)

For the low-frequency range below ωF0 (the resonant frequency of the output filter LFCF), the output
impedance of the VSIs without feedback loop ZOUT, the transfer functions FLC, and Flf (Figure 2) are
calculated in Equation (4),

ZOUT( jω)
∣∣∣
ω<<ωF0

≈ RLF + jωLF, FLC( jω)
∣∣∣
ω<<ωF0

≈ 1, Fl f ( jω)
∣∣∣
ω<<ωF0

≈ 1 (4)

The transfer function of the output current, which is treated as an independent disturbance for
the low-frequency range, lower than ωF0 is calculated in Equation (5),

VOUT( jω)
IOUT( jω)

∣∣∣∣∣∣
ω<<ωF0

≈ −
(RLF + jωLF)

G( jω)
(5)

The transfer function of DC voltage change ∆VDC for the low-frequency range ω << ωF0 and
kV = 1 is calculated in Equation (6),

VOUT( jω)
∆VDC( jω)

∣∣∣∣∣∣
ω<<ωF0

≈
M

G( jω)
(6)

The specific case shown in Equation (7) is for ω = ωF0, and the values of LF = 1 mH, CF = 50 µF,
and RLF < 1 were used.

ZOUT( jω)
∣∣∣
ω = ωF0

≈
1

RLF

LF
CF

, FLC( jω)
∣∣∣
ω = ωF0

≈
1

j2ξF
,

VOUT( jω)
IOUT( jω)

∣∣∣∣∣∣
ω = ωF0

≈
1

RLF

LF
CF

1
jG( jωF0)/(2ξF) − 1

(7)

The transfer function of ∆VDC for the low-frequency range ω = ωF0 and kV = 1 is calculated in
Equation (8),

VOUT( jω)
∆VDC( jω)

∣∣∣∣∣∣
ω = ωF0

≈
M

j2ξF + G( jωF0)
(8)
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For the high-frequency range over ωF0, the output impedance ZOUT of the VSI without the
feedback loop and the transfer function of the output current (which is treated as an independent
disturbance) for the high-frequency range over ωF0 is calculated in Equation (9). We assume that filter
FLC(jω) forω >> ωF0 damps the signals of whatever is the transfer function Flf(jω) (|Flf(jω)| ≤ 1).

ZOUT( jω)
∣∣∣
ω>>ωF0

≈
1

jωCF
, FLC( jω)

∣∣∣
ω>>ωF0

≈ −
ωF0

2

ω2 ,
VOUT( jω)
IOUT( jω)

∣∣∣∣∣∣
ω>>ωF0

= −
1

jωCF
. (9)

The transfer function of ∆VDC for the high-frequency range ω >> ωF0 and kV = 1 is calculated in
Equation (10),

VOUT( jω)
∆VDC( jω)

∣∣∣∣∣∣
ω>>ωF0

≈ −M
ωF0

2

ω2 (10)

Equations (9) and (10) mean that forω >> ωF0, the output impedance of the VSI with the feedback
loop and the transfer function of ∆VDC with the feedback loop are not dependent on it.

It can be seen from the presented Equations (1)–(10) that the gain of the controller is important
in damping the disturbances for the resonant frequency ωF0 and below this frequency of the output
filter. For the higher frequencies, it is not important because of the high suppression of the output filter.
This discussion, which is based on Figure 2, led to the further investigation of controller properties
being carried out in the 2ωF0 frequency range.

3. Discrete-Time Modeling of the Voltage Source Inverter

Today, only the digital control of VSI is important. Every PWM discrete-time modulator implements
one switching period delay Ts (the data are written for the modulator in one switching cycle, and the
pulse width is set in the next cycle). For VSIs that are used in UPS systems, the requirement of low
output voltage harmonics has made the sinusoidal PWM the most popular. In the case of a single-phase
VSI with a four-transistor, three-level H-bridge, a double-edge PWM is usually a sufficient solution.
The design of the discrete-time controller requires that a discrete-time or continuous model of a VSI be
used. The first approach is based on the continuous to discrete-time transformation (the discretized
plant) using the zero order hold (ZOH) model or the Tustin model [4,30]. The second approach is based
on solving the state-space equations (the discrete plant) and linearizing the control function [1,21,30].
The third approach is based on the continuous model of a VSI, adjusting the quasi-continuous-time
counterpart of the discrete-time controller, and finally, using a discrete-time controller (the discretized
controller) [8,9]. The first and third solutions are based on the averaged models. The second solution
considers the PWM features that distinguish the single and double-edge PWM. However, for a relatively
high switching frequency, all of them gave similar results of control. The state variables x = [vOUT iLF
iOUT]T, the control (input) variable u = vFIN, the output variable y = vOUT (Figure 1), and the state A
and control B matrixes were calculated in Equation (11) when the ESR of the capacitor was neglected.
The state-space equations

.
x = Ax + Bu were solved for the time period of the switching on TONk

(VFIN = VDC) and switching off TOFFk (VFIN = 0). However, we obtained nonlinear equations for the
control, so the discrete-time control matrix GD was approximated exp(ATONk/2) ≈ I + ATONk/2 to
linearize them [1,16,25]. Finally, the discrete-time state-space equations were obtained, as shown in
Equations (11)–(15) [4,21,30].

A =


0 1

CF
−

1
CF

−
1

LF
−

RLF
LF

0
0 0 0

, B =


0
1

LF

0

 (11)

xk+1 = ADxk + GDTONk (12)

AD = eATs = Φ(Ts) = L−1
[
(sI −A)−1

]∣∣∣∣
t = Ts

(13)
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GD = eATs/2BVDC = Φ(Ts/2)BVDC (14)

AD = Φ(Ts) =


φ11 φ12 φ13

φ21 φ22 φ23

φ31 φ32 φ33

, GD =


g11

g21

g31

 (15)

Where

ξF = 1
2 RLF

√
CF/LF

φ11 = [cos(ωF0Ts) + ξF sin(ωF0Ts)] exp(−ξFωF0Ts),
φ12 = 1

ωF0CF
sin(ωF0Ts) exp(−ξFωF0Ts), ϕ13 = −ϕ12 + RLF(ϕ11 − 1),

φ21 = −CF
LF
ϕ12, φ22 = [cos(ωF0Ts) − ξF sin(ωF0Ts)] exp(−ξFωF0Ts), φ23 = 1−ϕ11,

φ31 = 0, φ32 = 0, φ33 = 1g11 = VDCωF0 sin (ωF0
Ts
2 ) exp (−ξFωF0

Ts
2 ),

g21 =
VDC
LF

[
cos (ωF0

Ts
2 ) − ξF sin (ωF0

Ts
2 )

]
exp (−ξFωF0

Ts
2 ), g31 = 0

(16)

The damping ζF calculated from the space Equation (14) was not dependent on the load ZLOAD
(Figure 1) because if IOUT was treated as an independent current source (Figure 2), the load was absent
in the space equations. This is the difference in the Equations (16) and (3) describing ζF value.

The output voltage discrete-time transfer function for the open loop is a control function of the
duty cycle, which is controlled by vCTRL and a function (−ZOUT, where ZOUT is an output impedance)
of the output current Equation (17). The discrete-time control transfer function of a VSI Equation (24)
considers an additional delay of one Ts of the discrete-time modulator H(z).

VOUT(z) = z−1 Ts

VDC
GinvVCTRL(z) −ZOUT(z)IO(z) (17)

For the open-loop system, Equations (18) and (19) are used:

KVSI =
VOUT(z)
VCTRL(z)

= z−1 Ts

VDC
Ginv =

Ts
VDC

g11z−2 + Ts
VDC

(ϕ12g21 −ϕ22g11)z−3

1− (ϕ11 + ϕ22)z−1 + (ϕ11ϕ22 −ϕ12ϕ21)z−2
(18)

ZOUT(z) =
ϕ13z−1 + (ϕ12ϕ23 −ϕ13ϕ22)z−2

1− (ϕ11 + ϕ22)z−1 + (ϕ11ϕ22 −ϕ12ϕ21)z−2
(19)

Similar results of the discrete-time model for a VSI can be achieved using the c2d MATLAB
function with the simplest ZOH discretization [30] or the discretization in the analytic way [8,9].

4. SISO Control of a VSI

The first presented example of an SISO control is a modern discretized PID controller (presented
in detail in [8,9]), which uses the simplest SISO model from Figure 2 but includes an RLOAD.
The quasi-continuous transfer function [8,9] of the plant Kp(s) (including RLOAD), considering a
further ZOH discretization and one Ts delay of the modulator, is shown in Equation (20),

Kp(s) = exp (−s
Ts

2
) exp(−sTs)FLC(s) ≈ (1− s

Ts

2
)

1− s Ts
2

1 + s Ts
2

ωF0
2

s2 + 2ξFωF0s + (1 + RLF
RLOAD

)ωF02
(20)

The discrete-time PID controller is as in Equation (21),

C
(
z−1

)
=

b0 + b1z−1 + b2z−2

1− z−1
(21)
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The difference control law for kV = 1 is as in Equation (22),

vCTRL(k) = vCTRL(k− 1) + b0(vOUT(k) − vREF(k))
+b1(vOUT(k− 1) − vREF(k− 1)) + b2(vOUT(k− 2) − vREF(k− 2))

(22)

For the experimental model: Ts = 1/fs = 1/2,5600 s, LF = 1 mH, CF = 50 µF, RLF = 1 Ω, RLOAD = 50 Ω;
the PID controller transfer function from [8] will be b0 = 18.014, b1 = 33.495, b2 = 16.094. These coefficients
were analyzed based on the root locus [8]. In Reference [9], these coefficients were slightly adjusted:
b0 = 18.381, b1 = 34.179, b2 = 16.423.

A more sophisticated SISO system is presented in Figure 3 [10,11,31,32].
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The concept of a Manabe CDM [10–12,31] design of the controller (T, S, R) is such that the
coefficients of the closed-loop characteristic polynomial have assumed values, in the simplest case,
of Standard Manabe Form. For kv = 1 (vREF is properly scaled), the output voltage of a closed-loop
system is as in Equation (23),

vOUT
(
z−1

)
=

TN
RD + SN

vREF
(
z−1

)
−

ZOUTRD
RD + SN

IOUT
(
z−1

)
(23)

The characteristic equation of a closed-loop system is as in Equation (24),

P
(
z−1

)
= R

(
z−1

)
D
(
z−1

)
+ S

(
z−1

)
N

(
z−1

)
=

n∑
i = 0

pziz−i (24)

From Equation (18), Equation (25) can be derived:

KVSI =
N

(
z−1

)
D(z−1)

=
a2z−2 + a3z−3

1 + b1z−1 + b2z−2
(25)

For a system with a disturbance (in our case IOUT), the degrees of R and S are equal to or higher
than n−1, where n is the degree of D. In our case, we will assume Equation (26):

S
(
z−1

)
=

2∑
i = 0

siz−i, R
(
z−1

)
=

2∑
i = 0

riz−i, r0 = 1 (26)

The Diophantine Equation (27) should be solved for r0 = p0 = 1.

(
1 + r1z−1 + r2z−2

)(
1 + b1z−1 + b2z−2

)
+

(
s0 + s1z−1 + s2z−2

)(
a2z−2 + a3z−3

)
=

5∑
i = 0

pziz−1 (27)
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To solve Equation (27), Equation (28) should be solved to obtain the ri and si coefficients,
1 0 0 0 0
b1 1 a2 0 0
b2 b1 a3 a2 0
0 b2 0 a3 a2

0 0 0 0 a3




r1

r2

s0

s1

s2


=


pz1 − b1

pz2 − b2

pz3

pz4

pz5


(28)

where Equation (29),

a2 =
Ts

VDC
g11, a3 =

Ts

VDC
(ϕ12g21 −ϕ22g11), b1 = −(ϕ11 + ϕ22), b2 = ϕ11ϕ22 −ϕ12ϕ21 (29)

The coefficients pi of Standard Manabe Form in a continuous system for the 5th degree of P(s) are
the following:

p0(s0) = 1, p1(s1) = p0τ, p2(s2) = 0.4 p0τ
2, p3(s3) = 0.08 p0τ

3, p4(s4) = 0.008 p0τ
4, p5(s5) = 0.0004 p0τ

5,

where τ is the time constant of a closed-loop system. Satisfactory results of the control of the
experimental model were achieved for τ = 4 Ts and for τ = 5 Ts.

Let us define the following discrete-time transfer function using the c2d function with the
discretization cycle Ts = 1/2.5600 s and the default ZOH method Equation (30) [4]:

K(z) = c2d(
1∑5

i = 0 pi(s)si
, Ts) =

∑5
i = 0 wi(z)z−i∑5

i = 0 pzi(z−1)z−i
(30)

For τ = 4 Ts:
pz0(z0) = 1, pz1(z−1) = −1.327, pz2(z−2) = 0.6811, pz3(z−3) = −0.1826, pz4(z−4) = 0.0381,

pz5(z-5) = −0.006738.
This last calculation enables vOUT = vREF to be kept in the steady state Equation (31).

t0 =
P(z = 1)
N(z = 1)

=
VDC
Ts

1 + pz1 + pz2 + pz3 + pz4 + pz5

ϕ12g21 + (1−ϕ22)g11
(31)

For the experimental model, the solutions of Equations (28) and (31) were:
r0 = 1, r1 = 0.5898, r2 = 0.4218, s0 = 29.5050, s1 = −24.2037, s2 = −0.4607, t0/VDC = 0.1713.
However, in many cases t0 is adjusted individually. The difference control law for kv = 1 is as in

Equation (32),

vCTRL(k) = −r1vCTRL(k− 1) − r2vCTRL(k− 2) + t0vREF − s0vOUT(k) − s1vOUT(k− 1) − s2vOUT(k− 2) (32)

5. MISO Control of VSI

MISO controllers with multiple controller inputs, i.e., the output voltage, filter inductor current,
and output current, and a single output, i.e., voltage (Figure 1), effectively reduce the distortions of
the output voltage for the different types of loads that are defined in [19]. One of the MISO controls
that is described often lately is the passivity-based control (PBC) presented by Ortega [33] in 1989.
PBC seems to be one of the best solutions for power conversion systems such as VSIs [20,34–36]. A VSI
is presented as an energy transformation multiport device [37]. If the stored energy is less than the
supplied energy, the system is passive. The “injection” of the appropriate damping [34] is basic for the
control of the inductor and output currents; however, in the so-called improved PBC [34], there is direct
feedback from the output voltage. The state variables that define the energy of the VSI are defined
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as in Equations (33) and (34). The output current, which does not exist in the function of the system
energy, is treated as an independent disturbance [20].

x =
[

LFiLF CFvOUT
]T

= P
[

iLF vOUT
]T

(33)

P =

[
LF 0
0 CF

]
, P−1 =

[
1/LF 0

0 1/CF

]
(34)

The total energy that is stored in the system is described by the Hamiltonian function H(x) in
Equations (35) and (36),

H(x) =
1
2

(
LFiLF

2 + CFvOUT
2
)
=

1
2

xTP−1x (35)[
iLF vOUT

]T
= P−1x = ∂H(x)/∂(x) (36)

The error vector e is defined as Equations (37)–(39),

e =

 LF
(
iLF − iLFre f

)
CF

(
vOUT − vOUTre f

)  = P
[

iLF − iLFre f
vOUT − vOUTre f

]
(37)

H(e) =
1
2

(
LF

(
iLF − iLFre f

)2
+ CF

(
vOUT − vOUTre f

)2
)
=

1
2

eTP−1e (38)[
iLF − iLFre f

vOUT − vOUTre f

]
= P−1e = ∂H(e)/∂e (39)

vOUTref is the reference, sinusoidal output voltage waveform;
iLFref is the calculated reference current of the inductor.
The equilibrium of a closed-loop system is asymptotically stable [38] and is achieved if H(e) has a

minimum in x = xref in Equation (40),

∂H(e)
∂x

∣∣∣∣∣∣
x = xre f

= 0,
∂2H(e)
∂x2

∣∣∣∣∣∣
x = xre f

> 0 (40)

The system is passive if the time derivative H(e) is negative in Equation (41),

dH(e)
dt

< 0 (41)

Two equations are used—the first for a closed-loop system Equation (42) [20] and the second for
an open-loop system, as in Equation (43),

.
e = [J − (R + Ra)]P−1e (42)

.
x = [J −R]P−1x +

[
VDC

0

]
m +

[
0
−1

]
iOUT (43)

where the interconnection matrix, J, and the damping matrix, R, can be defined as in Equation (44),

J =

[
0 −1
1 0

]
, R =

[
RLF 0

0 0

]
(44)
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Ra (the PBC controller) is the matrix Equation (45) of the injected damping, Ri is the gain of the
current error, and Kv is the conductive gain of the voltage error.

Ra =

[
Ri 0
0 Kv

]
(45)

Subtracting Equation (42) from Equation (43) results in the control law Equation (46),

.
e−

.
x = [J −R]P−1(e− x) −RaP−1e−

[
VDC

0

]
m−

[
0
−1

]
iOUT (46)

For vCTRL = mVDC, the difference control law of a single-phase VSI with a PBC is shown in
Equations (47) and (48),

vCTRL(k) = −RiiLF(k) + (Ri + RLF)iLFre f (k) + LF
iLFre f (k) − iLFre f (k− 1)

Tc
+ vOUTre f (k) (47)

iLFre f (k) = Kv
[
vOUTre f (k) − vOUT(k)

]
+ CF

vOUTre f (k) − vOUTre f (k− 1)

Tc
+ iOUT(k) (48)

The inductor current is an integral of a function of the output voltage, which is important for
the steady-state error in the control law. The adjustment of the PBC gains, Ri and Kv, is a problem.
The matrix R + Ra should be positively defined to fill this requirement Equation (41) [20]. In practice,
this means that Ri + RLF and Kv should be positive. Calculating the upper restrictions of their values
can be difficult [34]. The higher their values are, the higher the convergence of the error tracking is.
The characteristic polynomial of a closed-loop system with a PBC is shown in Equation (49),

det
{
[J − (R + Ra)]P−1

− λ1
}
=

[
(−RLF −Ri)1/LF − λ −1/CF

1/LF (−Kv)1/CF − λ

]
(49)

The roots λ1,2 Equation (50) of the characteristic polynomial Equation (49) of a closed-loop
system Equation (42) will always have the real part negative (Figure 4a,b) for the positively defined
R + Ra matrix.

λ1,2 =

{
−[(RLF + Ri)CF + LFKV ] ±

√
[(RLF + Ri)CF + LFKv]

2
− 4LFCF[1 + (RLF + Ri)Kv]

}
2LFCF

(50)

Energies 2020, 13, x 11 of 20 

 

  
(a) (b) 

Figure 4. The root locus of the characteristic polynomial of a closed-loop system with passivity-based 
control (PBC) for LF = 1 mH, CF = 50 µF: (a) RLF + Ri = 10 Ω, (b) RLF + Ri = 20 Ω. 

Figure 6 presents two problems. The first is saturation in the PWM modulator due to overly high 
values of the PBC gains (Ri and KV). The second case can be presented comparing the root loci from 
Figures 4a,b and 6. For Ri = 10, oscillations can occur for KV = 0–1, for Ri = 20, and for KV = 0.5–1.5. The 
second problem was not so important. The value of M = 0.3 was too low in practice. It was 
experimentally checked in the VSI model and finally set at M = 0.8, Ri = 5, and KV = 0.5. The equations 
from the literature did not solve the problem of restricting the upper Ri and KV values. From Figure 
5, it is obvious that an MISO control with a low M value is able to efficiently control the output 
current. The presented PBC control was further named IPBC2 because compared to the basic PBC 
theory [34], it used the output voltage as in [34] and its derivative in the final control law. This 
derivative was absent in the improved PBC (IPBC) that was presented in [34]. 

 
Figure 5. The simulation of the output voltage and current waveforms for rectifier R = 100 Ω and C = 
430 µF for M = 0.3 and different values of Ri and KV. 

Figure 4. The root locus of the characteristic polynomial of a closed-loop system with passivity-based
control (PBC) for LF = 1 mH, CF = 50 µF: (a) RLF + Ri = 10 Ω, (b) RLF + Ri = 20 Ω.



Energies 2020, 13, 4100 11 of 20

However, in the simulations and in the experimental model, overly high values of Ri and Kv led to
oscillations in the control voltage and output voltage (Figure 5). An overly high value of modulation
index M [39,40] for the nonlinear rectifier RC load led to the saturation of the PWM modulator (Figure 6).
Both of these cases produced the same result. The reason can be the disability of fast current changing
in the filter inductor [40]. Therefore, the best adjustment of the PBC controller gains Ri and Kv is to
determine the lowest THD (for the nonlinear rectifier RC load).
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Figure 5. The simulation of the output voltage and current waveforms for rectifier R = 100 Ω and
C = 430 µF for M = 0.3 and different values of Ri and KV.

Figure 6 presents two problems. The first is saturation in the PWM modulator due to overly
high values of the PBC gains (Ri and KV). The second case can be presented comparing the root loci
from Figure 4a,b and Figure 6. For Ri = 10, oscillations can occur for KV = 0–1, for Ri = 20, and for
KV = 0.5–1.5. The second problem was not so important. The value of M = 0.3 was too low in practice.
It was experimentally checked in the VSI model and finally set at M = 0.8, Ri = 5, and KV = 0.5.
The equations from the literature did not solve the problem of restricting the upper Ri and KV values.
From Figure 5, it is obvious that an MISO control with a low M value is able to efficiently control
the output current. The presented PBC control was further named IPBC2 because compared to the
basic PBC theory [34], it used the output voltage as in [34] and its derivative in the final control law.
This derivative was absent in the improved PBC (IPBC) that was presented in [34].
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The idea of the calculation of the upper limit of Ri gain was presented in [34]. The derivative of
the control voltage vCTRL in one switching cycle should be lower than the maximum carrier slope in
the PWM modulator. For the double-edge modulation and recalculating it to the DC voltage level, it is
equal to VDC/(Ts/2) [34]. However, it is shown in Figures 5 and 6 that the mutual dependency of the
two PBC controller gains is very important. In one sampling period, we can assume d(vOUTref)/dt ≈ 0.
Therefore, from Equation (48) we can calculate:

iLFre f (kTs) = (
1

RLOAD
−Kv)vOUT(kTs) + vOUTre f (kTs) (51)

diLFREF(kTs)

dt
≈ (

1
RLOAD

−Kv)
dvOUT(kTs)

dt
(52)

From Equations (47), (51) and (52), we can calculate Equation (53):

dvCTRL(kTs)
dt ≈ LF(

1
RLOAD

−Kv)
d2vOUT(kTs)

dt2

+(Ri + RLFe)(
1

RLOAD
−Kv)

dvOUT(kTs)
dt −Ri

diLF(kTs)
dt

(53)

In one switching cycle, for RLOAD =∞, we can assume Equation (54):

diLF(kTs)

dt

∣∣∣∣∣∣
max,min

≈ ±
VDC
LF

,
dvOUT(kTs)

dt

∣∣∣∣∣∣
max
≈

iLF

CF
,

d2vOUT(kTs)

dt2

∣∣∣∣∣∣
max
≈

d
dt

( iLF

CF

)∣∣∣∣∣
max
≈ ±

VDC
LFCF

(54)

∣∣∣∣∣∣dvCTRL(kTs)

dt

∣∣∣∣∣∣
max
≈ Kv[LF + (Ri + RLFe)Ts]

VDC
LFCF

+ Ri
VDC
LF

(55)

The final restriction of PBC gains, Ri and Kv, from Equation (55) is Equation (56),

Kv[LF + (Ri + RLFe)Ts]
1

CF
+ Ri <

2LF

Ts
(56)

The restrictions of the operating area, shown in Figure 7, can be one of the reasons for the THD
increase in the higher values of PBC gains presented in Figures 5 and 6. However, Equation (56) does
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not consider the modulation index M value because the maximum carrier slope does not depend on M
(the reference voltage depends on M). Equation (56) is calculated for RLOAD =∞, while the restrictions
of the Kv value for the existing load resistance will be slightly lower.
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Equation (56).

6. Comparison of Experimental Voltage Source Inverters with PID, CDM, and PBC
Control Systems

The comparison of the SISO-PID (the version from [8,9]), SISO-CDM, and MISO-PBC-IPBC2
systems was based on measurements of the VSI output voltage for standard loads. Figure 8a–d
presents the output voltage for the standard [19] nonlinear rectifier RC load for R = 100 Ω and
C = 430 µF. The vertical axis of Figure 8a–d is scaled in units of the 13th bit bipolar Analog To Digital
Converter ADC. The actual voltage amplitude was about 60 V. The output filter (LF = 1 mH, CF = 50 µF)
resonant frequency was about 712 Hz. The initial analysis (Section 2) showed that the feedback
loop is only important for the neighborhood of this frequency (about 14th harmonic) and below.
Therefore, a sufficient frequency range for comparing the controllers was from the 2nd up to the 30th
harmonic. Figure 8a–d presents the output voltage waveforms without feedback and with the PID,
CDM, and PBC-IPBC2 controllers. The THD coefficient was calculated for each case. The PID and
CDM controllers had similar THD, while for the PBC, it was a bit lower. However, the output voltage
waveforms were different. The harmonics spectra are presented in Figure 9a–d. It can be noticed that
the harmonics spectrum is different for the different controllers. Some of the harmonics are increased
(e.g., the 2nd harmonic for the CDM controller increased because the voltage waveform was not ideally
symmetrical). The importance of a decrease or increase in a specific harmonic was dependent on its
relative amplitude. Therefore, the influence of the feedback loop on the particular harmonic can be
defined as in Equation (57),

xn = hNFBn20 log10
hNFBn

hCTRLn
(57)

where hNFBn is the n-th relative harmonic amplitude of the output voltage without feedback and hCTRLn
is the n-th relative harmonic using the selected controller. The sum of the xn values is a measure of the
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feedback quality. The better the quality, the higher the value of the coefficient. Therefore, the final
definition of the control quality factor (CQF) is as in Equation (58),

CQF =
n∑
1

hNFBn20 log10
hNFBn

hCTRLn
(58)

where m is the harmonic order above the filter resonant frequency, in our case m = 30.
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The higher the CQF, the better the control. It can be seen from Figure 8a–d that for the nonlinear
rectifier RC load, the best controller was the PBC (CQF = 1.51), the second best was the CDM
(CQF = 1.41), and the third best was the PID (CQF = 1.2). The CQF measure enabled us to distinguish
the quality of PID and CDM controls that had almost the same THD. The nonlinear load caused
harmonic disturbances, and the CQF was the proper measure of their damping.

The quality of the control should also be determined for a dynamic load change. Figure 10a–d
shows the over-and undershoots after a dynamic load decrease and increase (45 Ω to 500 Ω and 500 Ω
to 45 Ω) and the settling time. The lowest over- and undershoots (about 3% and −2%) were for the
CDM control, the shortest settling time (about 1 ms in both cases) was for the PID control, and the
worst parameters were for the PBC-IPBC2 (about 6% and −5.1%, 3.5 and 2 ms). It would be difficult
to improve the dynamic properties of the PBC because increasing the gains Ri and KV would lead to
higher oscillations and a longer settling time, while decreasing them would lead to higher over- and
undershoots. In the PBC, we directly control the filter inductor current as in Equations (47) and (48)
but the inductance disables fast current changes, which can lead to the saturation of the modulator.
The capacitance in the output filter has a significant influence on the over- and undershoots.
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(c) the SISO-CDM controller; (d) the MISO-PBC-IPBC2 controller.
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7. Materials and Methods

The presented simulations were performed using MATLAB-Simulink for the VSI model with
LF = 1 mH, RLF = 1 Ω, CF = 50 µF and the switching frequency fs = 25,600 Hz (Figures 5–7).
The modulation index in simulations was M = 0.3. The first PWM scheme [41,42] of 3-level modulation
was used. The VSI experimental model had the same nominal parameter values as the MATLAB
model except that the modulation index was M = 0.8. The filter coil core was made of Super-MSS™
material [23,42], and the output capacitor was of the Metallized Polypropylene Capacitor MKP type.
The transistor switches of the H-bridge were International Rectifier HEXFETs - IRFP 360, which have
RDS(on) = 0.20 Ω (@10 A). The PID [8,9], CDM, and IPBC2 control laws were programmed in an
STM32F405VG microcontroller by means of Keil µVision C++. The static load resistance varied from
50 to 2000 Ω, and the dynamic load resistance was a step load from 50||500 to 500 Ω and from 500 Ω
to 50||500. The nonlinear rectifier RC load was for R = 100 Ω and C = 430 µF. The amplitude of the
experimental VSI output voltage was 60 V, and the values of the voltages in Figures 8 and 10 are
presented in units of the ADC converter (the −4093 to 4093 range). The waveforms (two fundamental
periods) were transmitted from the inverter model to the PC with the visualization software (Figure 11),
then computed and plotted using MATLAB (Figures 8 and 10).
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8. Results

The results of the measurements of the VSI experimental model are presented in Table 1. With the
inclusion of the new CQF factor, an increase in the resolution of the estimation of the three different
controls’ results should be enabled. We can use simple and cheap SISO-PID or SISO-CDM controllers
(without the filter coil current and the VSI output current sensors) in the case of the static and dynamic
linear loads of the VSI. However, in the case of the nonlinear rectifier RC load, a better solution is
MISO-IPBC2. The restrictions of the Kv and Ri gains in the MISO-IPBC2 (Figures 5–7) complicate its
further improvement. The requirement of the restriction of the product of the modulation index M
and the filter inductor value LF (the higher the LF, the lower the M) is a problem that exists for all the
controller types and was described, e.g., in [39,40].
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Table 1. Parameters of the VSI output voltage with standard loads for the different controllers.

Type of Control No Feedback SISO-PID SISO-CDM MISO-PBC-IPBC2

Rectifier RC load
(R = 100 Ω,
C = 430 µF)

THD = 4.714% THD = 1.78%
CQF = 1.2

THD = 1.88%
CQF = 1.41

THD = 1.33%
CQF = 1.51

Load decrease
(45 Ω to 500 Ω)

∆VOUT = 10%
Settling: 4 ms

∆VOUT = 3.4%
Settling: 1 ms

∆VOUT = 3.0%
Settling: 1.5 ms

∆VOUT = 6%
Settling: 3.5 ms

Load increase
(500 Ω to 45 Ω)

∆VOUT = −9%
Settling: 3.5 ms

∆VOUT = −3.2%
Settling: 1 ms

∆VOUT = −2.1%
Settling: 1.2 ms

∆VOUT = −5.1%
Settling: 2 ms

Static error of the
amplitude

(500 Ω to 45 Ω)
4% 2% 2% 2%

9. Conclusions

A comparison of SISO-PID, SISO-CDM, and MISO-PBC-IPBC2 systems showed that for the
nonlinear rectifier RC load defined in the IEC 62040-3 standard [19], the best results (the lowest
distortions of the output voltage) were for the PBC-IPBC2 controller that had the gains adjusted after
the initial simulations (Figures 5–7). The measurement of the currents enabled them to be better shaped
(Figure 5). A new control quality factor was defined and enabled a better resolution in the description
of the control results. An analysis of the root locus (Figure 4a,b) showed that the voltage source
inverter with the PBC-IPBC2 control should always be stable for any positive gains Ri and KV; however,
the simulations (Figures 5–7) and measurements of the experimental model showed that oscillations
in the output voltage existed for the higher values of gains. It is obvious that the MISO-PBC-IPBC2
system with the output current and filter inductor current measurements better damped the important
harmonics (Figure 9a–d). The output voltage parameters (the over- and undershoots, the settling
time) for the linear dynamic load were worse for the PBC-IPBC2, and we were not able to improve
them by changing the values of the controller gains. An increase in the gains decreased the over- and
undershoots but increased the settling time because of oscillations. The reason for the worse dynamic
response of the PBC could be the direct control the filter inductor current, during which the inductance
disables fast current changes, which can lead to the saturation of the modulator [40]. The static error,
which was calculated as the decrease in output voltage amplitude after an increase in the load (500
to 45 Ω), was low and was similar for all of the controllers (about 2% vs. 4% without feedback),
which is understandable because the static error was mainly reduced by the integration action of the
output voltage. All of the controllers had such an action (the PBC-IPBC2 controller due to the control
of the inductor current, which was dependent on the integration of the function of the VSI output
voltage). All of the controllers cause small oscillations (Figure 10a–d) in the VSI output voltage (in the
experimental model) close to the zero crossing, which could have been the result of the wind up effect
of the controller (the voltage error was integrated, and the three-level PWM for the voltage crossing
zero was not able to control the output voltage efficiently with very short pulses). To summarize,
in the case of a nonlinear load, the more expensive MISO-PBC-IPBC2 controller had much lower
distortions of the VSI output voltage, while in the case of dynamic loads, the less expensive SISO-PID
and SISO-CDM controllers were sufficient and the static error was the same for all the controllers.
Therefore, the final selection of either a simple and inexpensive SISO with one measurement trace or
an expensive MISO with three measurement traces depends on the proposed function of the VSI.
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