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Abstract: The penetration of distributed generators (DGs) in the existing power system has brought
some real challenges regarding the power quality and dynamic response of the power systems.
To overcome the above-mentioned issues, the researchers around the world have tried and tested
different control methods among which the computational intelligence (CI) based methods have
been found as most effective in mitigating the power quality and transient response problems
intuitively. The significance of the mentioned optimization approaches in contemporary ac Microgrid
(MG) controls can be observed from the increasing number of published articles and book chapters
in the recent past. However, literature related to this important subject is scattered with no
comprehensive review that provides detailed insight information on this substantial development.
As such, this research work provides a detailed overview of four of the most extensively used
CI-based optimization techniques, namely, artificial neural network (ANN), fuzzy logic (FL), adaptive
neuro-fuzzy inference system (ANFIS) and genetic algorithm (GA) as applied in ac MG controls from
42 research articles along with their basic working mechanism, merits, and limitations. Due to space
and scope constraints, this study excludes the applications of swarm intelligence-based optimization
methods in the studied field of research. Each of the mentioned CI algorithms is explored for three
major MG control applications i.e., reactive power compensation and power quality, MPPT and MG’s
voltage, frequency, and power regulation. In addition, this work provides a classification of the
mentioned CI-based optimization studies based on various categories such as key study objective,
optimization method applied, DGs utilized, studied MG operating mode, and considered operating
conditions in order to ease the searchability and selectivity of the articles for the readers. Hence, it is
envisaged that this comprehensive review will provide a valuable one-stop source of knowledge to
the researchers working in the field of CI-based ac MG control architectures.
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1. Introduction

The graphs for electricity consumption worldwide are continuously rising with increasing
modern-day necessities and rapidly increasing population; thus, causing the overloading of the
existing power systems. Besides, since the conventional power systems generally consist of fossil
fuel-based power plants, the increasing load also increases the fuel consumption which consequently
increases the amount of greenhouse gases and hence becomes the cause of the increased environmental
pollution. One of the most effective solutions to overcome the stated issues is to use a Microgrid
(MG). An MG is defined as a cluster of distributed generators (DGs) and loads, with a central control
system, that delivers both power and heat to the local area [1]. These DGs are interconnected to one
another and with the main grid by using a non-linear device like a voltage source inverter (VSI) or
voltage source converter (VSC). The major role of using these power electronic devices is to provide a
controlled interface between DGs and the main grid for regulating the voltage, frequency, and desired
power-sharing ratio among the connected power supplying sources [2]. Despite the vast benefits of
using these interfacing devices, they pose some severe threats to the power quality of the power system.
This is because of the reason that these devices are generally semi-conductor based non-linear devices
which operate at very high switching frequencies, thus distorting the power quality of the supplied
power [3]. A typical configuration of an MG with two DGs and a battery bank is depicted in Figure 1.
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To ensure suitable power quality and smooth operation of the MG system during all operating
conditions and MG operating modes, an intelligent and robust control strategy is fundamentally
required. The selection of the controller parameters is also an important aspect that decides
the performance of the selected controller under different MG operating conditions and system
configurations. With the advancement in the field of computational intelligence (CI)-based optimization
methods, the optimal values of these parameters are selected automatically which results in more robust
and intelligent designs of the modern MGs [6]. Since analytical solutions for MGs are too complex and
are time-consuming, therefore, optimization is generally carried out by using the CI methods in order
to avoid lengthy calculations and to obtain the most optimal solutions in less time. This is especially
for the optimization problems with more than one objective function that are too complex to be solved
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with polynomial-time domain-based conventional iterative methods [7]. Due to the complex nature
and slower convergence of conventional iterative optimization methods, the CI-based optimization
approaches have been widely adopted to achieve near-optimum solutions in a comparatively shorter
time [7].

Computational intelligence is a branch of artificial intelligence that mimics human beings and
nature by utilizing technology and computer science. It includes fuzzy logic control (FLC), artificial
neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), genetic algorithms (GA),
and swarm-based optimization methods as depicted in Figure 2 [8].
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CI is a broader field of study and its applications can be found in several modern-day scientific
and engineering problems, however, this study only focuses on the CI techniques that are explored for
the power quality and dynamic response enhancement of ac MGs only. The basic idea is to optimize
different control parameters such as PI regulator gains [9,10], droop coefficients [11,12], maximum
power point tracking (MPPT) of wind turbines and solar PV modules [13,14] and wind turbine pitch
angle [15,16] that consequently lead to the accomplishment of the mentioned MG control objectives.

Before discussing the applications of the CI-based optimization methods in MG controls, it is
important to understand the basics of the optimization process in general. Optimization is a process of
finding the most suitable values of the variables that provide the maximized or minimized value of a
given fitness function under pre-defined constraints [17]. Two of the most important performance
evaluating metrics of an optimization process are convergence rate and solution quality [18,19]. These
parameters decide the efficiency of the algorithm in obtaining the optimal solution for any optimization
process [18,20]. The convergence rate indicates the speed at which the fitness function is minimized or
maximized by an optimization algorithm while the solution quality provides the information about
the magnitude of the ultimate maximum or minimum value of the fitness function at the end of the
optimization process [21,22]. It is worthwhile to mention here that, due to space and scope constraints,
this study excludes swarm intelligence-based optimization methods as it is very hard to justify with all
such optimization techniques in the current study. Furthermore, the current study only considers the
applications of the mentioned CI-based optimization methods for mitigating power quality issues,
MPPT and regulation of system frequency, voltage and power flow in ac MG systems. It is evident from
the surveyed literature that each of the quoted CI techniques has been studied extensively and found to
be beneficial in mitigating the MG stability, power quality and transient response issues. Nevertheless,
despite of the immense applicability and benefits of these CI techniques in ac MGs as quoted in several
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research works, there is not a single publication available that can provide a detailed summary and
insights about this important subject. Unlike the CI-based MG applications, the conventional MG
control techniques are fairly studied and their extensive reviews are produced in [23–25].

As such, this study attempts to fill this knowledge gap by compiling and reviewing all the
major publications on CI-based MG control architectures for the power quality and dynamic response
enhancement of the ac MGs. Before discussing the applications of the CI techniques in the mentioned
field, their basic working mechanism along with merits and demerits are discussed in order to provide
a broader understanding of that CI methods and their application in the studied subject. Finally,
the logical conclusions are drawn, and the suggestions are provided so that the research in the current
field may be extended with novel ideas and innovations.

To accomplish the stated goals of the study, Section 2 of this paper provide details about the
methodology adopted for the selection of the articles for review. The working mechanism of ANN,
FL, ANFIS, and GA along with the merits and demerits and their application in ac MGs are discussed
in detail in Section 3, Section 4, Section 5, and Section 6, respectively. Finally, the conclusion and the
recommendations related to the CI-based optimal MG controls are provided in Section 7 of the article.

2. Review Methodology and Scope

In this section, the methodology adopted for selecting the published articles on the studied subject
is discussed along with the scope of the review. Initially, the articles for review were chosen from
three of the key online sources i.e., Web of Science [26], Google Scholar [27], and Scopus [28] by
using searching keywords such as computational intelligence-based optimization in ac microgrids,
optimized frequency and voltage control of autonomous ac microgrid, optimized dynamic response
of ac microgrid, optimal control of distributed generating units and optimal power sharing control
in grid-tied MG. Once the articles were extracted from their online sources, a classification-based
method was adopted to select the most relevant articles based on the subject relevance, journal quartile,
impact factor, and Scopus ranking. Owing to the limited space, only 42 of the most relevant articles
were chosen to explore four of the well-known CI-based methods, namely, FL, ANN, ANFIS and
GA for their application in ac MG controls. To properly execute the current study and to achieve
its aims and objectives effectively, an outline of the article contents was prepared. All the sections
have been arranged in such a way that the adjacent sections must have some coherence and relation
to each other and the core aim of the study. Table 1 shows the classification of selected articles
based on CI optimization methods and the major focus of study i.e., dynamic response and power
quality improvement.

Table 1. Classification of selected studies.

CI-Based Optimization Methods Published Articles

MPPT Voltage, Frequency and Power Regulation Reactive Power Compensation and Power Quality

ANN [13,29] [30,31] [32,33]
FL [34–36] [10,15,16,37–45] [46–51]

ANFIS [14,52–56] [12,57] [58,59]
GA [60,61] [9,62–65] [66,67]

As stated in the previous section of this paper, it is almost impossible to fairly cover all the
CI-based optimization methods due to the space constraints, therefore, only a few of the very important
and basic CI techniques were selected for the review and are presented in the subsequent sections.

3. Artificial Neural Networks

ANN is extensively accepted as a technology with great potential to solve most of the complicated
and ill-defined problems. ANNs are capable of learning from examples, tackling non-linear problems,
and handling incomplete and noisy data. Furthermore, ANN can do generalization and prediction
at rapid speed after proper training procedures. Due to its effective learning ability, it has been
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successfully applied in several scientific applications like forecasting, signal processing, control,
medicine, power systems, pattern recognition, manufacturing, robotics, optimization, psychological
and social sciences [68]. ANN is an interconnection of artificial neurons (nodes) that mimic the
functionality of a human brain. Mainly, it contains three layers, i.e., input, hidden, and output.
A generalized flowchart of ANN modeling and a simple structure of ANN tailored for frequency and
voltage control of an islanded MG is depicted in Figures 3 and 4, respectively.Energies 2020, 13, x FOR PEER REVIEW 6 of 24 
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The main feature of an ANN is its ability to solve a complex problem very efficiently since it can
handle the data parallelly. Furthermore, the ability of ANNs to learn from examples spontaneously,
reason over fuzzy data, and provide quick and adequate responses to new information have attracted
the interest of several researchers to solve different optimization problems of the power engineering
field through this CI technique [69].

3.1. Applications of ANN in ac MG Controls

ANN has been widely used in dynamic response and power quality improvement of ac MGs.
A few of the most relevant ANN studies in the field of MG controls are selected for the review in this
research work and are discussed in subsequent subsections.

3.1.1. ANN-Based MPPT

A general regression neural network (GRNN) algorithm was used to achieve MPPT of solar PV
in a grid-tied wind-PV power system by Hong et al. [13]. To attain a fast and stable performance,
an intelligent radial basis function network-sliding mode controller was implemented along with
the GRNN-based MPPT controller. Rezvani et al. attempted to improve the dynamic response of a
wind-solar-based grid-connected MG system by using a GA-trained ANN (GA-ANN) for MPPT control
of solar PV and FL-based pitch angle control for the wind turbine [29]. The proposed GA-ANN-based
controller ensured the fast-tracking and reduced fluctuations around the maximum power point in
solar PV under different insolation conditions while the FL-based pitch angle controller regulated the
wind output power under variable wind speed.

3.1.2. ANN-Based Reactive Power Compensation and Power Quality Enhancement

In addition to MPPT control, the ANN has also been used for the reactive power regulation and
power quality enhancement of ac MGs. Bansal et al. adopted the ANN-based approach for tuning PI
controller-based static VAR compensator (SVC) in an autonomous hybrid system [32]. The role of the
ANN-tuned SVC controller was to regulate the reactive power of the ac MG system. The performance
index was studied for a 1% step change in reactive load demand, and it was found that the deviation
in both firing angle and system voltage vanishes in 0.2 s of simulation. The lead author R.C Bansal has
extended the previous work by simulating the model for different load voltage characteristics of the
wind-diesel system in reference [33]. It was found that the voltage and current oscillations vanish in
0.01 s when SVC supplies the reactive power required by the load or induction generator.

Baghaee et al. added the radial basis function neural networks (RBFNNs)-based complementary
control loop to the conventional droop control scheme for regulating the reactive power and improving
the power-sharing capability of DGs in an ac MG system [31]. The inclusion of the RBFNNs in
droop control ensured the accurate and faster power calculations for improving the MG stability and
power-sharing ratio. Li et al. proposed an ANN-based vector control method to avoid the demerits of
the traditional vector control methods in their applicability to dynamic systems for grid-connected
converters [30]. The NNs were trained by using the backpropagation method in conjunction with a
dynamic programming algorithm.

Although the ANNs are robust in solving nonlinear problems and are easy to train, there are
certain disadvantages related to ANN which limit their extensive usage in modern MG control
architectures. For example, the ANN must be trained for each problem separately. Moreover, multiple
tests must be performed to define adequate algorithm architecture. Lastly, its training might be long
and time-consuming as the training requires large volumes of data [70].

4. Fuzzy Logic

Fuzzy logic control (FLC) systems utilize a mathematical calculus to decode the subjective
knowledge of humans for the real processes [71]. The FL theory was introduced by Lotfi Zadeh in
1965 [72]. The behavior of such systems is defined through a set of fuzzy-based rules that uses linguistics



Energies 2020, 13, 4063 7 of 22

variables with symbolic terms to formulate the solution of a given problem [73]. A generalized FLC
structure is shown in Figure 5. It contains three stages of processing, i.e., fuzzification, rules inferences,
and de-fuzzification. The rule table block stores the fuzzy rules and the calculations are performed in
the rule’s interference unit.
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Furthermore, for a clear understanding of the applicability of fuzzy logic in MGs, a typical example
of FLC is shown in Figure 6. In this case, fuzzy logic is used to select the optimal values of generalized
droop coefficients (R and X) to regulate the voltage and frequency of an ac MG. For obtaining the
optimal values of the mentioned coefficients, a set of 36 fuzzy rules, which are very well defined and
explained in reference [11], is utilized to map four input parameters, i.e., ∆f, ∆v, ∆P and ∆Q (deviation
in frequency, voltage, active power and reactive power, respectively), and two output parameters,
R and X.Energies 2020, 13, x FOR PEER REVIEW 9 of 24 
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The FLC has been extensively applied to deal with the power quality issues in the power system
due to its simplicity, ease in interpreting the results, approximate reasoning, and provision to extend
its basic knowledge by adding new rules. Furthermore, FLC is also recognized and found effective in
handling problems with non-linearity. The FLC applications in power quality enhancement of MGs
are extensively reported in the literature, out of which few prominent studies are reviewed and briefly
discussed in the current study as under.

4.1. Applications of FL in MG Controls

A few of the very important applications of MG controls in the context of current research work
are discussed in detail.
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4.1.1. FL-Based MPPT

Alajmi et al. have carried out an experimental setup for a conventional FLC-based hill-climbing
MPPT controller in an islanded MG under changing weather conditions [34]. The objective of fuzzifying
the rules of the hill-climbing search method was to avoid the sluggish MPPT convergence to the
optimum operating point and to minimize the power loss at the steady-state condition. The results
presented the efficacy of the proposed control method over the previous research works based on the
dynamic response indicators, tracking accuracy, number of fuzzy rules, execution speed, and practical
validation. Authors in reference [36] proposed FLC for MPPT control of solar PV in an ac MG.
The mentioned study aimed to increase PV system performance during various partially shaded
circumstances. Both the simulated and experimental results were analyzed to validate the effectiveness
of the developed controller. Another significant research work pertaining to FLC-based MPPT was
carried out by Patcharaprakiti et al. where they proposed an adaptive FLC for achieving MPPT of a
grid-tied solar PV system [35]. The developed algorithm could suitably adjust the fuzzy parameters
for the appropriate transient response of the considered system. Results showed that the adaptive
FLC-based MPPT possesses the capability of extracting a greater amount of power than the conventional
MPPT controller with a higher power factor and lower harmonics.

4.1.2. FL-Based Reactive Power Control and Power Quality Enhancement of MGs

Another important application of the FLC-based MG control architectures lies in the power quality
improvement of ac MGs. In this context, Benachaiba et al. utilized the FLC to tune parameters of
unified power quality conditioner (UPQC) for improving the voltage profile of an ac MG system [46].
The effectiveness of the proposed controller and its performance was compared with the conventional PI
controller in mitigating voltage sag and unbalancing. The FLC-based UPQC reduced the total harmonic
distortion (THD) in source current down to 2.11% as compared to the conventional PI controller where
the same value was recorded as 2.23%. A tariff-based FLC was developed to compensate the reactive
power and current harmonics in an ac MG [47]. The controller rules were set in such a way that the
MG with the lowest tariff and THD was integrated with the utility grid. Furthermore, along with
the tariff management, the controller reduced the THD up to 3.64%. In another study, the authors
designed an FLC-based dynamic voltage restorer (DVR) for eliminating the voltage sags and swells
during overloading, underloading, and fault conditions in the grid-connected wind farms [48]. Solar
PV was used in the control structure for providing an alternative energy source to the DVR. FLC-based
DVR has also been proposed by Ramasamy et al. To minimize the voltage sags, swells, and outages
in a single-phase distribution system [49]. In the mentioned research work, the DVR along with the
PV module with both high and low boost power converters was used as a DC voltage source for
mitigating the voltage outages, sags, and swells. In reference [50], the authors designed a fuzzy-based
PI controller for inverter control in a grid-tied MG. The gains of the PI controller were tuned by the
FLC to achieve the required operating point of the MG system. Both experimental and simulated
analyses were made. In order to validate the effectiveness of the proposed method, its outcomes
were compared with the identical system equipped with the conventional PI controller. The THD
for the proposed controller was reported as 3.85% in simulation and 4.4% in experimental results.
Most recently, Mukhopadhyay et al. proposed a fuzzy PSO-PI-based controller for controlling static
synchronous compensator (STATCOM) for compensating the voltage sags in a grid-tied wind power
system [51]. The authors compared the performance of three different CI algorithms, i.e., PSO-PI,
fuzzy-PI, and fuzzy PSO-PI for five different cases, namely; wind speed variation along with grid
voltage dip, line-to-line fault, double-line-to-ground fault, single-line-to-ground fault and a huge
abrupt load change.
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4.1.3. FL-Based MGs Dynamic Response Enhancement

FLC has also been extensively applied to regulate the MG parameters such as voltage, frequency,
and power with great accuracy and dynamic response. Marzband et al. developed an FLC to improve
the dynamic performance of an islanded wind-diesel system [37]. The system frequency, voltage,
wind turbine output power, rotor speed, and torque were regulated and compared with that of the
PID controller to authenticate the usefulness of the proposed method. The outcomes of the study
proved that the proposed controller outperforms the conventional PID controller in controlling the
mentioned variables with reduced settling time and overshoot. In another study, Rashed et al. utilized
the FLC for the diesel engine speed control in a PV-diesel based islanded MG [38]. The MG system
performance was studied under various operating conditions like varying solar insolation, abrupt load
insertion, and changing wind generator torque. The major benefits of the reported control scheme
include the elimination of the auto voltage regulator in a diesel generator, minimized power loss in
diesel generator field circuit, and optimal dynamic response of voltage control. Kamel et al. proposed
an FL-based pitch angle controller for achieving smooth power from a wind turbine [15]. The key
objective was to decrease the variations in system voltage, frequency, active and reactive power during
islanding occurrence. The proposed controller displayed a better response for the mentioned variations
as compared to the traditional PI controller-based control scheme. In another study, the same authors
as that of [15] extended their previous research work and proposed an FL-based pitch angle controller
along with an energy storage ultra-capacitor to minimize the fluctuations from the output wind turbine
power in an autonomous MG network [16]. The performance of the designed controller was evaluated
for wind speed greater than its rated value. The controller provided an excellent response in smoothing
the frequency, voltage, and power profile of the studied MG system. Li et al. presented a self-organizing
fuzzy PI regulator-based MG control strategy to minimize the frequency and power fluctuations during
islanded and grid-tied operation of the MG [40]. The authors validated the superior performance
of their proposed control scheme by comparing its dynamic response with that of the traditional PI
regulator-based control scheme under identical operating conditions. In another study, Diaz et al.
proposed a decentralized gain-scheduling control strategy based on FLC [39]. The aim of this research
work was to balance the stored energy among various distributed energy storage units and to minimize
the voltage deviations in an islanded MG. Ngamroo et al. presented a fuzzy-based coordinated control
of aqua electrolyzer and fuel cell to suppress the power fluctuations in an ac MG [10]. To avoid
the possibility of the suboptimal response of the system, bee colony optimization (BCO) was used
to optimally select the FLPID parameters. The outcomes of the research proved that the presented
controller provides a smaller power deviation than that of the conventional FLPID controller under
similar MG operating conditions. In reference [41] the authors proposed an FL-based control method
for reducing the power fluctuations in a wind-PV based hybrid power system. The power profile of
the mentioned power system was studied under two different cases; (i) when the state of charge (SOC)
of the battery was 95% and (ii) when the SOC was reduced to 5%. The major aim of the study was to
control the SOC of the battery to smoothen the power output of the considered hybrid power system.
Chamorro et al. presented a control strategy for smoothing the active and reactive power flow in both
autonomous and grid-connected modes of ac MG [42]. In the presented control strategy the local
controllers were made responsible for deciding the power and voltage set-points in conjunction with a
central command. Senjyu et al. proposed an FLC for leveling the power and frequency fluctuations
caused by varying solar insolation in a PV-based power system [43]. The output PV power during
the large frequency deviations was smoothed using the proposed controller and also increased the
generated PV power up to maximum available power during low-frequency deviations. An FLC-based
PI regulator was presented to control the ac MG’s voltage and frequency in [44]. As compared to
the traditional PI regulator-based control structure, the overshoot and settling time was reduced and
brought to 4.64% and 0.0022 s, respectively. Salhi et al. [45] developed a fuzzy controller for regulating
the frequency of the micro-hydro power plant at different loading conditions. The PI parameters
were dynamically selected by a fuzzy controller to optimize the system’s dynamic response, however,
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in case of overloading, the fuzzy controller disconnects a user load arbitrarily to keep the frequency at
a constant value.

Although the FL has been effectively employed in solving several MG optimization problems in
the past due to its simplicity and approximate reasoning, it has some disadvantages which limit its use
in modern MG controls. For example, the performance of an FLC is a function of its control rules and
membership functions. It is very difficult to tune these parameters optimally according to the process
in which it is employed. Hence these controllers do not possess an effective learning capability. This
makes the FLC an inconvenient controller for the application of MG power quality enhancement as the
nature of DGs and loads are completely unpredictable and dynamic. The solution to this problem is to
use another CI algorithm to tune the FLC parameters according to the system dynamics. For example,
authors used GA in [75], online PSO [76], BCO [77] and chaotic PSO [78] to tune FLC in MG controls.
Furthermore, the Adaptive neuro-fuzzy inference system is also one of the most efficient solutions to
the stated problems, as discussed in the subsequent section [79].

5. Adaptive-Neuro Fuzzy Inference System

The review of ANNs in the previous section of the paper revealed that the ANNs are mathematical
models that employ computational neurons arranged in layers and are linked with one another by
weight factors. The main features of ANNs include an adaptive and nonlinear structure, generalization
skills, independence from system design parameters, efficient learning, and parallel data handling
capabilities. However, there are some demerits associated with ANNs like lacking rules for defining
the structure, network instruction problems, and a black box nature [58]. On the other side, FL is a
technique generally used in microprocessor-based control systems because it does not need a precise
system model and is insensitive to the parameter and operating point variations. However, its major
disadvantage is that its membership functions and rule basis are generally selected by the “trial and
error” method which is a time-consuming and error-prone process [58]. However, the advantages of
these two robust control CI techniques can be merged to form neuro-fuzzy systems.

The neuro-fuzzy systems utilize the learning and parallel data processing capability of ANN and
rule inference capability of FL. One of the most effective neuro-fuzzy systems is named ANFIS, which
was developed in 1993 by Jang [80]. ANFIS utilizes the ANN learning rules for tuning fuzzy parameters
based on the data available for training. Its major characteristics include (i) easy implementation,
(ii) rapid and accurate learning, (iii) strong generalization skills, (iv) easy understanding of the
algorithm due to fuzzy rules, and (v) easiness in incorporating both numeric knowledge and linguistics
for problem-solving [81]. Atmaca, H. et al. compared the performance of fuzzy inference and ANN
with ANFIS-based systems in acquiring fuel consumption data [82]. The results show that the learning
period of ANFIS is quite short compared to the ANN case. In other words, ANFIS reaches the
steady-state value quicker than ANN. A typical structure of an ANFIS is depicted in Figure 7.

In this Figure, circles denote the fixed nodes while the squares signify the adaptive nodes. It shows
a feed-forward multilayered network in which every layer has a specified function on the input
signals. In the example shown in Figure 7, ANN has five layers with two inputs (x, y) and one
output (z). In the starting layer, the nodes (Ai, Bi) hold the membership functions assigned to each
of the two inputs. In the second layer, the system recognizes two rules i.e., rule 1: x = A2 and y = B1;
rule 2: x = A2 and y = B2. The calculation of normalized firing strength of each rule (W1, W2) is
performed by the third layer. The fourth layer contains the linear functions of the input signals
(f1 = p1x + q1y + r1; f2 = p2x + q2y + r2) and the normalized firing strength of each rule estimated
in the previous layer. Finally, the overall output of the system (z) is calculated in the last layer by
summing all the incoming signals.

Since its very formation, the ANFIS has been used extensively in MG control architectures as an
effective optimization tool. A few of the very important articles on ANFIS based MG controls are
discussed in the current study.
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5.1. Applications of ANFIS in MG Controls

A few of the significant studies related to ANFIS-based MG controls were selected for the current
study and are discussed in detail for a better understanding of the current subject.

5.1.1. ANFIS-Based MPPT

Izadbakhsh developed an ANFIS-based MPPT controller for solar PV and pitch angle regulators
for the wind turbine generator in a grid-tied MG system [52]. A set of 360 data points from solar PV
irradiance and the temperature was collected by using GA to train the ANFIS. The proposed controller
increases the convergence speed for attaining the maximum power point and hence decreases the
oscillations from the output PV power. Vafaei et al. presented a GA-based ANFIS (GA-ANFIS) method
to attain the maximum power from the solar PV system [53]. In the mentioned study, the reference
voltage values were optimized by GA which was then used for training the ANFIS model. The ANFIS
output was compared with the reference values to calculate the accuracy of the presented model.
The proposed controller reduced the error between the measured and the reference voltage to less than
2%. Kamel et al. also presented a neuro-fuzzy based controller for obtaining MPPT of the solar PVs in
an ac MG system [54]. A MATLAB/Simulink model was designed to evaluate the wind-solar-based
MG’s dynamic response during and after the islanding process. Furthermore, the pitch angle controller
was designed to smooth the power output of the wind turbine generator. In reference [55] of the current
study, the authors proposed an adaptive wavelet-based neuro-fuzzy controller for solar PV MPPT.
The presented controller combines the localization property of wavelet, the learning capability of NN,
and the reasoning capability of FL to overcome the fluctuation in MPPT controller output. By applying
the proposed control scheme, the PV achieved an efficiency of 96.81% which was recorded as 83.66% in
the case of FLC. Chettibi and Mellit proposed an online-trained Elman NN-based control scheme for
MPPT of a solar PV source in a grid-connected hybrid power generation system [56]. To optimally
regulate the flow of active and reactive powers, ANFIS was used to tune PI controller gains in a virtual
flux-oriented controller (VFOC). In another study, the ANFIS controller was proposed for tracking
MPPT of solar PV and FL was utilized for wind turbine pitch angle control in a grid-connected wind-PV
MG system [14]. The focus of the research work was to smooth the power output from a wind turbine
generator and solar PV under different operating conditions.
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5.1.2. ANFIS-Based Power Quality Enhancement of MGs

ANFIS has also been explored for the enhancement of ac MG power quality. Garcia et al. [58]
proposed an ANFIS-based controller for controlling a three-phase inverter in a grid-connected MG
to control the power-sharing ratio and to enhance the power quality at the same time. Furthermore,
as compared to the conventional PI regulator-based control scheme, the presented controller reduced
the THD to 7.15% from 7.71% in transient and 4.11% from 4.29% in a steady-state condition. In another
study, the authors proposed a neuro-fuzzy based UPQC controller to reduce voltage unbalances
and harmonics in a grid-tied MG system [59]. With the application of an ANFIS-based controller,
the THD of the grid current was reduced to 3.34% as compared to 8.93% in the case of the conventional
PI controller.

5.1.3. ANFIS-Based MG Dynamic Response Enhancement

Finally, few applications of the ANFIS in the regulation of MG system parameters are reviewed
in order to provide an outlook of the dynamic response enhancement of ac MGs using an ANFIS
application. Shokoohi et al. [12] proposed a neuro-fuzzy-based droop control strategy to minimize the
frequency and voltage oscillations in an islanded MG. ANFIS was used to optimize the droop coefficients
to optimally set the voltage and frequency set-points under varying load conditions. The proposed
control strategy is used to maintain the MG stability under severe load changes regardless of the MG
structure. Authors in reference [57] developed a novel online PI controller tuning algorithm for an
ac MG system. The proposed algorithm, named by authors as the critic-based self-tuning PI (CSPI),
consists of a neuro-dynamic programming concept in conjunction with a fuzzy critic and was used
to control the power output of the VSCs in MG systems. The proposed controller reduces the active
power overshoot and brings it to 10.05 kW, with a mean absolute error of 0.16% and THD of 0.054 in
the transient period as compared to that of the PI controller where the active power overshoot, mean
absolute error and the THD were recorded as 15.25 kW, 0.56% and 0.108, respectively.

Although ANFIS networks allow a suitable integration with other control methods and present
a better-structured data representation, updating and training the ANFIS parameters is one of the
tough tasks due to its complex gradient calculation-based training process. Furthermore, the ANFIS
can also get trapped into the local minimum due to the applicability of chain rule [83]. To solve
these problems, different CI methods such as GA [84], PSO [85], adaptive PSO [86] and ABC [87] are
utilized to update the ANFIS parameters instead of the conventional gradient method in modern MG
control architectures.

6. Genetic Algorithm

GA is considered as an intelligent metaheuristic-based optimization technique that uses a
probabilistic, guided, multipoint, and random search mechanism to solve the optimization problems [88].
It is a search algorithm based on the mechanism of population genetics and natural selection. GA was
proposed by Holland in 1992 [89] and was further advanced by Goldberg [90] and others. GA has
been widely used to optimize the nonlinear systems such as inverter-based MGs. This is the key
reason that GA has been extensively used in MG controls as a strong optimization technique to solve
the various optimization problems as reported in the literature. In GA, an optimization function is
encoded as character strings or arrays of bits to characterize the chromosomes. These strings are then
manipulated and tested for their fitness values to solve the concerned problem. A general flowchart of
GA is depicted in Figure 8.
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In the “Initialization” block, each chromosome is assigned with some random values in the
search space. Next, these chromosomes are assessed based on their fitness values. In the “Selection”
block, a set of predefined fit chromosomes is selected, while in the “Crossover” operation the new
chromosomes are traced to create hybrid individuals that have a greater fitness value as compared to
their predecessors. Finally, to avoid the local minima entrapment, a “Mutation” operator is used at the
last stage of the optimization process. All these steps are repeated in the same order until the desired
convergence is achieved [92].

6.1. Applications of GA in Ac MG Controls

Due to the stochastic nature and ability to deal with complex optimization problems, the GA has
been utilized several times to solve MGs optimization problems. A few of the major applications of the
GA in MG controls are discussed in the following subsections.

6.1.1. GA-Based MPPT

Razavi et al. optimized the droop coefficients and PI gains (Kp and Ki) by employing GA to
minimize the frequency variations in an ac MG system [62]. The major aim of the control strategy was
to enhance the transient response (overshoot and settling time) of the system by using optimal droop
coefficients and other control parameters. In another study, Dc Das et al. proposed a GA-based frequency
controller to regulate the frequency of a hybrid solar thermal–diesel–wind energy generation system [9].
GA was used to optimize the gains of the conventional PI controller in the proposed hybrid MG system.
The presented controller’s performance was compared with that of the conventional controllers on a
basis of different transient response indicators like settling time, overshoot, and oscillations, which
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proved the superiority of the proposed controller under identical operating conditions. However,
a large settling time (3.5 s) was observed after a step load change.

6.1.2. GA for Dynamic Response Enhancement of MGs

The GA can also be used to train other algorithms like ANN, FL, and PSO to enhance their
searching capabilities. For example, GA was used to optimize the FLC parameters in [63]. It was used
for the selection of optimal control rules and membership functions for the FLC. In reference [64],
GA was used to tune and optimize the membership function parameters of FLC to obtain the optimal
performance of a wind-diesel-based hybrid MG system. The efficacy of the presented controller was
validated by simulating it on the standard IEEE nine-bus, three-generators test system. Furthermore,
the controller was simulated under normal and faulty conditions to authenticate its robustness. It was
shown that the proposed controller-based wind-diesel MG system provides a frequency deviation of
only 0.4 Hz at a 25% increment in the wind power penetration. Wies et al. used GA for tuning the
PID regulator to control the system voltage and frequency in an islanded wind-diesel mini-grid [65].
The proposed control strategy was tested under varying wind speed and load conditions for the voltage
and frequency control. A mean load frequency and bus voltage deviation of 0.021 mean (Hz) and
0.782 mean (Vrms), respectively, was observed with a GA-based PI controller at a mean wind speed of
6.6 m/s, while the same was 0.185 mean (Hz) and 5.52 mean (Vrms) at identical conditions with manual
PI parameter selection.

It is evident from the above review that the GA stood as an appropriate solution for the
optimization problems of nonlinear systems such as inverter-based MGs. However, GA suffers from a
low convergence rate due to an unguided mutation process; thus, it finds difficulty in running with
dynamic data sets [20]. This problem can be avoided by combining it with some other algorithms which
perform guided search like differential evolution. Furthermore, unlike the swarm intelligence (SI)-based
optimization methods that possess memory, in GA the information contained by an individual is
lost if that particular individual is not selected. In addition, it can be trapped into local solutions
easily [5], however, this disadvantage of GA can also be avoided by using it in conjunction with a global
optimization method that can escape from any local point, such as a simulated annealing (SA) [93] or
an SI-based optimization method like PSO [94,95].

Table 2 provides the summarized version of all the studied articles with significant information
about the study such as the objective of the study, the CI method used, DG utilized, studied MG
operating mode, and considered MG operating conditions.

Based on the facts presented in Table 2, it is evident that all the CI-based optimization algorithms
possess the ability to solve MG’s optimization problems effectively. However, each of the CI-based
optimization methods discussed above suffers from a few limitations. For example, the ANN takes a
longer time for its training and provides the optimal outcomes only for the known datasets. The FLC
provides rapid convergence, however, it lacks an effective learning capability as it only responds to input
data based on the predefined rules. Similarly, ANFIS possesses good adaptation and learning capability,
however, it is characterized by higher computational complexity and sensitivity to the number of fuzzy
rules. GA is a simple and effective optimization technique but suffers from problems like stagnation into
local optimum and slow convergence. Hence, based on the stated merits and limitations and the MG
control objectives, a suitable optimization technique may be adopted. The selection of an optimization
technique also depends on various other factors such as the type of the optimization problem (single
objective or multi-objective), the dimension of the problem (the greater the dimensions, the greater
the time required to reach the optimal solution), fitness function complexity (optimization algorithms
such as GA evaluate the fitness value repeatedly), the behavior of the objective function (generally
multimodal functions are trapped in local solutions more easily), and the solution quality required.



Energies 2020, 13, 4063 15 of 22

Table 2. CI-based techniques used for optimization in MG control schemes.

Ref. CI Optimization Technique Research Objective Utilized DGs MG Operating Mode Studied Conditions

ANN

[13] GRNN Controlling boost converters to achieve the
maximum power point of a wind-PV system Wind-PV Grid-tied Source and load changes

[29] ANN-GA Active and reactive power quality improvement Wind-PV Grid-tied Source and load changes

[30] ANN To enhance the performance and stability of
inverter under disturbance - Grid-tied Load variation and power

converter switching
[31] RBFNNs To improve the power-sharing among DGs - Both Load changes and fault conditions
[33] ANN The reactive power improvement Wind-Diesel Islanded Load variations
[96] ANN Voltage and frequency regulation - Islanded Sudden load changes

FLC
[10] BCO-FLC To minimize the power fluctuations Fuel cell and Electrolyzer Islanded Load changes
[15] FLC Voltage and frequency control Wind turbine Islanded Source changes
[34] FLC Improvement in solar MPPT Solar PV Islanded Source changes
[35] Adaptive FLC To improve MPPT and harmonic reduction Solar PV Grid-tied Source changes
[36] FLC Improvement in solar MPPT Solar PV Islanded Source changes
[37] FLC Voltage and frequency regulation Wind-Diesel Islanded Load changes
[38] FLC Voltage and frequency regulation PV-Diesel Islanded Load changes and overloading
[39] FLC Voltage control Wind and PV Islanded Load changes

[40] FLC Frequency and tie-line power control Micro-turbine, fuel cell and
electrolyzer Both Load changes and overloading

[41] FLC To minimize the power fluctuations and to
control the state of charge of the battery PV and Wind Islanded Source changes

[42] FLC The active and reactive power flow control - Both Load change

[43] FLC To minimize the power and frequency
fluctuations Solar PV Grid-tied Source and load changes

[44] FLC Voltage and frequency regulation PV and Fuel cell Islanded Source and load changes
[46] FLC To improve voltage profile - Islanded Source changes

[47] FLC The active power sharing and power quality
improvement - Grid-tied Load changes

[48] FLC Voltage profile improvement PV and Wind Grid-tied Fault conditions
[49] FLC To minimize voltage sags, swells, and outages Solar PV Grid-tied Load changes
[50] FLC Power-sharing and harmonic minimization - Grid-tied Source changes

[51] PSO-FL Frequency control Wind, Diesel, Electrolyzer,
Fuel cell and Solar thermal Islanded Source and load changes

[77] BCO-FLC To control active and reactive power PV, Wind, Fuel Cell and
Electrolyzer Islanded Severe Load changes
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Table 2. Cont.

Ref. CI Optimization Technique Research Objective Utilized DGs MG Operating Mode Studied Conditions

ANFIS
[12] ANFIS Voltage and frequency regulation - Islanded Load changes
[14] ANFIS To reduce fluctuations around MPPT Solar PV and Wind Grid-tied Source changes
[52] ANFIS Mitigation of fluctuations from MPPT Wind, PV, and Micro-turbine Both Source changes and fault condition
[53] ANFIS-GA To reduce fluctuations around MPPT Solar PV Grid-tied Source changes
[54] ANFIS Voltage and frequency regulation Wind and PV Islanded Source
[55] Neuro-Fuzzy Wavelet Reducing fluctuations around MPPT Solar PV Islanded Source changes
[56] Online trained Elman NN Power flow control PV and Fuel cell Grid-tied Source and load changes
[57] Fuzzy Critic Voltage, frequency and power control - Both Source changes
[58] ANFIS To control the active and reactive power Wind and PV Grid-tied Load changes
[59] ANFIS Minimizing unbalancing in voltage Solar PV Both Unbalanced and non-linear loading
[79] ANFIS Power quality improvement Wind and PV Grid-tied Source and load change
[85] PSO-ANFIS To Reduce current harmonics Solar PV Islanded Source changes

GA

[9] GA Frequency control Solar thermal, PV Diesel, Fuel
cell, Electrolyzer and Wind Islanded Source and load changes

[62] GA Power-sharing and frequency control - Islanded Load variations

[64] GA-FL To minimize power, voltage and
frequency flickers Wind turbine Grid-tied Source changes

[97] FL-GA To Reduce current harmonics Solar PV Islanded Source changes
[98] GA-ANFIS To Reduce current harmonics Fuel Cell Islanded Under transient state
[99] GA Frequency regulation Wind-Diesel Islanded Load and source changes

[100] Epsilon Multi-objective GA Frequency regulation Wind, PV, Fuel cell, Diesel,
Electrolyzer Islanded Load and source changes

[101] Non-dominated sorting GA Frequency regulation Wind-Diesel Islanded Load and source changes
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7. Conclusions

This study has explored the basics of CI-based optimization approaches and their extensive
applications in dynamic response and power quality improvement of ac MGs. This research work
aims to provide a useful one-stop source of information to the researchers and experts working in the
mentioned fields of research. A total of 42 of the most relevant articles were studied and reviewed to
explore four of the most commonly employed CI optimization techniques, namely ANN, FL, ANFIS,
and GA, along with their working mechanism, applications, merits, and demerits. It is established
from the reviewed literature that the CI optimization-based controllers provide the most optimal MG
operation and power quality as compared to the conventional MG controllers during DGs plug-in
and severe load and source changes. Nevertheless, all CI optimization algorithms possess some
limitations which need to be considered while employing them in any optimization problem. Therefore,
it can be concluded that no optimization method is perfect for all the optimization problems since
each method inherits certain demerits which limits their wide applicability. Moreover, according
to the “No free lunch” theorem, no two optimization algorithms can be compared based on their
ability to solve optimization problems in general. In other words, one optimization algorithm may
perform better than others in a few optimization problems while the same is true for the second
algorithm. Hence, the average performance of both algorithms in solving the optimization problems
is essentially equivalent. Therefore, it is concluded that no optimization algorithm is universally
better in solving all optimization problems. One of the modern trends is to hybridize two different
optimization techniques in such a way that the strengths of one technique may be utilized to overcome
the demerits associated with the other technique. In other words, both techniques can utilize their
strong optimization capabilities to reach an optimal solution. For example, training of the ANFIS
structure is a complex task that can be tackled by using a metaheuristic (GA, PSO) or evolutionary
optimization technique. Similarly, the GA can be utilized to optimize the rules and membership
functions of the fuzzy controller to enhance the performance of the FLC. However, since each algorithm
has certain merits and limitations, it is not possible to declare any optimization algorithm as superior
to others in all aspects.
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