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Abstract: Premixed flame propagation in obstructed channels with both extremes open is studied
by means of computational simulations of the reacting flow equations with a fully-compressible
hydrodynamics, transport properties (heat conduction, diffusion and viscosity) and an Arrhenius
chemical kinetics. The aim of this paper is to distinguish and scrutinize various regimes of flame
propagation in this configuration depending on the geometrical and thermal-chemical parameters.
The parametric study includes various channel widths, blockage ratios, and thermal expansion ratios.
It is found that the interplay of these three critical parameters determines a regime of flame propagation.
Specifically, either a flame propagates quasi-steady, without acceleration, or it experiences three
consecutive distinctive phases (quasi-steady propagation, acceleration and saturation). This study is
mainly focused on the flame acceleration regime. The accelerating phase is exponential in nature,
which correlates well with the theoretical prediction from the literature. The accelerating trend also
qualitatively resembles that from semi-open channels, but acceleration is substantially weaker when
both extremes are open. Likewise, the identified regime of quasi-steady propagation fits the regime
of flame oscillations, found for the low Reynolds number flames. In addition, the machine learning
logistic regression algorithm is employed to characterize and differentiate the parametric domains of
accelerating and non-accelerating flames.

Keywords: premixed combustion; obstructed channels; flame acceleration; thermal expansion;
computational simulations; machine learning

1. Introduction

Semi-open channels and tubes (where one end of the pipe is closed while another end is open;
a flame is ignited at the closed end and propagates towards the open extreme), with evenly arranged
and closely packed obstacles along the sidewalls, have been reported to experience ultrafast premixed
flame acceleration (FA) and eventually an event of deflagration-to-detonation transition (DDT) [1–5].
This acceleration mechanism is conceptually laminar, being devoted to a powerful jet flow along
the pipe centerline [1]. The cause of such acceleration is attributed to the cumulative effects of
delayed burning in the pockets between the obstacles, with turbulence playing only a supplementary
role [2]. On the contrary, industrial and laboratory conduits oftentimes have both extremes open,
which attracted the interest for decades, starting with the classical experimental works on chocked
flames [6] and quasi-detonations [7] in open obstructed pipes; see also [8,9] and references therein for
details. In such a situation of both open extremes of an obstructed pipe, a new gas volume, generated
by expansion of the burning matter in the combustion process, flows from the side pockets into two
distributed streams moving towards the two open ends, as illustrated in Figure 1. Non-restriction of
the flow in axial direction results in a mechanism of flame propagation different from that previously
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observed in semi-open channels. For narrow channels, oscillations of the flame shape and velocity
dominate in the flame dynamics [10,11]. Occurrence of these oscillations is due to regularly repeated
acceleration-deceleration sequences causing the flame to have varying instantaneous shape, area and
velocity [10].
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Figure 1. A schematic of an obstructed channel with both extremes open (upper half is shown).

A significant difference in flame propagation observed in these pipe configurations, coupled to
potential improvements of practical applications [12] and associated with deeper understanding of
flame propagation in such applications, have stirred up a significant interest. In a bid to satisfy the
prevailing concerns and gain further insight into the morphology and propagation of premixed flames
in obstructed conduits, a number of studies of burning in semi-open obstructed channels have been
performed [13–15]. The analytical, numerical and experimental investigations of FA in fully-open
channels suggested that hydraulic resistance of the fluid in a pipe is responsible for sudden acceleration
and the initial stage of DDT [16,17]. However, a subsequent analytical investigation [18] showed that
the hydraulic resistance is not necessary to drive obstacles-based acceleration in an open channel;
in fact, it hinders FA at the initial stage of the combustion process. In particular, flame propagation in
narrow obstructed channels with open ends has been computationally studied [10], where regular
fluctuations of the burning rates around the quasi-steady solutions have been found for the majority
of the simulation runs performed. Other geometrical and thermochemical parameters such as the
obstacles blockage ratio, the spacing between the obstacles and the thermal expansion ratio have been
observed to influence the flame oscillatory behavior in terms of the oscillation periods and amplitudes.
However, some pilot studies reported in [10] showed the possibility of FA after the initial oscillations
or steady flame propagation.

In this light, exploring the flame behavior and characterizing various propagation regimes that
the flame undergoes constitute the basis of the present work. Specifically, we aim to elucidate and
quantify the morphology and dynamics of a premixed flame propagating through a comb-shaped
array of obstacles in open channels of various blockage ratios, considering fuel mixtures of various
thermal expansion ratios. The analysis is conducted by means of computational simulations of the
reacting flow equations involving transport properties, a fully-compressible hydrodynamics and an
Arrhenius chemical kinetics. A special attention is paid to relatively wide channels, in which the
possibility of flame portraying more than one propagation regimes has been indicated. In the present
work, it is also of our interest to validate the theoretical formulation [18] by comparing it with the
simulation results obtained. Subsequently, we have identified three main stages of flame propagation
in a fully-open obstructed pipe, namely: (i) quasi-steady propagation, (ii) exponential FA, and (iii)
saturation of the burning velocity. Comparison of the exponential acceleration stage with a respective
prediction from [18] shows a good correlation, especially at a later stage of exponential acceleration.

2. Research Methodology

The research methodology employed here is based on scrutinizing reacting flows in fully-open,
obstructed channels by means of computational simulations of the governing partial differential
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equations (PDE) for a conservation/balance of mass, momentum, energy and species, including a
fully-compressible hydrodynamics, transport properties (heat conduction, diffusion and viscosity),
and an Arrhenius chemical kinetics represented by a one-step irreversible reaction of the first order.

2.1. Governing Equations

In a two-dimensional (2D) geometry, considered in the present work, the governing PDEs read:
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where YF is a progress variable representing the mass fraction of the fuel mixture; e = QYF + CvT and
h = QYF + CpT are the specific internal energy and enthalpy, respectively, with the specific heats at
constant volume, Cv, and pressure, CP, and the energy release from the reaction Q = (Θ − 1)CPT f .
Here T f is the initial temperature of the fuel mixture and Θ ≡ ρ f /ρb is the thermal expansion ratio.
Equation (3) describes a single, first-order Arrhenius reaction, with the activation energy Ea and the
constant of time dimension τR. In our code, the cumulative choice (interplay) of the three parameters Q,
Ea and τR constitutes an eigenvalue problem, solution to which yields the unstretched laminar burning
velocity SL = SL(Q, Ea, τR), which is also a unity of velocity dimension in the present work. Here we
took SL = 3.47 m/s resembling typical hydrogen-air flames as well as oxy-methane or oxy-propane
combustion. The speed of sound in this fuel mixture is 100 times larger, cs = 347 m/s such that the
hydrodynamics is almost incompressible at the initial stage of burning, with the initial Mach number
associated with flame propagation being as small as M0 ≡ SL/cs = 10−2. However, for a corrugated
flame front, the real (total) burning velocity Uw exceeds SL, and it is calculated as [19]:

Uw =
1

2Rρ f

∫
ρY
τR

exp
(
−
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RuT

)
dxdz. (4)

Both the fuel mixture and burnt matter are assumed to be ideal gases obeying the equation of state:

P = ρRuT/m, (5)

with the same molecular weight of m = 2.9× 10−2 kg/mol and the specific heats of Cv = 5Rp/2m and
Cp = 7Rp/2m, where Ru = 8.314 kJ/(kmol·K) is the universal gas constant. The stress tensor γi, j and
the energy diffusion vector qi are given by
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)
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with the dynamic viscosity ζ = ρν, the Prandtl, Pr, and Schmidt, Sc, numbers. To avoid any impact
of the diffusional-thermal instability, here we consider equidiffusive burning, so the Lewis number
(defined as the thermal-to-mass diffusivities ratio) is unity, Le = 1. In the simulations, this condition is
imposed by taking the Prandtl and Schmidt numbers Pr = Sc = 1 such that Le ≡ Sc/Pr = 1. Then the
thermal flame thickness can be defined, conventionally, as:

L f = ζ/PrρSL = ν/PrSL = ν/SL. (7)
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It is however noted that the quantity (7) is only a thermal-chemical parameter of length
dimension, while the real size of the internal flame structure can be an order of magnitude larger [20].
Indeed, according to [20], a real width of the burning zone, determined by the characteristic length scale
of the temperature profile gradient, is about (4 ∼ 5)L f , while it is the thickness of the active reaction zone,
which is actually of the order of L f [20]. Nevertheless, L f is one of the key parameters in our studies,
for the following reasons. First, it controls the choice of the computational mesh size making sure
that the grid is sufficiently fine to resolve the flame front, having several grid point inside it; see a
discussion below. Second, L f is a characteristic flame length scale. Along with a characteristic flame
velocity scale SL, they determine the characteristic flame time scale t f ≡ L f /SL. Moreover, in addition
to L f , another important length scale in this work is the radius (half-width) of the channel R, but it
will also be measured in terms of L f , because their ratio constitutes the Reynolds number associated
with flame propagation, Re = RSL/ν = R/PrL f = R/L f . The ratio of R and SL allows introducing a
convenient dimensionless time τ ≡ tSL/R. Consequently, in our investigations, we are monitoring
the instantaneous scaled burning velocity, Uw(τ)/SL, as well as the instantaneous scaled flame tip
positions and velocities, Ztip(τ)/R and Utip(τ)/SL, versus the scaled time τ, for the given values of
Re = R/L f .

Finally, the quantity of L f may be needed to impose appropriate ignition conditions. We usually
imitate the initial flame structure by the classical Zeldovich-Frank-Kamenetskii (ZFK) solution for the
profiles of the temperature, fuel mass fraction, pressure and velocities in the domain before and after a
planar flame front, which reads [21]:

T = T f + T f (Θ − 1)exp
(
z/L f

)
i f z > 0 ( f uel), (8)

T = ΘT f i f z < 0 (burnt), (9)

YF =
(
Θ − T/T f

)
/(Θ − 1), P = P f , ux = 0, uz = 0, (10)

such that YF = 0, and T = Tb = ΘT f in the burnt matter (z < 0), while YF → 1 , and T→ T f in the
fresh fuel mixture (z � L f > 0). The original pressure P throughout the domain equals the initial
pressure of the fuel mixture, P f , and both velocity components are set to zero at the very beginning.

2.2. Computational Platform

We use an in-house computational fluid dynamics (CFD) fully-compressible, finite-volume
Navier–Stokes code, which solves, in particular, the reacting flow Equations (1)–(6). The embryo of
this code was originally developed in the middle of 1990s by Eriksson at Volvo Aero. In the following
decades, this computational platform has been comprehensively updated and tested by numerous
research groups worldwide, including (but not limited to) researchers from Chalmers University
of Technology, Royal Institute of Technology, Uppsala and Umeå Universities in Sweden, Tsinghua
University in China, Princeton and West Virginia Universities in the U.S. The current version of the
solver is adapted for parallel computations and is available in 2D versions (Cartesian and cylindrical
axisymmetric ones) as well as in a fully three-dimensional (3D) Cartesian version (though solely a 2D
Cartesian set of Equations (1)–(6) is modelled in the present work). In order to save the computational
time while resolve the regions of particular interest (leading pressure and shock waves, detonation or
flame fronts), a self-adaptive structured computational grid is employed, as will be detailed below.
This adaptive grid makes the computational package perfect, in particular, for fundamental studies of
reacting and non-reacting flows in conduits of high aspect ratios such as used in the present work.

The code is robust and accurate, having been successfully utilized in numerous aero-acoustic [22–24]
and combustion [1–5,10,19,20,25–35] applications, including combustion instabilities [25–29], flame-acoustic
coupling [19], FA [30–33] and DDT in unobstructed [34,35] and obstructed [2] conduits. Specifically, in [25],
the solver was validated by being able to reproduce a classical physical solution for pressure, temperature,
burning velocity and other significant parameters of a planar flame front. Subsequently, the solver
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successfully reproduced an onset and development of the intrinsic Darrieus-Landau flame instability:
in a planar, 2D channel [25]; in a cylindrical tube (narrow [26], moderate [27] or wide [28]); and in an
open space [29]. Such intriguing nonlinear phenomena as flame-acoustic resonance [19] and flame
oscillations in channels [20] were also modeled by means of this solver. The code has been widely
used and shown to be particularly successful in modelling various mechanisms of FA in pipes such
as FA due to wall friction in 2D channels [30] and cylindrical tubes [31,32] as well as FA due to a
finger-like flame shape [33]. The code was able to reproduce how both the mechanisms can potentially
drive through all the stages of the DDT scenario, including the latest one—detonation triggering.
We have successfully modelled such a DDT for FA due to wall friction [34] and for finger FA [35].
It is emphasized that all numerical works overviewed here [25–35] employed unobstructed geometry.
Subsequently, we incorporated obstacles into the computational platform and successfully modelled
FA [3–5] and DDT [2] in semi-open obstructed channels.

Finally, it should be mentioned in passing that modelling of DDT often faces difficulties.
In particular, no real mechanism of detention triggering is available for a simplified Arrhenius
chemical kinetics employed here, while detailed chemistry would affect the results, in particular,
the timing of the detonation onset. However, in the present work, we do not actually focus on
DDT and detonation but consider mostly FA at the early (subsonic) stage of the combustion process.
Moreover, we analyze the scaled values Utip/SL, Ztip/R, τ, Re, Θ etc.—rather than the dimensional
quantities of velocities, lengths, time and energies. This makes our consideration rather qualitative
than quantitative. In other words, it is conventionally adopted that the chemistry is “immersed” in
the chosen parameters such as Ea, τR, Q and, thereby, SL, while the evolution of the scaled variables
should not change much. In fact, in this work we scrutinize FA in fully-open obstructed channels
as compared with the situations considered in our previous works [1–5,10]. Since all these works
employed the same computational platform, with the same one-step Arrhenius kinetics, there is no
background to use anything else in the present work, which justifies the usage of this computational
platform for this particular problem.

2.3. Computational Approach, Parameters and Domain

The numerical approach is based on a cell-centered, finite-volume numerical scheme, which is of
the second-order accuracy in time and the fourth-order in space for the convective terms, and of the
second-order in space for the diffusive terms. The code employs the balance Equations (1)–(3) in a
unified form [25]

∂G
∂t

+
∂EG
∂z

+
∂FG
∂x

= HG, (11)

where G stands for any of the variables ρ, ρux, ρuz, ρYF and e, while EG and FG designate the related
axial and radial fluxes, respectively, and HG is the source term. The spatial discretization is obtained
by integrating any of the conservation laws (1)–(3) in the form (11) over a given grid cell. More details
about the numerical method are available, for instance, in [2,5,10,25].

In the present work, a premixed flame propagates in a long 2D channel of width 2R, with both
extremes open, where the fraction of width 2Rα, near the walls, is blocked by the obstacles with the
spacing (the distance between two neighboring obstacles) ∆Z. In this light, the major dimensionless
parameters of this study are the thermal expansion ratio Θ, the blockage ratioα, the scaled spacing ∆Z/R,
and the Reynolds number associated with flame propagation Re = R/L f . To be specific, the following
thermal-chemical and configurational parameters have been taken: various Θ = 5, 6, 8, 10;
α = 1/3, 1/2, 2/3; R/L f = 24, 36, 48; and fixed ∆Z/R = 1/4. The initial temperature, pressure and
density of the fuel mixture are T f = 300 K, P f = 100 kPa, and ρ f = 1.16 kg/m3, respectively.

In order to save the computational cost, similar to [5,10], we are looking for a symmetric solution
such that only half of the channel is actually modeled by employing the symmetry condition at the
bottom as illustrated in Figure 1. To keep the flame segments as planar as possible, we employ the
walls of the channels and the obstacles to be adiabatic, n·∇T = 0, and free-slip, n·u = 0, where n is a
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normal vector at the surface of the wall/obstacle. The absorbing (non-reflecting) characteristic boundary
conditions are set at both open extremes to prevent the reflection of the sound waves and weak shocks
from these outlets. Such non-reflecting boundary conditions have been widely tested in our previous
works [19,20,25]. Initially, the parameters at the right (unburnt) end are ρ = ρ f , T = T f and uz = −SL,
while those at the left (burnt) extreme are ρ = ρ f /Θ, T = ΘT f , and uz = −ΘSL. The initial flame
structure was imitated by the ZFK solution for a planar flame front, Equations (8)–(10). Such a planar
ZFK flame was initiated at a distance 50 L f from the left (burnt) end of the channel.

The computational domain is being reconstructed depending on an instantaneous location of
a flame front and the leading pressure wave, so the length of the domain grows with time. Such a
reconstruction of the grid is achieved by using the third-order splines to interpolate the flow variables
during the grid reconstruction and preserves the second-order accuracy of the numerical scheme.
The dynamic grid consists of a structured rectangular grid, with the walls of the grid parallel to each
direction. This adaptive mesh has the minimal cell size of 0.2 L f , which has been justifed in the previous
works employing this solver; see, for instance, [10,20] (and references therein). Indeed, it is recalled that
L f correlates with the width of the active reaction zone, while the thermal (temperature-based) flame
thickness is about (4 ∼ 5)L f [20]. Consequently, taking the grid size of 0.2 L f , we obtain about five grid
points inside the active reaction zone and 20–25 grid points inside the flame front. Therefore, the grid
used in the present work has a sufficiently fine resolution as the thickness of the reaction zone appears
distributed over several computational cells.

3. Results and Discussion

The morphology and propagation of premixed flames in obstructed channels with both ends
open demonstrate unique and distinct characteristics as compared to semi-open channels. Initially,
an oscillating trend has been observed for R/L f = 12 [10], with the oscillation characteristics being
dependent on the thermal expansion ratio Θ, the blockage ratio α, and the obstacle spacing ∆Z.
The series of snapshots in Figure 2 shows the flame development and the flow distributions for burning
with Θ = 8 in a channel having R/L f = 48 and α = 1/2. An initially planar flame front undergoes
folding as it propagates due to the influence of thermal expansion across the flame front, while the
entire flow is directed towards the left extreme as seen in Figure 2a. Eventually, after propagating
through circa two channel widths, Figure 2b, the flow is distributed between the two extremes and
the flame has gradually attained a tulip-like shape. The momentum released from the left extreme,
along with the accompanied heat losses, moderate flame propagation significantly. As seen in Figure 2,
the pockets of the unburnt fuel mixture are generated as the flame moves further, thereby creating
the effect of delayed burning (thermal expansion) from each of these pockets. As the unburnt gas in
these pockets starts burning, the expanding gases flow into the core of the channel and are distributed
between the two flows moving towards two extremes. With further propagation away from the left
extreme, the unburned pockets are further away from the left outlet, Figure 2c,d, and the new gas
volume, generated by thermal expansion in the burning process, flows in the direction causing least
resistance, i.e., in the direction of the flame. In this regime, the flame starts undergoing significant
acceleration, which is sustained as the flame front travels further. This is accompanied by continuous
formation and isolation of the new pockets from the left extreme, thereby propelling the flame further
through formation of a jet flow in the core path of the channel. This regime of burning is observed in
Figure 2e–g. As burning progresses further, the flame velocity grows, and the flame shape develops
into a highly corrugated structure as seen in Figure 2g. With increasing Mach number, the influence of
gas compressibility becomes significant, subsequently causing moderation of FA and saturation of the
burning velocity to a near-constant value. Interestingly, at the saturated velocity state, the flame front
appears more stable such that the small-scale wrinkles disappear as seen in Figure 2h.



Energies 2020, 13, 4094 7 of 19

Energies 2020, 13, x FOR PEER REVIEW 7 of 18 

 

temperature snapshots as well as those for vorticity and shock waves are shown. It is seen that the 
leading vortices, inherent during the accelerating phases, are absent at the saturated phase, with 
strong vortices confined behind the flame front. Likewise, the leading shock waves in the accelerating 
phase are not apparent when the flame velocity saturates to a steady one. 

 

Figure 2. Consecutive color temperature snapshots for the evolution of a flame with the thermal 
expansion ratio Θ = 8 propagating in a channel with the blockage ratio 𝛼 = 1/2: initial (concave) 
flame folding (a); transition to a convex flame (b); isolation of new pockets between the obstacles (c); 
fast flame acceleration (d,e); jet-flow formation along the channel centerline (f); development of a 
highly-corrugated flame structure (g); and disappearance of small-scale wrinkles (h). 

Figure 2. Consecutive color temperature snapshots for the evolution of a flame with the thermal
expansion ratio Θ = 8 propagating in a channel with the blockage ratio α = 1/2: initial (concave)
flame folding (a); transition to a convex flame (b); isolation of new pockets between the obstacles (c);
fast flame acceleration (d,e); jet-flow formation along the channel centerline (f); development of a
highly-corrugated flame structure (g); and disappearance of small-scale wrinkles (h).
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These observations provide the insights into the physics of premixed flames in obstructed channels
with both ends open. Namely, a flame undergoes initial quasi-steady propagation, which dominates
in the region of the simultaneous (near equal) flows of the expanding gases towards both extremes
of the channels. Subsequently, the onset of FA occurs, which is then supplanted by the state of
saturated propagation velocity. Figure 3a shows the evolution of the flame tip position scaled by the
channel half-width R. To visualize these regimes clearly, it is important to analyze the derivative
of the flame tip position (i.e., the flame tip velocity). This quantity, scaled by the laminar flame
speed SL, is presented in Figure 3b, indicating the regimes of quasi-steady propagation, exponential
acceleration and the saturated flame velocity. The flame tip variations with time are qualitatively
similar to the experimental results of Middha and Hansen [36] as well as that of Yanez et al. [37].
The exponential acceleration regime mimics the trend seen in the semi-open channel with closely packed
obstacles [37], namely, exponential FA without initial quasi-steady propagation. However, such initial
quasi-steady propagation is quite similar to the oscillatory regime identified in narrower channels [10].
Apparently, the oscillations can correlate with prolonged quasi-steady propagation as the flame tries
to balance the complex flow dynamics and gas expansion in such a highly confined space. Figures 4
and 5 compare the structures of the flame and the flow at the accelerating phase (Figure 4) to that at the
saturated phase (Figure 5). To be specific, the characteristic instantaneous temperature snapshots as
well as those for vorticity and shock waves are shown. It is seen that the leading vortices, inherent
during the accelerating phases, are absent at the saturated phase, with strong vortices confined behind
the flame front. Likewise, the leading shock waves in the accelerating phase are not apparent when the
flame velocity saturates to a steady one.Energies 2020, 13, x FOR PEER REVIEW 8 of 18 
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τ = tSL/R for a flame with the expansion ratio Θ = 8 in a channel with the blockage ratio α = 1/2.
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We next study the impacts of the blockage ratio α, the channel half-width R and the thermal
expansion ratio Θ on the flame dynamics. Specifically, Figures 6–8 show the scaled flame tip position
Ztip/R and the scaled burning velocity Uw/SL versus the scaled time τ = tSL/R. The flame propagation
trend is strongly influenced by the blockage ratios. Namely, as α grows, the duration of quasi-steady
propagation also increases. For the lowest blockage ratio considered, α = 1/3, a flame propagates
quasi-steadily without acceleration. For low α, the core (unobstructed) flow area is increased as such
the volume of the gas flowing out increases accordingly, while the new gas volume, generated in the
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pockets, is reduced. Consequently, the contribution of delayed burning to propelling the flame front
decreases, thereby moderating the flame velocity tremendously.
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Figure 8. The scaled flame tip position Ztip/R (a) and the scaled burning velocity Uw/SL (b) versus
the scaled time τ = tSL/R for the Θ = 8 flame in the channels of half-width R = 48 L f with various
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Moreover, increasing the channel half-width reduces the duration of quasi-steady propagation for
α = 1/2 and 2/3. This effect is observed more apparently in Figure 9a. Here, as the channel half-width
grows from 24 L f to 48 L f , the scaled time τ, taken before acceleration starts, decreases by a factor of 10,
from 6 to 0.6. Consequently, this initial time delay (prior to acceleration) diminishes as the channel
widens. Therefore, a growth of the channel width provides an impact similar to that of growing α.
For a wider channel, R = 48 L f , the large blockage ratios, α = 1/2 and 2/3, provide the similar effects
on flame propagation and the difference in the durations of the stages of quasi-steady propagation is
minor, see Figure 8, while no acceleration is seen for α = 1/3 in this case.
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Figure 9. The scaled burning velocity Uw/SL versus the scaled time τ = tSL/R for burning in the
obstructed channels of α = 2/3 for: Θ = 8 with various R/L f = 24, 36, 48 (a) and R/L f = 48 with
various Θ = 6, 8, 10 (b).

Similar to the effect of the blockage ratio, an increase in the thermal expansion ratio Θ shortens
the stage of quasi-steady propagation, and at the subsequent stage of acceleration, the acceleration rate
is increased as shown in Figure 9b. For the fuel mixtures of large Θ, the expansion produced across
the flame is obviously enhanced, and the flame surface area will grow accordingly, leading to faster
transition to the accelerating phase and faster FA. In contrast, the flames of lower thermal expansion
propagates quasi-steadily without undergoing any significant acceleration.

In order to scrutinize the exponential regime of FA, which follows the quasi-steady phase observed
in this scenario, we next recall a theory of FA in fully-open obstructed channels [18]. While [18]
considered both inviscid and viscous formulations, here we chose the inviscid theory only in order
to avoid considering the length on the conduit. Then, within the inviscid formulation, the flame tip
velocity Utip obeys the evolution equation [18]:

Utip =
dZtip

dt
=

(Θ − 1)
(1− α)

Ztip
√

Θ + 1
+ ΘSL, (12)

with the solution:
Z f =

ΘR
σ0

exp (σ0SL/R) − 1, (13)

where the scaled exponential acceleration rate for the fully open channel, σo, is given by [18]:

σo =
1(√

Θ + 1
) (Θ − 1)
(1−α)

=
σs

√
Θ + 1

. (14)

The indexes o and s in Equation (14) are devoted to the fully-open and semi-open channels,
respectively. It is seen form Equation (14) that the exponential acceleration rate in fully-open channels
is much less than that in semi-open channels, for the same fuel. Obviously, this is because the flow is
split in two parts when both ends of a pipe are open. To validate this theory by our simulation results
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and to understand the exponential acceleration regimes clearly, we plot Equation (13) and compare it
with the simulation results. For this purpose, a quasi-steady stage of flame propagation is extracted
from the simulation by shifting the flame tip position Ztip, accordingly, such that the instant t = 0
indicates that exponential FA starts. This comparison is shown in Figures 10–12 for the accelerating
flame regime only. Figure 10 presents the trend in the R = 24 L f channel; in Figure 10a, the theory
predicts the later stage of exponential acceleration quite well, while in Figure 10b, α = 2/3, the theory
diverges from the simulation later in time but shows better prediction at an early propagation stage.

Energies 2020, 13, x FOR PEER REVIEW 11 of 18 

 

Similar to the effect of the blockage ratio, an increase in the thermal expansion ratio Θ shortens 
the stage of quasi-steady propagation, and at the subsequent stage of acceleration, the acceleration 
rate is increased as shown in Figure 9b. For the fuel mixtures of large Θ, the expansion produced 
across the flame is obviously enhanced, and the flame surface area will grow accordingly, leading to 
faster transition to the accelerating phase and faster FA. In contrast, the flames of lower thermal 
expansion propagates quasi-steadily without undergoing any significant acceleration. 

In order to scrutinize the exponential regime of FA, which follows the quasi-steady phase 
observed in this scenario, we next recall a theory of FA in fully-open obstructed channels [18]. While 
[18] considered both inviscid and viscous formulations, here we chose the inviscid theory only in 
order to avoid considering the length on the conduit. Then, within the inviscid formulation, the flame 
tip velocity 𝑈  obeys the evolution equation [18]: 

𝑈 = 𝑑𝑍𝑑𝑡 = (Θ − 1)(1 − 𝛼) 𝑍√Θ + 1 + Θ𝑆 ,  (12) 

with the solution: 𝑍 = Θ𝑅σ exp (σ 𝑆 /𝑅) − 1, (13) 

where the scaled exponential acceleration rate for the fully open channel, σ , is given by [18]: σ = 1√Θ + 1 (Θ − 1)(1 − α) = σ√Θ + 1 .  (14) 

The indexes o and s in Equation (14) are devoted to the fully-open and semi-open channels, 
respectively. It is seen form Equation (14) that the exponential acceleration rate in fully-open channels 
is much less than that in semi-open channels, for the same fuel. Obviously, this is because the flow is 
split in two parts when both ends of a pipe are open. To validate this theory by our simulation results 
and to understand the exponential acceleration regimes clearly, we plot Equation (13) and compare 
it with the simulation results. For this purpose, a quasi-steady stage of flame propagation is extracted 
from the simulation by shifting the flame tip position 𝑍 , accordingly, such that the instant 𝑡 = 0 
indicates that exponential FA starts. This comparison is shown in Figures 10–12 for the accelerating 
flame regime only. Figure 10 presents the trend in the 𝑅 = 24 𝐿  channel; in Figure 10a, the theory 
predicts the later stage of exponential acceleration quite well, while in Figure 10b, 𝛼 = 2/3, the theory 
diverges from the simulation later in time but shows better prediction at an early propagation stage. 

 
Figure 10. The scaled flame tip position 𝑍 /𝑅 versus the scaled time 𝜏 = 𝑡𝑆 /𝑅 for burning in the 
channels of half-width 𝑅 = 24 𝐿  with the blockage ratios 𝛼 = 1/2 (a) and 𝛼 = 2/3 (b). 

Figure 10. The scaled flame tip position Ztip/R versus the scaled time τ = tSL/R for burning in the
channels of half-width R = 24 L f with the blockage ratios α = 1/2 (a) and α = 2/3 (b).Energies 2020, 13, x FOR PEER REVIEW 12 of 18 

 

 
Figure 11. The scaled flame tip position 𝑍 /𝑅 versus the scaled time 𝜏 = 𝑡𝑆 /𝑅 for burning in the 
channels of half-width 𝑅 = 36 𝐿  with the blockage ratios 𝛼 = 1/2 (a) and 𝛼 = 2/3 (b). 

 

Figure 12. The scaled flame tip position 𝑍 /𝑅 versus the scaled time 𝜏 = 𝑡𝑆 /𝑅 for burning in the 
channels of half-width 𝑅 = 48 𝐿  with the blockage ratios 𝛼 = 1/2 (a) and 𝛼 = 2/3 (b). 

In Figure 11a, representing the channel of half-width 36 𝐿  and 𝛼 = 1/2, the theory captures the 
later trend better for Θ = 10. However, for the 𝛼 = 2/3 case, Figure 11b, the later acceleration trend 
is better captured when Θ = 8. The trends for 𝛼 = 1/2, 2/3  and Θ = 8, 10  in the channel of half-
width 48 𝐿  are shown in Figure 12. Here, the later trend of exponential acceleration is better captured 
for 𝛼 = 2/3  and Θ = 8, 10 , see Figure 12b. Although the theory yields a good approximation of 
exponential acceleration, it narrowly captures the trend in the earlier acceleration phase. In fact, 
theoretically, the exponential acceleration rates have definite value even for the low blockage and 
thermal expansion ratios. For instance, for 𝛼 = 1/3  with Θ = 6, we have 𝜎 = 2.17. However, no 
acceleration has actually been observed with such a set of parameters. The simulation results for the 
combination of such a low 𝛼 and Θ do not show FA. In fact, acceleration is only noticeable when both 𝛼  and Θ  are large. Specifically, at 𝛼 = 1/2  with Θ = 8 , FA becomes noticeable when 𝜎 = 3.66. 
Therefore, initiation of actual exponential acceleration will happen when 2.17 ≤ 𝜎 ≤ 3.66, which 
corresponds to 1/3 ≤ 𝛼 ≤ 1/2 and 6 ≤ Θ ≤ 8. 

The resulting saturated velocity occurring due to gas compression is expected to be lower than 
the Chapman-Jouget (CJ) deflagration velocity, which is defined as [38]: 

𝑈𝑐 = 1 + γ(γ − 1)2(γ + 1) 2 Θ − 1γ + 1  .  (15) 

Figure 13 presents the scaled flame tip velocity versus the scaled flame tip position (such a phase 
diagram), for Θ = 8 and Θ = 10 in Figures 13a,b, respectively. The solid horizontal lines show the 
scaled CJ deflagration velocity, Equation (15), which is thereby compared to the saturated flame tip 
velocity. It is seen that Equation (15) exceeds the computational saturated flame velocity for all the 

Figure 11. The scaled flame tip position Ztip/R versus the scaled time τ = tSL/R for burning in the
channels of half-width R = 36 L f with the blockage ratios α = 1/2 (a) and α = 2/3 (b).

Energies 2020, 13, x FOR PEER REVIEW 12 of 18 

 

 
Figure 11. The scaled flame tip position 𝑍 /𝑅 versus the scaled time 𝜏 = 𝑡𝑆 /𝑅 for burning in the 
channels of half-width 𝑅 = 36 𝐿  with the blockage ratios 𝛼 = 1/2 (a) and 𝛼 = 2/3 (b). 

 

Figure 12. The scaled flame tip position 𝑍 /𝑅 versus the scaled time 𝜏 = 𝑡𝑆 /𝑅 for burning in the 
channels of half-width 𝑅 = 48 𝐿  with the blockage ratios 𝛼 = 1/2 (a) and 𝛼 = 2/3 (b). 

In Figure 11a, representing the channel of half-width 36 𝐿  and 𝛼 = 1/2, the theory captures the 
later trend better for Θ = 10. However, for the 𝛼 = 2/3 case, Figure 11b, the later acceleration trend 
is better captured when Θ = 8. The trends for 𝛼 = 1/2, 2/3  and Θ = 8, 10  in the channel of half-
width 48 𝐿  are shown in Figure 12. Here, the later trend of exponential acceleration is better captured 
for 𝛼 = 2/3  and Θ = 8, 10 , see Figure 12b. Although the theory yields a good approximation of 
exponential acceleration, it narrowly captures the trend in the earlier acceleration phase. In fact, 
theoretically, the exponential acceleration rates have definite value even for the low blockage and 
thermal expansion ratios. For instance, for 𝛼 = 1/3  with Θ = 6, we have 𝜎 = 2.17. However, no 
acceleration has actually been observed with such a set of parameters. The simulation results for the 
combination of such a low 𝛼 and Θ do not show FA. In fact, acceleration is only noticeable when both 𝛼  and Θ  are large. Specifically, at 𝛼 = 1/2  with Θ = 8 , FA becomes noticeable when 𝜎 = 3.66. 
Therefore, initiation of actual exponential acceleration will happen when 2.17 ≤ 𝜎 ≤ 3.66, which 
corresponds to 1/3 ≤ 𝛼 ≤ 1/2 and 6 ≤ Θ ≤ 8. 

The resulting saturated velocity occurring due to gas compression is expected to be lower than 
the Chapman-Jouget (CJ) deflagration velocity, which is defined as [38]: 

𝑈𝑐 = 1 + γ(γ − 1)2(γ + 1) 2 Θ − 1γ + 1  .  (15) 

Figure 13 presents the scaled flame tip velocity versus the scaled flame tip position (such a phase 
diagram), for Θ = 8 and Θ = 10 in Figures 13a,b, respectively. The solid horizontal lines show the 
scaled CJ deflagration velocity, Equation (15), which is thereby compared to the saturated flame tip 
velocity. It is seen that Equation (15) exceeds the computational saturated flame velocity for all the 

Figure 12. The scaled flame tip position Ztip/R versus the scaled time τ = tSL/R for burning in the
channels of half-width R = 48 L f with the blockage ratios α = 1/2 (a) and α = 2/3 (b).



Energies 2020, 13, 4094 13 of 19

In Figure 11a, representing the channel of half-width 36 L f and α = 1/2, the theory captures the
later trend better for Θ = 10. However, for the α = 2/3 case, Figure 11b, the later acceleration trend is
better captured when Θ = 8. The trends for α = 1/2, 2/3 and Θ = 8, 10 in the channel of half-width
48 L f are shown in Figure 12. Here, the later trend of exponential acceleration is better captured for
α = 2/3 and Θ = 8, 10, see Figure 12b. Although the theory yields a good approximation of exponential
acceleration, it narrowly captures the trend in the earlier acceleration phase. In fact, theoretically,
the exponential acceleration rates have definite value even for the low blockage and thermal expansion
ratios. For instance, for α = 1/3 with Θ = 6, we have σ0 = 2.17. However, no acceleration has
actually been observed with such a set of parameters. The simulation results for the combination
of such a low α and Θ do not show FA. In fact, acceleration is only noticeable when both α and Θ
are large. Specifically, at α = 1/2 with Θ = 8, FA becomes noticeable when σ0 = 3.66. Therefore,
initiation of actual exponential acceleration will happen when 2.17 ≤ σ0 ≤ 3.66, which corresponds to
1/3 ≤ α ≤ 1/2 and 6 ≤ Θ ≤ 8.

The resulting saturated velocity occurring due to gas compression is expected to be lower than
the Chapman-Jouget (CJ) deflagration velocity, which is defined as [38]:

UCJ

cs
=

[
1 +

γ(γ− 1)
2(γ+ 1)

]√
2
(

Θ − 1
γ+ 1

)
. (15)

Figure 13 presents the scaled flame tip velocity versus the scaled flame tip position (such a phase
diagram), for Θ = 8 and Θ = 10 in Figure 13a,b, respectively. The solid horizontal lines show the
scaled CJ deflagration velocity, Equation (15), which is thereby compared to the saturated flame tip
velocity. It is seen that Equation (15) exceeds the computational saturated flame velocity for all the
cases considered in Figure 13. In the case of Θ = 8, Figure 13a, weak R-dependence is observed:
the saturated flame velocity is slightly higher for R = 24 L f than that for R = 36 L f . However, in the
case of Θ = 10, Figure 13b, the saturated velocity curves collapse to the same value for all widths
for each blockage ratios α = 1/2 and α = 2/3. We can therefore conclude from Figure 13 that the
saturated flame tip velocity for α = 1/2 exceeds that for α = 2/3, and this value is almost independent
of the channel width, particularly for Θ = 10.
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While the present simulations are limited to a 2D Cartesian geometry, it is of interest to discuss
how the computational results might change in a 3D geometry, either cylindrical axisymmetric or 3D
Cartesian, as both situations are closer to the practical reality than the 2D planar channel studied here.
We start the discussion with the analogies observed in unobstructed conduits with both ends open,
where computational simulations demonstrated regular flame oscillations in the 2D channels [20] but
flame acceleration in the cylindrical pipes [32]. We expect the same qualitative trend in the obstructed
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conduits because a 3D geometry is generally associated with higher increment in the flame surface
area and, thereby, faster flame propagation. The exponential acceleration rate grows more than twice.

Quantitatively, the cylindrical counterpart of the evolution Equation (12) will take the form:

Utip =
dZtip

dt
= 2

(Θ − 1)
(1−α)

[
1 +

1
2(Θ − 1)

] Ztip
√

Θ + 1
+ ΘSL, (16)

with the solution:

Z f =
ΘR
σ0,cyl

exp
(
σ0,cylSL/R

)
− 1, σo,cyl =

σs,cyl
√

Θ + 1
=

2(√
Θ + 1

) (Θ − 1)
(1−α)

[
1 +

1
2(Θ − 1)

]
(17)

(see [2,18] to understand the origin of these equations). According to Equation (17), the exponential
acceleration rate in the cylindrical geometry exceeds its 2D counterpart more than twice indeed.
The same trend has been seen in semi-open conduits, obstructed as well as unobstructed, when switching
from the 2D planar to the cylindrical-axisymmetric geometries.

In addition, turbulence is an essentially 3D phenomenon, so it will provide an extra effect in the
3D geometry. In all these respects, we expect much stronger flame acceleration in the 3D case, with a
little (if any) chance of non-accelerative trends of flame propagation.

We next develop a predictive model for the propagation trends observed in obstructed channels
with both ends open by employing a machine learning (ML)-based technology. The goodness of fit of
the model has been calculated using the confusion matrix method for logistic regression method [39].
It is presented as the prediction accuracy for the models and it represents how well the model predicts
the observed accelerating/non-accelerating flame trends. Specifically, a logistic regression algorithm
is adopted to train these data sets in order to classify the accelerating versus non-accelerating flame
trends considering Θ, α and Re = R/L f as the parameters. Logistic regression has been chosen
to be employed because this is one of the most widely used ML algorithms for the classification
problems, which nevertheless is relatively simple to implement. To justify such a choice, it is noted
that logistic regression has already been employed in a similar complex problem of flame propagation,
which involved fast flame detection to address accidental fire scenarios [40].

Figure 14 is a schematic of the ML model. The procedure involves feeding the learning algorithm
with the training sets: Θ, α and/or Re and the “classification” variable. Here, the classification variable
indicates accelerating or not accelerating event. So, the algorithm uses this data set to learn a hypothesis
function, h, that maps input x to the predicted output y.
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Specifically, we consider a hypothesis function in logistic regression in the form:

hθ(x) = g
(
θTx

)
, 0 ≤ hθ(x) ≤ 1, (18)

where g is the sigmoid function, which is depicted in Figure 15 and is defined as:

g(z) =
1

1− e−z , z = θTx. (19)
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As a result, the function hθ(x) describes the probability of y = 1 for a given x value. As such,
if hθ(x) ≥ 0.5 then y = 1, and y = 0 for hθ(x) < 0.5. From the simulation results, the cases undergoing
acceleration are classified as 1, and the cases with only quasi-steady propagation are 0. The training sets
consist of the input variable x(Θ, α, Re) and y. The results obtained for the hypothesis function have
been subsequently used to classify and develop the regime diagrams depicted in Figures 16 and 17.
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Figure 17. The α−Re burning regime diagram for Θ = 8 (a) and Θ = 10 (b).

Specifically, Figure 16a shows the classification results obtained for Re = 24, with the solid line
indicating the decision boundary represented by the variable z. Essentially, the equation satisfying the
accelerating phase is −131.69 + 9.36Θ + 112.29α ≥ 0, with a training accuracy of 91.67 %. For Re = 36
and 48 in Figure 16b,c, the predicted hypothesis is the same, and the decision boundary is represented
by −111.73 + 10.19Θ + 69.85α ≥ 0, with the training accuracy of 100 %.

Finally, the data are classified based on the flame propagation Reynolds number Re, and the
developed model predicts if a flame accelerates or not based on Re. Figure 17 shows this result, for Θ = 8
and Θ = 10 in Figure 17a,b, respectively. The model prediction is therefore−17.01+ 0.19Θ+ 22.62α ≥ 0,
with 83.3 % prediction accuracy for Θ = 8, and −14.4 + 1.14Θ + 39.9α ≥ 0, with a 100 % prediction
accuracy for Θ = 10.

It should be noted that the prediction accuracies reported here are solely based on the training
data set. However, in the future works, our research plan is to generate more data to improve and test
the present model more extensively.

4. Conclusions

While apparent flame oscillations are found to dominate in the relatively narrow fully-open
obstructed channels with Re = R/L f = 12, for the wider channels such as having Re = 24, 36, 48,
the propagation trends are observed to be quite distinctive. To be specific, when the parameters Re,
α and Θ are beyond their respective critical values, we have identified the three distinctive phases/
regimes of burning such as (i) initial quasi-steady flame propagation, followed by (ii) exponential FA
and (iii) the final saturation of the flame velocity. Typically, all three regimes occur when Θ = 8, 10,
α = 1/2, 2/3 and Re = 24, 36, 48. It is noticed that all three parameters (Re, α and Θ) significantly
impact the duration of quasi-steady propagation. Specifically, while in the Re = 24 channel, quasi-steady
propagation lasts as long as ∼ 6 R/SL, this time reduces to 0.6 R/SL when Re = 48. The regime of
quasi-steady propagation is also influenced by the blockage ratio α and the thermal expansion ratio Θ.
Namely, as α decreases, the volume of the pockets of unburned gas, left behind the leading flame
segment, also reduces, causing drastic moderation of the effect of delayed burning, which is the major
factor for the Bychkov mechanism of ultrafast FA [1]. Likewise, thermal expansion plays a similar role:
a lower gas expansion, Θ, means reduced propulsion forces and, as a result, moderated propagation of
the flame front.

The nature of exponential acceleration has been explored by comparing the simulation results
with the theory [18] developed for FA in obstructed channels with closely packed obstacles and both
extremes open. According to the plots of this comparison, the theory [18] predicts the later stage of
exponential acceleration better than it predicts the earlier stage. The simulation results helped to
understand the applicability domain of this theory to realistic flames. This domain is identified to be
somewhere between {α = 1/3; Θ = 6} and {α = 1/2; Θ = 8}.
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Furthermore, the regime of the saturated burning velocity has been scrutinized in the present
instigation. Specifically, the growing flame velocity saturates when in starts approaching the speed of
sound. It has been identified that the main parameter influencing the final saturated flame tip velocity
is the blockage ratio α. In particular, with α = 1/2, the flame velocity saturates to a higher value than
that in the case of α = 2/3. It is also noted that all the saturated flame velocities obtained in the present
simulations appeared lower than the respective CJ deflagration velocity.

Finally, a logistic regression ML algorithm was utilized to learn about the hypothesis functions that
predict when a flame undergoes acceleration and when it continuously propagates in a quasi-steady
state without FA. As a result, the models, identifying when the flames would experience all three
regimes (quasi-steady propagation, acceleration, and saturation) and when it only propagates with
near-constant velocity, are developed. Such an identification is based on the interplay between
the Reynolds number associated with flame propagation Re, the blockage ratio α, and the thermal
expansion ratio Θ, as demonstrated by the diagrams of Figures 16 and 17.
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