
energies

Article

Disturbance Observer-Based Offset-Free Global
Tracking Control for Input-Constrained LTI Systems
with DC/DC Buck Converter Applications

Kyunghwan Choi 1 , Dong Soo Kim 2 and Seok-Kyoon Kim 2,*
1 Center for Eco-Friendly & Smart Vehicles, Korea Advanced Institute of Science and Technology,

Daejeon 34141, Korea; ckhwan1206@kaist.ac.kr
2 Department of Creative Convergence Engineering, Hanbat National University, Daejeon 34158, Korea;

kds671@hanbat.ac.kr
* Correspondence: skkim77@hanbat.ac.kr; Tel.: +82-042-828-8801

Received: 25 June 2020; Accepted: 4 August 2020; Published: 6 August 2020
����������
�������

Abstract: This paper presents an offset-free global tracking control algorithm for the input-constrained
plants modeled as controllable and open-loop strictly stable linear time invariant (LTI) systems.
The contribution of this study is two-fold: First, a global tracking control law is devised in such a way
that it not only leads to offset-free reference tracking but also handles the input constraints using the
invariance property of a projection operator embedded in the proposed disturbance observer (DOB).
Second, the offset-free tracking property is guaranteed against uncertainties caused by plant-model
mismatch using the DOB’s integral action for the state estimation error. Simulation results are
given in order to demonstrate the effectiveness of the proposed method by applying it to a DC/DC
buck converter.

Keywords: offset-free global tracking control; input constraints; disturbance observer; LTI systems;
DC/DC buck converters

1. Introduction

Although stabilization of dynamic systems is one of main objectives of feedback control design,
output reference tracking is much more important in practice. In addition, since most control systems
are subject to input constraints, it is essential to design a feedback control scheme for output reference
tracking of input-constrained systems. The objective of this paper is to develop a disturbance observer
(DOB) based feedback control scheme for offset-free output reference tracking of stable linear systems
with input constraints and model uncertainties. If the control objective is to stabilize the system,
the problem is easy to solve since zero input is a feasible stabilizing control owing to the open loop
stability of the system. However, if the feedback control aims to achieve the offset-free tracking for the
uncertain input-constrained system, the problem is not trivial [1–5].

Robust tracking MPC (Model Predictive Control) can be a candidate solution to the problem [6–10]
since it is effective to deal with the input constraints and also capable of handling model uncertainties
to some extent. On the other hand, proper computational power has to be supported in order to
implement the MPC. If it is required to design a feedback control without asking computational
power, a low gain feedback control can be an alternative solution [11–16]. However, since the low
gain controls are devised mainly for stabilization, an integral action needs to be added on top of
the low gain feedback control. In other words, in order to apply the low gain control to the output
tracking problem, the tracking error dynamics between the original state equation and its desired
steady state equation is computed first, and the integrator dynamics is augmented with the error
dynamics. As the last step, the low gain control is designed for the augmented system. If there are no

Energies 2020, 13, 4079; doi:10.3390/en13164079 www.mdpi.com/journal/energies

http://www.mdpi.com/journal/energies
http://www.mdpi.com
https://orcid.org/0000-0002-4832-1597
https://orcid.org/0000-0003-4114-445X
http://dx.doi.org/10.3390/en13164079
http://www.mdpi.com/journal/energies
https://www.mdpi.com/1996-1073/13/16/4079?type=check_update&version=2


Energies 2020, 13, 4079 2 of 18

model uncertainties, the small gain control with the integral action can solve the tracking problem,
but it can suffer from both the steady state tracking error and fulfilling the input constraints if there
is plant-model mismatch. In addition to the MPC and low gain control approaches, there have been
attempts to solve the tracking problem under consideration [17–19].

In order to design a robust feedback control scheme for reference tracking of stable linear systems
with input constraints and model uncertainties, we propose a feedback control equipped with a DOB.
The proposed DOB consists of a state observer estimating the system state and a projection operator
which helps identify the steady state of the uncertain system and meet the input constraints. Thanks to
the steady state of the uncertain system identified by the proposed DOB, the feedback control can
achieve offset-free output reference tracking by stabilizing the tracking error dynamics, which takes
the identified steady state into account. Besides, the projection operator embedded in the DOB makes
the steady state control input satisfy the input constraints.

Compared with existing results in the literature, the proposed scheme has several advantages:
(a) the proposed control scheme can be implemented without heavy computational power, although
the input constraints are satisfied; (b) in terms of stability, the closed loop system by the proposed
control results in constrained global asymptotic tracking by restricting the initial conditions of the DOB;
and (c) offset-free output tracking is achieved with an improved disturbance rejection performance,
even for systems with model uncertainties owing to the proposed DOB. Especially, the first and second
contributions correspond to the sharp contrast with the existing results, such as input-constrained
MPCs and integral controls. Constrained global asymptotic tracking means that, for an admissible
reference, the offset-free tracking is achieved, fulfilling the input constraints with the plant state in
Rn and the controller state in a bounded set. Note that, although the system under consideration is
open loop stable, global stability is only possible when there is only one integrator, due to the input
constraints. In order to demonstrate performance of the proposed control, the simulation study is done
for reference tracking of a DC/DC buck converter, despite the input constraints and the load variations.

2. Problem Formulation

Consider the LTI systems described by

ẋ(t) = Ax(t) + Bu(t) + d, (1)

y(t) = Cx(t), ∀t, (2)

where x(t) ∈ Rn, y(t) ∈ Rm, and u(t) ∈ Rm denote the state, output, and control input, respectively,
d ∈ Ωo ⊂ Rn is an unknown constant, and Ωo is the interior of a known convex set Ω defined in
Section 3.1. For this system, the following assumptions are made:

Assumption 1.

1. The matrices A ∈ Rn×n and B ∈ Rn×m are known.
2. The output matrix C ∈ Rm×n is in the form of either

C =
[

0m×(n−m) Im×m

]
(3)

or
C =

[
Im×m 0m×(n−m)

]
. (4)

3. The system matrix A is strictly stable, i.e., all eigenvalues of the matrix A lie in the open left half plane.
4. The pair (A, B) is controllable.
5. The dimensions of the input u(t) and the output y(t) are the same.
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6. The control input must satisfy the input constraints, i.e.,

u(t) ∈ U :=
{

u | u � u � ū
}

, ∀t, (5)

where, for any x, y ∈ Rn, x � y is defined as

xi ≤ yi, i = 1, 2, · · · , m,

and xi and yi denote the ith element of x and y, respectively.

Definition 1. Constrained global asymptotic output tracking is said to be achieved if the controller results in
the following properties:

C1. It holds that
lim
t→∞

y(t) = r, ∀x(0) ∈ Rn, (6)

for a given output reference signal r.
C2. The state of the closed loop system is always bounded.
C3. The input constraints (5) is satisfied for all time.

The objective of the paper was to develop a DOB-based controller achieving the constrained
global asymptotic output tracking for system (1)–(2) under Assumption 1.

Remark 1. This paper is only concerned with the case (3) because the controller design procedure is the same as
the case of (4).

Remark 2. Since system (1) is open loop asymptotically stable, it is likely to think that the problem is easy to
solve, even under the input constraints. This is true only when the control problem is a stabilization problem.
Since this paper is concerned with an offset-free tracking problem, it is not so easy. Besides, in order to solve the
tracking problem under consideration, one makes an attempt to design the Luenberger observer for the following
augmented system:[

ẋ(t)
ḋ

]
=

[
A In×n

0n×n 0n×n

] [
x(t)

d

]
+

[
B

0n×m

]
u(t), y(t) =

[
C 0m×n

] [ x(t)
d(t)

]

and a feedback law based on the estimated state if there are no input constraints and no model uncertainties.
However, if there are input constraints and even model uncertainties, then the attempt suffers from the steady
state error in general.

3. Controller Law

This section presents an offset-free constrained global tracking controller by combining the
classical state-feedback controller with a DOB equipped with the projection operator. To this end,
Section 3.1 derives the steady state control law for the tracking error dynamics reflecting the tracking
control objective. Section 4.2 devises a state-feedback controller including a switching feedback gain
and projection operator-based DOB in order to force the tracking errors to be globally convergent in
the presence of input constraints.



Energies 2020, 13, 4079 4 of 18

3.1. Desired Steady State Control for Constrained Output Tracking

Considering the system model and structure of the output matrix C in (3), the constrained output
tracking problem (6) is tackled if we can solve the corresponding state tracking problem defined by

lim
t→∞

x(t) = x0(r, d), ∀x(0) ∈ Rn, (7)

where x0(r, d) denotes the desired steady state which is a solution of the the steady state equation of
the state Equation (2). In other words, it is a solution of the equation

0 = Ax0(r, d) + Bu0(r, d) + d

=

[
A11 A12

A21 A22

] [
x0

1(r, d)
r

]
+

[
B1

B2

]
u0(r, d) + d, (8)

where A11 ∈ R(n−m)×(n−m), A12 ∈ R(n−m)×m, A21 ∈ Rm×(n−m), A22 ∈ Rm×m, B1 ∈ R(n−m)×m,
B2 ∈ Rm×m, and u0(r, d) denotes the steady state value of the control input u(t). The steady state can
be written as

x0(r, d) =

[
x0

1(r, d)
x0

2(r, d)

]
=

[
x0

1(r, d)
y0

]
=

[
x0

1(r, d)
r

]
, x0

1(r, d) ∈ Rn−m, x0
2(r, d) ∈ Rm, (9)

and y0 denotes the steady state value of the output y(t) under the input constraint (5).
Furthermore, the steady state equation can be equivalently rewritten as[

x0
1(r, d)

u0(r, d)

]
= −

[
A11 B1

A21 B2

]−1 ([
A12

A22

]
r + d

)

=:

[
Z11 Z12

Z21 Z22

]( [
A12

A22

]
r + d

)
, (10)

if the matrix

[
A11 B1

A21 B2

]−1

exists, where the matrices Zij, i, j = 1, 2, can be obtained by using the

matrix inversion lemma [20] as

Z11 = −A11 + B1B−1
2 A21,

Z12 = (A11 − B1B−1
2 A21)

−1B1B−1
2 ,

Z21 = B−1
2 A21(A11 − B1B−1

2 A21)
−1,

Z22 = −B−1
2 − B−1

2 A21(A11 − B1B−1
2 A21)

−1B1B−1
2 .

The relation (10) allows the steady state control u0(r, d) to be expressed as in the analytic form:

u0(r, d) = Dr + Z2d, (11)

where
D := (Z21A12 + Z22A22), Z2 :=

[
Z21 Z22

]
.

For the rest of the paper, it is assumed that the matrix

[
A11 B1

A21 B2

]
is invertible for the existence

of the steady state control u0(r, d). Note that, in order to satisfy the input constraint condition (5), it is
required that u0(r, d) ∈ U. In this study, a stronger assumption is made:
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Assumption 2.

u0(r, d) ∈ Uc ⊆ U, (12)

where Uc is the largest circle contained in the input constraint set U with the center point uc and the radius
rc, i.e.,

Uc =

{
u ∈ Rm | ‖u− uc‖ ≤ rc

}
⊆ U.

It follows from Assumption 2 that the unknown constant d described in Section 2 is contained the
interior Ωo of the convex set Ω defined by

Ω :=
{

d ∈ Rn | f (r, d) ≤ 0
}

(13)

with the convex function f : Rm ×Rn → R given by

f : (r, d) 7→ f (r, d) := ‖Dr + Z2d− uc‖2 − r2
c

= ‖u0(r, d)− uc‖2 − r2
c (14)

for a given reference r. Therefore, it reveals that, since the constant d is unknown, it is reasonable
to consider the reference signals r making the steady state control u0(r, d) feasible, i.e., u0(r, d) ∈
Uc. The reference r is called admissible when it renders the steady state control u0(r, d) to satisfy
Assumption 2 for the rest of this paper.

3.2. Control Law

For the purpose of achieving offset-free global tracking, this section designs state feedback
controller equipped with the DOB considering the input constraints (5). To this end, consider the
steady state Equation (10) with d = d̂(t)[

x̂0
1(r, t)

û0(r, t)

]
:=

[
x0

1(r, d)
u0(r, d)

] ∣∣∣∣
d=d̂(t)

=

[
Z11 Z12

Z21 Z22

] [
A12

A22

]
r +

[
Z11 Z12

Z21 Z22

]
d̂(t), ∀t, (15)

in which another expression is given by[
x̂0

1(r, t)
û0(r, t)

]
=

[
x0

1(r, d)
u0(r, d)

]
−
[

Z11 Z12

Z21 Z22

]
ed(t), ∀t, (16)

where the estimated disturbance d̂(t) comes from the full-order DOB given by

˙̂x(t) = Ax(t) + Bu(t) + d̂(t) + L1eo(t), (17)

˙̂d(t) = Proj
(

L2eo(t)
)

, ∀t, (18)
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with x̂(t) and d̂(t) representing the estimates of the state x(t) and the unknown constant d, respectively.
The state estimation error eo(t) is defined as eo(t) := x(t)− x̂(t), ∀t, Li = LT

i > 0, i = 1, 2, represent the
DOB gain matrices, and Proj denotes the projection operator [21] defined by

Proj
(

L2eo(t)
)

:=

{
L2eo(t), if d̂(t) ∈ Ωo or ∇ f TL2eo(t) ≤ 0,

L2eo(t)− L2
∇ f∇ f T

∇ f TL2∇ f L2eo(t), if d̂(t) ∈ ∂Ω and ∇ f TL2eo(t) > 0,
(19)

where ∂Ω is the boundary of the set Ω,

∇ f :=
∂ f (r, d̂(t))

∂d̂(t)
, ∀t,

and the convex function f is defined in (14). This projection operator is used for constraining the
estimated signal d̂(t) into the convex set Ω.

Using the DOB (17)–(19), the global-tracking control law handling the input constrains is
proposed as

u(t) = Kswê(t) + û0(r, t), ∀t, (20)

where

ê(t) := x(t)− x̂0(r, t), x̂0(r, t) := x0(r)
∣∣∣∣
d=d̂(t)

=

[
x̂0

1(r, t)
r

]
,

Ksw :=

{
K, if Kê(t) + û0(r, t) ∈ U,
0, otherwise,

,

K := YQ−1, and Y and Q are solutions of LMIs

QAT + YTBT + AQ + BY + βQ ≤ 0, (21)

QAT + AQ + βQ ≤ 0, (22)

for some β > 0 which is a design parameter. Figure 1 depicts the implemented closed-loop system.

Plant

(state:         , output:          )

( )p
tyController
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( )tu
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ɵ ɵ ɵ( )
.

1p p
+ −x = Ax +Bu+d L x xɵ ( )td

( )p
tx

Implemented Closed-Loop System

ɵ ɵ
0 0

,x u

Calculation

( )p
tx ( )p

ty

Reference

r

Figure 1. The implemented closed-loop system.

Note that the combination of DOB (17)–(19) and switching feedback gain Ksw critically plays the
critical role in guaranteeing the global tracking and offset-free properties. See Section 4 for details.

4. Stability Analysis

This section asserts the global-tracking and offset-free properties from the proposed control
law (20) including the DOB (17)–(19). Section 4.1 analyzes a DOB with a projection operator not only
removing the steady state tracking error but also making the control input feasible for all time by using
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the projection operator. Section 4.2 proves the global-tracking and convergence properties. The proof
of removal steady state errors is accomplished in Section 4.3.

4.1. DOB

The subtraction of (17) and (18) from (1) results in the error dynamics:

ėo(t) = −L1eo(t) + ed(t), (23)

ėd(t) = −Proj
(

L2eo(t)
)

, ∀t, (24)

where ed(t) := d− d̂(t), ∀t. Note that, because the estimation error dynamics (23)–(24) is not in the
form of LTI system due to the projection operator in (24), it is not obvious to find the stabilizing DOB
gains L1 and L2. Theorem 1 provides a guideline on how to choose stabilizing DOB gains for the
estimation error dynamics (23)–(24).

Theorem 1. The estimation error dynamics comprised of (23)–(24) is globally asymptotically stable for any
given L1 = LT

1 > 0, L2 = LT
2 > 0.

Proof. In order to analyze the stability of the estimation error dynamics, consider a scalar function
given by

Vo(ez(t)) =
1
2
‖eo(t)‖2 − leT

o (t)ed(t) +
1
2

eT
d (t)L

−1
2 ed(t) (25)

:=
1
2

eT
z (t)Po(l)ez(t), ∀eo(0), d̂(0) ∈ Rn,

where

l ∈ (0, min{ 1√
λmax(L2)

,
λmin(L1)

λmax(L2 +
1
4 L2

1)
}), (26)

ez(t) :=

[
eo(t)
ed(t)

]
, Po(l) :=

[
In×n −lIn×n

−lIn×n L−1
2

]
.

Po(l) is positive definite with l in (26). Then, its time derivative along the trajectory of the state
estimation error dynamics (23)–(24) becomes

V̇o(ez(t)) = eT
o (t)ėo(t)− lėT

o (t)ed(t)− leT
o (t)ėd(t) + eT

d (t)L
−1
2 ėd(t)

= eT
o (t)

(
− L1eo(t) + ed(t)

)
− l
(
− L1eo(t) + ed(t)

)T

ed(t)

+leT
o (t)Proj

(
L2eo(t)

)
− eT

d (t)L
−1
2 Proj

(
L2eo(t)

)
.

Note that it is easily verified that

eT
o (t)Proj(L2eo(t)) ≤ eT

o (t)L2eo(t), (27)

−eT
d (t)L

−1
2 Proj(L2eo(t)) ≤ −eT

d (t)L
−1
2 L2eo(t), ∀t, (28)

using the definition of the projection operator (19). For details of the two properties (27)–(28),
see Appendix E in Reference [21]. It follows from the two properties (27)–(28) that

V̇o(ez(t)) ≤ −eT
o (t)

(
L1 − lL2

)
eo(t) + leT

o (t)L1ed(t)− l‖ed(t)‖2

=: −eT
z (t)Qo(l)ez(t), (29)
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where

Qo(l) :=

[
L1 − lL2 − l

2 L1

− l
2 L1 lIn×n

]
.

Note that Qo(l) is also positive definite with l in (26). Therefore, this means that the DOB (17)–(18)
makes the estimation error dynamics (23)–(24) globally asymptotically stable with l in (26). As a matter
of fact, the interval in (26) is determined such that both Po(l) and Qo(l) become positive definite for
any constant l in the interval (this can be proved easily).

Remark 3. Although the DOB works with any positive definite L1 and L2, there can be many different ways
to choose them. For instance, it is possible to find stabilizing DOB gains L1 and L2 for maximizing the decay
rate of the estimation error. By letting the projection operator of (18) the identity function, the estimation error
dynamics (23)–(24) can be written as

ėobs(t) = (Aobs − LobsCobs)eobs(t), ∀t, (30)

where

eobs(t) =

[
eo(t)
ed(t)

]
, Aobs =

[
0n×n In×n

0n×n 0n×n

]
, Cobs =

[
In×n 0n×n

]
, Lobs =

[
L1

L2

]
.

Then, the optimization problem given by

max α
α>0,Pobs=PT

obs>0,Li=LT
i >0, i=1,2

subject to (31)

AT
obsPobs −CT

obsY
T
obs + PobsAobs − YobsCobs + αPobs ≤ 0 (32)

yields the optimal DOB gain L∗obs = (P∗obs)
−1Y∗obs maximizing the decay rate of the estimation error eobs(t)

of (30) where (α∗, P∗obs, Y∗obs) represents the optimizer of the optimization problem (31).

4.2. Input Constrained Offset-Free Global Tracking Controller

The estimated steady state and control (16) play the pivotal role in proving both the closed-loop
stability and feasibility for all time. On the other hand, the estimated nominal steady state input û0(r, t)
can be interpreted as an estimated steady state input based on the estimated signal d̂(t). Hence, it is
important for û0(r, t) to be feasible for admissibility. In fact, the projection operator in the DOB makes
û0(r, t) feasible for all time. Moreover, the projection operator in the DOB guarantees that

∀d̂(0) ∈ Ωo implies
−→ d̂(t) ∈ Ω, ∀t, (33)

owing to the projection operator [21]. Due to this invariance property, û0(r, t) becomes feasible for all
time as shown in Lemma 1.

Lemma 1. For an admissible reference r, assuming that the initial condition d̂(0) is constrained into Ωo,
it holds that

û0(r, t) ∈ U, ∀t.
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Proof. Using the property (33), the following chain implications hold:

∀d̂(0) ∈ Ωo ⇒ d̂(t) ∈ Ω, ∀t. ⇔ f (r, d̂(t)) ≤ 0, ∀t.

⇔ ‖Dr + Z2d̂(t)− uc‖ ≤ ru, ∀t.

⇔ ‖û0(r, t)− uc‖ ≤ ru, ∀t.

⇔ û0(r, t) ∈ Uc ⊆ U, ∀t.

⇒ û0(r, t) ∈ U, ∀t,

where the third implication comes from (15).

Now it is ready to show the global convergence of the closed-loop error dynamics.

Theorem 2. For an admissible reference r and any given L1 = LT
1 > 0, L2 = LT

2 > 0, d̂(0) ∈ Ωo,
and x(0) ∈ Rn, suppose that the two LMIs (21)–(22) are feasible. Then, the proposed controller (20) guarantees
to achieve the constrained global asymptotic output tracking property described in Definition 1.

Proof. Since d̂(0) ∈ Ωo, Lemma 1 holds true. Therefore, the control input is always feasible
(C3 of Definition 1). In addition, the proposed controller (20) can be written by applying the two
equalities (16) as

u(t) = Kswê(t) + û0(r, t)

= Kswe(t) + u0(r, d) + Ksw(x0(r, d)− x̂0(r, t))− (u0(r, d)− û0(r, t))

=: Kswe(t) + u0(r, d) + T(t)ed(t), ∀t,

where

e(t) := x(t)− x0(r, d), T(t) := Ksw

[
Z11 Z12

0m×(n−m) 0m×m

]
−
[

Z21 Z22

]
, ∀t.

Note that, since the control gain Ksw is a kind of a time-varying signal, the matrix T(t) is also
defined as a time-varying signal. Then, the corresponding closed-loop error dynamics is obtained as

ė(t) = (A + BKsw)e(t) + BT(t)ed(t), ∀t, (34)

where ed(t) satisfies the differential equation described in (18). This error dynamics is a switched
linear system owing to the switching gain Ksw. Therefore, in order to analyze the switched
system, consider the positive definite function as a candidate for the common Lyapunov function in
the following:

V(e(t), ez(t)) :=
1
2

eT(t)Pe(t) + kVo(ez(t))

=
1
2

eT(t)Pe(t) +
k
2

eT
z (t)Po(l)ez(t), (35)

where P := Q−1, the positive constant k will be defined later in order to ensure V(e(t), ez(t)) to be
monotonically decreasing for all time, and the parameter l is chosen to be in the interval of (26) so that
the two matrices Po(l) and Qo(l) are both positive definite for given L1 = LT

1 > 0 and L2 = LT
2 > 0.

It should be noticed that the initial condition d̂(0) is constrained into the set Ωo for guaranteeing the
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feasibility of the proposed control input (see Lemma 1). Then, it follows from the Equation (34) and
the inequality (29) of Theorem 1 that

V̇ ≤ 1
2

eT(t)
(
(A + BKsw)

TP + P(A + BKsw)

)
e(t) + eT(t)TT(t)BTPBT(t)ed(t)

−keT
z (t)Qo(l)ez(t). (36)

Note that the first linear matrix inequality (LMI) (21) leads to[
(A + BKsw)

TP + P(A + BKsw)

]
Ksw=K=YQ−1

= (A + BK)TP + P(A + BK) ≤ −βP

and the second LMI (22) does[
(A + BKsw)

TP + P(A + BKsw)

]
Ksw=0

= ATP + PA ≤ −βP.

Hence, V̇ satisfies that

V̇ ≤ − β

2
eT(t)Pe(t) + eT(t)TT(t)BTPBT(t)ed(t)− keT

z (t)Qo(l)ez(t)

≤ − β

4
eT(t)Pe(t) +

‖T(t)TBTPBT(t)‖2

βλmin(P)
‖ez(t)‖2 − keT

z (t)Qo(l)ez(t), (37)

where the second inequality comes from

‖ed(t)‖2 ≤ ‖ez(t)‖2, ∀t,

and the Young’s inequality [22], i.e.,

eT(t)T(t)TBTPBT(t)ed(t) ≤
λmin(P)β

4
‖e(t)‖2 +

‖T(t)TBTPBT(t)‖2

λmin(P)β
‖ed(t)‖2

≤ β

4
eT(t)Pe(t) +

‖T(t)TBTPBT(t)‖2

λmin(P)β
‖ez(t)‖2, ∀t.

λmin((·)) and λmax((·)) denote the minimum and maximum eigenvalues of the given square matrix
(·), respectively. Defining the positive constant k as

k :=
(

η +
max

t
‖T(t)TBTPBT(t)‖2

βλmin(P)λmin(Qo(l))

)
, ∀η > 0,

we have

V̇ ≤ − β

2
eT(t)Pe(t)− ηeT

z (t)Qo(l)ez(t) < 0, ∀x(0), eo(0) ∈ Rn, ∀d̂(0) ∈ Ωo, ∀t, (38)

which means that V is indeed a common Lyuapuov function for the switched system and that

lim
t→∞

x(t) = x0(r, d), ∀x(0) ∈ Rn (C2 of Definition 1).

It consequently results in

lim
t→∞

y(t) = r, ∀x(0) ∈ Rn (C1 of Definition 1).
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Therefore, the proposed control law (20) ensures the constrained global asymptotic output
tracking property.

Remark 4. The assumptions on the two matrices A and B are necessary for the proposed method to be applicable
since the controllability of the pair (A, B) and the stability of the matrix A ensure the solvability of the two
inequalities (21) and (22), respectively.

Remark 5. It is easy to see that the nominal proposed controller (20), u(t)
∣∣∣∣
d̂(k)=d

, gives the closed-loop error

dynamics given by
ė(t) = (A + BKsw)e(t), ∀t.

In this case, the two inequalities (21)–(22) renders the positive definite function

V(e(t)) =
1
2

eT(t)Pe(t), ∀t,

to satisfy

V̇(e(t)) ≤ − β

2
V(e(t)), ∀t,

where P = Q−1. Therefore, it is desirable to choose the two matrices Q and Y by solving the optimization
problem

max β
β>0,Q=QT>0,Y

subject to (21), (22), (39)

for maximizing the decay rate of the tracking error.

Theorem 2 asserts that the proposed controller achieves the constrained global asymptotic output
tracking property if there is no plant-model mismatch. In the next section, it is shown that the
proposed controller actually results in offset-free tracking, as well, even for the case where there is
plant-model mismatch.

4.3. Offset Error Rejection for Plant-Model Mismatched Case

Theorem 3 claims that the proposed controller (20) guarantees the offset-free property as long as
the implemented closed-loop system eventually reaches a steady state as the time goes to infinity, i.e.,

lim
t→∞

xp(t) = xp,∞

(
=

[
xp1,∞

yp,∞

])
, lim

t→∞
x̂(t) = x̂∞,

lim
t→∞

u(t) = u∞, lim
t→∞

d̂(t) = d̂∞ ∈ Ωo, (40)

where xp(t) represents the state trajectory of the implemented closed-loop system in Figure 1.

Theorem 3. Suppose that the all assumptions of Theorem 2 hold and that the implemented closed-loop system
shown in Figure 1 satisfies the condition (40) in the steady state. Then, it holds that

yp,∞ = r, ∀x(0) ∈ Rn

if matrix W is invertible where the matrix W is defined as

W := K∞

[
Z11A12 + Z12A22

Im×m

]
− Z21A12 − Z22A22, (41)

and K∞ is the steady state value of Ksw, i.e., either 0 or YQ−1.
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Proof. In the steady state described as (40), the DOB (17)–(18) and the Equation (15) can be written as

0 = Axp,∞ + Bu∞ + d̂∞ + L1(xp,∞ − x̂∞), (42)

0 = Proj
(

L2(xp,∞ − x̂∞)

)
, (43)[

x̂0
1,∞

û0
∞

]
=

[
Z11 Z12

Z21 Z22

] [
A12

A22

]
r +

[
Z11 Z12

Z21 Z22

]
d̂∞. (44)

Since d̂∞ ∈ Ωo, it follows from the Equation (43) that

L2(xp,∞ − x̂∞) = 0.

It implies that
xp,∞ = x̂∞ (45)

since the matrix L2 is invertible. It is easy to see that the property (45) makes it possible for the
Equation (42) to be written as

0 = Axp,∞ + Bu∞ + d̂∞.

Since this equation can be equivalently expressed as[
xp1,∞

u∞

]
=

[
Z11 Z12

Z21 Z22

] [
A12

A22

]
y∞ +

[
Z11 Z12

Z21 Z22

]
d̂∞, (46)

subtracting (44) from (46), we have

xp1,∞ − x̂0
1,∞ = (Z11A12 + Z12A22)(y∞ − r), (47)

u∞ − û0
∞ = (Z21A12 + Z22A22)(y∞ − r). (48)

Now consider the control input in the steady state as follows:

u∞ = lim
k→∞

(
Kswê(t) + û0(r, t)

)
= K∞(xp,∞ − x̂0

∞) + û0
∞

= K∞

[
xp1,∞ − x̂0

1,∞
y∞ − r

]
− (u∞ − û0

∞) + u∞.

It implies, together with the Equations (47), that

u∞ − û0
∞ = K∞

[
xp1,∞ − x̂0

1,∞
y∞ − r

]

= K∞

[
Z11A12 + Z12A22

Im×m

]
(y∞ − r). (49)

It follows from equating (48) and (49) that(
K∞

[
Z11A12 + Z12A22

Im×m

]
− Z21A12 − Z22A22

)
(y∞ − r) = W(y∞ − r)

= 0.

Therefore, the invertibility of the matrix W guarantees that y∞ = r.
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In this theorem, it is shown that the steady state offset is indeed removed by the proposed DOB
based control even for uncertain systems as long as the uncertain system reaches at a steady state.

5. An Application for a DC/DC Buck Converter

Using the proposed method, this section designs a state-feedback controller for a DC/DC
buck converter to control the output voltage under the inherent input constraints and performs
the simulations to show the effectiveness of the proposed method using the PowerSIM(PSIM) software
(9.1, Powersim Inc, Rockville, MD, USA).

5.1. Description of a DC/DC Converter

Figure 2 describes the topology of the DC/DC buck converter which is utilized for lowering the
source DC voltage to the desired DC voltage by controlling the switch device Q1 [23,24].

Pulse-Width 

Modulator

Duty Ratio D

gv C c
v

+

−

1D

1Q

C
i

L
i

o
iR L

Load

Figure 2. The DC/DC buck converter topology.

In this system, the pulse width modulation (PWM) of the switching action is considered as the
control input, i.e., if the duty ratio is D ∈ [0, 1], the switch turns on for a period of DT and turns off
for a period of (1− D)T, where T is the PWM period. Therefore, the averaged model of this buck
converter is obtained as follows:

ẋ(t) = Ax(t) + Bu(t) + d(t), (50)

where u(t) := D ∈ [0, 1],

x(t) :=

[
iL(t)
vc(t)

]
, v :=

[
vg

vD

]
, d(t) := Bvv + Bdio(t),

A :=

[
− R

L − 1
L

1
C 0

]
, B :=

[
1
L (vg + vD)

0

]
,

Bv :=

[
0 − 1

L
0 0

]
, Bd :=

[
0
− 1

C

]
,

vD represents the diode voltage.
In order to control the output voltage vo(t), define the output variable

y(t) := Cx(t),

where C :=
[

0 1
]
. Because, in general, since it is possible to assume that the load current io(t) is

unknown but constant [25], the vector d(t) can be considered as the unknown constant d as in (1).
Note that, since the open-loop system matrix A is stable for any R > 0, L > 0, C > 0, and that

the pair (A, B) is controllable, the necessary condition for finding the solution of the optimization
problem (39) is satisfied. The minimum and maximum duty ratio 0 and 1 correspond to the lower
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and upper input constraint u and ū, respectively, and the control objective for the buck converter is to
design the control input u(t) so that

lim
t→∞

y(t) = r

for a given output voltage reference r under the input constraints (5).

5.2. Simulations

The DC/DC buck converter parameters are given by

R = 0.1 Ω, L = 3 mH, C = 2000 µF, vg = 250 V, vD = 0.67 V.

It was checked that the optimization problem (39) yields the optimal solution β∗ = 33 with

Q∗ = 103

[
6.65 −0.33
−0.33 9.96

]
and Y∗ =

[
−63.74 −0.033

]
.

The estimation gain matrices of the DOB are obtained

L1 = 3.2× 103I2×2, L2 = 6.3× 105I2×2

by solving the optimization problem (31). In this application, bearing the input constraint u(t) ∈ [0, 1]
in mind, the convex function f and the convex set Ω for the projection operator are constructed as

f (r, d) = ‖Dr + Z2d− 0.5‖2 − 0.52,

Ω = {d | f (r, d) ≤ 0}.

The corresponding ∇ f , Ωo, and ∂Ω are given by

∇ f = 2ZT
2 (Dr + Z2d− 0.5), Ωo = {d | f (r, d) < 0}, ∂Ω := {d | f (r, d) = 0}.

Together with these settings, the projection operator was implemented according to its
definition (19), and the proposed controller (20) with the DOB (17)–(18) were implemented by using the
DLL block in the PSIM software with the sampling time of 0.1 ms, and the PWM switching frequency
was chosen as 10 kHz. For zero steady state errors as stated in Theorem 3, we also checked the matrix
W defined in (41) is invertible using the parameters used in this simulation.

In order to compare the closed-loop performance, we consider the saturated global stabilizing
integral controller in Reference [15], given by

uint(t) = −sat
(

kBT
intPintzint(t)

)
, k > 0, ∀t, (51)

with the tuned design parameter k = 10 for the best convergence rate with ±10% overshoot through
ad-hoc method, where the saturation function sat(x) is defined as

sat(x) =
[

sat(x1) · · · sat(xn)
]T

with

sat(xi) =


umax, xi > umax

xi, umin ≤ xi ≤ umax

umin, xi < umin
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for any given x ∈ Rn, Bint =
[

BT 0
]T

, the matrix Pint is chosen to be

Pint = 10−4

 0.2 0 −1.2
0 0.1 −0.1
−1.2 −0.1 387.5

 (= PT
int > 0)

so that it satisfies the inequality
AT

intPint + PintAint ≤ 0

with Aint =

[
A 02×1

−C 0

]
, zint(t) =

[
xT(t) s(t)

]T
, and s(t) is the integral state governed by the

dynamics:
ṡ(t) = r− y(t), ∀t.

Furthermore, for more realistic simulations, we used the perturbed parameters Rp, Lp, and Cp

given by

Rp = 0.05 Ω(= 0.5R), Lp = 4 mH(= 1.3L), Cp = 1700 µF(= 0.85C),

instead of their true parameters R, L, and C, respectively.
Under these settings, the simulation scenario is given by

1. The control commences with the output voltage reference r = 230 V and with the resistive load
RL = 10 Ω at t = 0 s,

2. The output voltage reference r is decreased from r = 230 V to r = 30 V at t = 0.2 s,
3. The output voltage reference r is increased from r = 30 V to r = 230 V at t = 0.4 s,
4. The resistive load is decreased from RL = 10 Ω to RL = 5 Ω at t = 0.6 s, and
5. The resistive load value is decreased from RL = 5 Ω to RL = 2.5 Ω at t = 0.8 s.

Figure 3 compare the output voltage tracking performances between the proposed controller
and the integral controller. This result shows that the proposed method provides an effective output
tracking performance without any offset error in the presence of a plant-model mismatch as comparing
the integral controller. In particular, it was observed that the proposed method keeps the output
voltage tracking performance satisfactory as comparing the integral control method, despite the severe
load variations.
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Figure 3. The output voltage tracking performance comparison.
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Figure 4 shows the corresponding control input behavior and the state estimation errors.
The control input satisfies the input constraints for all time and that the DOB effectively estimates the
real states in the realistic simulations, thanks to the integrator in (18), respectively.
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Figure 4. The behaviors of control input and state estimation.

Under the same simulation scenario used in the first one, the second simulation was performed
to show the saturation effect of the control input. To this end, the matrices Q and Y for the control gain
were selected as

Q = 10−3

[
0.1 −0.005
−0.005 0.15

]
and Y =

[
−9 0

]
to satisfy the inequalities in (22) so that the resulting control gain makes the closed-loop system
oscillatory. The output voltage response is shown in Figure 5, respectively.

r
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Figure 5. The output tracking performance.

Figure 6 shows that the corresponding control input still satisfies the input constraint for all time
where the right panel magnifies the control input behavior in the left panel during the starting transient
period 0∼0.3 s.
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Figure 6. The saturated control input behavior with its magnified version during 0 ∼0.3 s.

6. Conclusions

In this study, we propose an offset-free global tracking state-feedback control algorithm for the
controllable and strictly stable LTI systems, considering the input constraints. The proposed controller
is very simple in such a way that it feedbacks the estimated tracking error and steady state control
using an estimated state of the DOB; any online numerical optimization process is not included. It is
shown that the proposed controller ensures the global output tracking property in the presence of
input constraints, thanks to the invariance property of the projection operator, and that the steady state
errors in the output can be removed if some rank condition is satisfied. Furthermore, by performing
the realistic simulations using the DC/DC buck converter, it is also verified that the proposed control
method can be an effective solution to the global output tracking problem of the LTI systems under
the input constraints. In the future, we plan to apply the proposed method to the open-loop unstable
systems with the experimental verification using a prototype hardware, such as power converters and
motor drives.
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