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Abstract: The component count for the multilevel inverter has been a research topic for the last
few decades. The higher number of power semiconductor devices and sources leads to a higher
power loss with the complex control requirement. A new multilevel inverter topology employing
the concept of half-Bridge modules is suggested in this paper. It requires a lower number of dc
sources and power components. The inverter is controlled using a fundamental frequency switching
scheme. With the basic unit being able to produce 13 level voltage waveforms with three dc voltage
sources, higher-level inverter configuration has also been discussed in the paper. The performance
of the topology is analyzed in the aspects of circuit parameters and found better when compared
to similar topologies proposed in recent literature. The comparison provided in the paper set the
benchmark of the proposed topology in terms of lower component requirements. The topology is
also optimized with two voltage fixing algorithms for maximizing the number of levels for the given
number of IGBTs, drivers and dc sources, and the observations are presented. The efficiency analysis
gives the peak efficiency as 98.5%. The simulations were carried out using the PLECS software tool
and validated using a prototype rated at 500 W. The results with several test conditions have been
reported and discussed in the paper.

Keywords: dc/ac power conversion; asymmetrical; multilevel inverter; reduced switch count; pulse
width modulation; power converter

1. Introduction

Multilevel Inverters have been extensively used in the applications like FACTS, Elec-
trical Vehicles, Smart grids etc., due to their merits like low dv/dt stress, modularity,
improved power quality. These applications are due to their ability to synthesize high
terminal voltages with low and medium voltage devices [1,2]. Conventionally, multilevel
inverters are grouped under three major categories viz., Diode Clamped or neutral point
clamped Multilevel Inverter (DC-MLI) or NPC-MLI, Flying Capacitor Multilevel Inverter
(FC-MLI) and Cascaded H-Bridge Multilevel Inverter (CHB-MLI). As far as the number of
power components are concerned, DC-MLI requires numerous diodes when the number
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of levels in the waveform increases which makes the circuit control tedious. In FC-MLI,
the voltage balancing issue posed by the diodes of NPC-MLI can be resolved using the
redundant switching states offered by the clamping capacitors; but a higher number of
passive components in the circuit will be a threat to circuit reliability [3,4]. CHB-MLI
is highly modular and relatively simpler to control in comparison with the other two
topologies. Further, it does not require any voltage balancing circuits as it employs inde-
pendent dc sources [5–7]. Nevertheless, in conventional CHB-MLI, the required number of
power switches increases by four for any additional dc source. The requirement for higher
number of power devices in the conventional topologies have paved the way for research
in Multilevel inverter topologies with reduced device count [8,9].

Most of the topologies utilizing independent dc sources for level synthesis are based
on the idea of using switched dc sources for level addition and an H-Bridge for polarity
reversal [10,11]. A modified H-Bridge, so-called developed H-Bridge, is proposed by [12].
The H-Bridge of this topology has six switches instead of four and two independent dc
sources per module. The level addition can be done by cascading this developed H-Bridge.
The topology requires a minimum of two sources and the total blocking voltage will
increase rapidly if the number of H-Bridges increases. A new cascaded structure with its
basic sub-module comprising of independent switched dc sources for level synthesis and
an H-Bridge is analyzed in [13]. However, all the switches connecting the dc sources are
bidirectional switches. This increases the number of components and the total blocking
voltage across the H-Bride is four times the dc voltage. Across connected multilevel inverter
topology with the switched dc sources connected in a crisscross fashion is suggested by [14].
In this, the required number of switches increases by three for any additional independent
source. This is 25% less when compared to conventional CHB-MLI, but the number of
components is still high for a higher number of levels. A new multilevel inverter topology
is discussed in [15]. It requires n + 5 switches for ‘n’ independent sources. However,
the blocking voltage across the switches in the polarity changer is very high when the
levels in the terminal voltage waveform increase. This necessitates switches with a higher
voltage rating and heavier heat sink. A three-phase hybrid multilevel inverter topology
is presented in [16]. The voltage balancing is achieved by letting the topology operate in
selective switching states using the space vector modulation technique. This makes the
control a bit complex and tedious task. All the above-mentioned topologies are symmetrical
topologies, wherein the magnitude of all the dc voltage sources in the circuit will be equal.
Asymmetrical operation is another solution that is often considered to reduce the switch
count in MLI topologies. In [17], an E-type module for asymmetric multilevel inverter
topology is proposed where the basic unit requires at least four independent dc sources.
The topology proposed in [14] utilizes four-quadrant switches to make the circuit capable
of operating in symmetrical and asymmetrical mode. In the topology presented in [18], the
number of switches in the conduction path is high resulting in higher losses. However, the
usage of capacitors in the circuit will necessitate separate voltage balancing methods. In
the ST-type module discussed in [19], the total blocking voltage of the module is very high
as few of the switches are supposed to block thrice the input voltage. An asymmetric dual-
source multilevel inverter topology is proposed by [20], here the level adder comprises
only two independent sources. The level addition is achieved using the clamped capacitors
across the sources. Even though the required number of switches is reduced drastically at
higher number of levels, the voltage balancing circuit used in the circuit makes it bulky
and tedious to operate. The switches to level ratio are relatively high in the novel cross-
connected multilevel inverter topology proposed by [21]. The higher number of switches
makes this circuit impractical. All the topologies discussed above have a common issue of
higher device count [22–28].

A new hybrid multilevel inverter topology combining the concept of hybrid and
asymmetric operation is proposed in this paper. The lower number of the components has
been the main design aspect for the proposed topology. The lower number of devices and
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sources enables the topology for the applications related to solar PV and motor drives. The
salient features of the proposed topology are as follows.

a. The basic unit of the proposed topology generates a 13 level output voltage with a
higher number of levels is possible with the generalized structure.

b. A reduced voltage stress is achieved and lower number of dc voltage sources is required.
c. Lower number of switching transitions improves the efficiency of the proposed topology.
d. The 13 level basic unit has been discussed in detail and has been validated using a

500 W experimental setup.

The remaining part of the paper is organized as follows. Section 2 explains the struc-
ture and operation of the topology along with the comparison of the proposed topology
with the other recent topologies in the literature in the aspects of the number of switches
required and number of sources required for the required number of levels. Section 2 also
deals with the modulation technique and efficiency estimation along with the selection of
magnitude of dc voltage sources of the extended structure of the proposed topology and its
optimization. Section 3 gives the simulation and experimental results, and the conclusion
of the paper is provided in Section 4.

2. Methodology
2.1. Description of the Proposed Topology

The basic unit of the proposed hybrid multilevel inverter topology is shown in Figure 1.
The basic unit consists of three parts: 1. Main Level generation Unit (MLGU), 2. Auxiliary
Unit (AU) and 3. Polarity Reversal Unit (PRU). The MLGU consists of one bidirectional
switch S1, two unidirectional switches S2 and S3 along with two dc voltage sources V1 and
V2. The MLGU can generate three different voltage levels i.e., V1, V2, and V1 + V2. In the
MLGU, only one switch should be turned ON at a time otherwise the dc voltage sources
will short-circuit. Since the switches of MLGU need to be operated at a higher frequency,
the magnitude of V1 and V2 should be selected as low as possible.

Figure 1. Proposed hybrid inverter topology.

The auxiliary unit consists of two unidirectional switches S11 and S12, supplied from
a dc voltage source V11 which makes a half H-bridge circuit. One AU can generate two
voltage levels with zero and V11 magnitude. Both switches S11 and S12 should be operated
in a complementary mode to avoid short-circuiting of voltage source V11. Figure 2 shows
the connection diagram for all the possible switching combinations of the AU and MLGU
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modules. The AU and MLGU can produce six voltage levels as shown in Figure 2a–f.
For each voltage level, it can be seen that only two switches are operated, except for
voltage levels shown in Figure 2b,e. In these two voltage levels, the number of conducting
components becomes three due to the use of the bidirectional switch. The lower number of
conducting switches reduces the overall losses. Also, the switched of AU are turned on
and off only once in a positive or negative half cycle, this further reduced the losses.

Figure 2. Different switching states of level generation unit (a) Vo = V1, (b) Vo = V2, (c) Vo = V1 + V2, (d) Vo = V11 + V1,
(e) Vo = V11 + V2, and (f) Vo= V11 + V1 + V2.

The combination of MLGU and AU generates the voltage levels in positive polarity
only. To generate both positive and negative voltage polarities including zero voltage
levels, PRU is used, which is a conventional H-Bridge circuit employing four unidirectional
switches (H1–H4). The combination of all these three units results in generating 13 levels
at the output. The number of auxiliary units connected in series with the MLGU can be
increased as shown in Figure 3 if the required number of levels in the terminal voltage is
higher. The switching states for the generalized topology with ‘m’ auxiliary units connected
in series is shown in Table 1. For the given ‘m’ auxiliary units, the number of levels in the
terminal voltage wave can be estimated as follows

NLevel = N = 3 × 2m+1 + 1 (1)

The number of switches required to construct the topology with ‘m’ auxiliary units
Nsw can be estimated as

Nswitch = 2m + 8 (2)

Since one of the switches in MLGU is a bidirectional switch with two IGBTs, the switch
can be controlled with a single driver. Therefore, the number of drivers required for the
generalized structure can be found as

Ndriver = 2m + 7 (3)



Energies 2021, 14, 4709 5 of 21

Figure 3. Generalized structure of the proposed topology.

Table 1. Switching Table.

S1 S2 S3 S11 S12 S21 S22 — Sm1 Sm2 H1 H2 H3 H4 Load Voltage (V)

0 0 1 0 1 0 1 – 0 1 1 0 1 0 V1
1 0 0 0 1 0 1 – 0 1 1 0 1 0 V2
0 1 0 0 1 0 1 – 0 1 1 0 1 0 V1 + V2
0 0 1 1 0 0 1 – 0 1 1 0 1 0 V11 + V1
1 0 0 1 0 0 1 – 0 1 1 0 1 0 V11 + V2
0 1 0 1 0 0 1 – 0 1 1 0 1 0 V11 + V1+ V2
0 0 1 1 0 1 0 - 0 1 1 0 1 0 V21 + V11 + V1
1 0 0 1 0 1 0 – 0 1 1 0 1 0 V21 + V11 + V2
0 1 0 1 0 1 0 – 0 1 1 0 1 0 V21 + V11 + V1+ V1
— — — — — — — — — — — — — — —
0 0 1 1 0 1 0 – 1 0 1 0 1 0 Vm1 + V21 + V11 + V1
1 0 0 1 0 1 0 – 1 0 1 0 1 0 Vm1 + V21 + V11 + V2
0 1 0 1 0 1 0 – 1 0 1 0 1 0 Vm1 + V21 + V11 + V1 + V1
0 0 1 0 1 0 1 – 0 1 0 1 0 1 −V1
1 0 0 0 1 0 1 – 0 1 0 1 0 1 −V2
0 1 0 0 1 0 1 – 0 1 0 1 0 1 −(V1 + V2)
0 0 1 1 0 0 1 – 0 1 0 1 0 1 −(V11 + V1)
1 0 0 1 0 0 1 – 0 1 0 1 0 1 −(V11 + V2)
0 1 0 1 0 0 1 – 0 1 0 1 0 1 −(V11 + V1+ V2)
0 0 1 1 0 1 0 - 0 1 0 1 0 1 −(V21 + V11 + V1)
1 0 0 1 0 1 0 – 0 1 0 1 0 1 −(V21 + V11 + V2)
0 1 0 1 0 1 0 – 0 1 0 1 0 1 −(V21 + V11 + V1+ V1)

— — — — — — — — — — — — — — —
0 0 1 1 0 1 0 – 1 0 0 1 0 1 −(Vm1 + V21 + V11 + V1)
1 0 0 1 0 1 0 – 1 0 0 1 0 1 −(Vm1 + V21 + V11 + V2)
0 1 0 1 0 1 0 – 1 0 0 1 0 1 −(Vm1 + V21 + V11 + V1 + V1)

2.2. Comparative Study

The reduction in the number of switches and dc voltage sources while achieving a
higher number of levels is the main objective of the proposed topology. The components
required along with the cost of the topology are compared with the similar topologies
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available in the literature and the observations are presented in Table 2. From Table 2,
the following observations are made, even though the topology given in [13] requires
only 10 IGBTs, the required number of independent sources is double the time of the
proposed topology. The merits accrued due to the lesser number of IGBTs in [17,20] are
overshadowed by the inclusion of capacitors. The inclusion of capacitors in the circuit will
make the circuit control tedious and require additional voltage balancing circuitry. Despite
the fewer IGBTs employed in the above topologies, the total cost of the proposed topology
is relatively low at 66.75 USD when compared to the topologies found in recent literature.

Table 2. Components and Cost Comparison.

S.No Parameter [13] [20] [21] [19] [17] [18] [24] [28] Proposed

1 Number of independent sources 6 2 4 4 2 4 6 7 3
2 Number of capacitors - 4 - - 3 - - - -
3 Number of IGBTs 10 9 14 12 8 10 16 16 10
4 Number of drivers 8 7 13 9 8 10 12 14 7
5 Number of diodes 1 - - - 14 - - - -

6 Cost of IGBT in USD (at 1 USD per IGBT) 10 9 14 9 8 10 16 16 10
7 Cost of Driver in USD (at 5.25 USD per IGBT) 42 36.75 68.25 47.25 42 52.5 63 73.5 36.75
8 Cost of diodes in USD (at 3.63 USD per diode) 3.63 - - - 50.82 - - - -
9 Cost of capacitor in USD (at 1.82 USD per capacitor) - 7.28 - - 5.46 - - - -

10 Total cost (USD) 80.63 75.03 113.25 81.2 141.28 86.5 113 126.5 66.75

11 Experimental output power (W) 32 450 170 240 64 300 570 125 500

2.3. Modulation Technique

Multilevel inverters can be controlled using both high and low-frequency switching
schemes. Each scheme has its merit and demerit [29]. To control the proposed topology, a
fundamental frequency switching scheme is used. The Space Vector Modulation (SVM)
scheme or selective harmonic elimination scheme can be used for fundamental frequency
switching. The control complexity in SVM makes it less attractive. As far as the selective
harmonic elimination scheme is concerned, if the number of levels in the stepped voltage
waveform increases, it will become tedious to solve the equations to determine the switch-
ing angles precisely [30–33]. In this paper, the nearest level modulation scheme is used.
The control method is shown in Figure 4. In this method, the reference sine wave with
fundamental frequency is compared with constants to realize each switching state. If the
voltage waveform has ‘n’ steps in the positive half cycle of the voltage waveform, then ‘n’
constants have to be compared with the sine wave rated 6 per unit (p.u). The value of the
nearest level constant is to be chosen from 0 to 1. Then, the nearest level constant will be
added to the level number of the previous level to get the constant to be compared with
the reference to synthesize the succeeding level s shown in Figure 4a. The pulses generated
by comparing the nearest level constants with the reference are then used to trigger the
IGBTs according to the switching function shown in Figure 4b.

For example, the gate pulses to the switches conducting in level 1 have to be generated
by adding the chosen nearest level constant to zero. After analysis, many authors have
concluded that 0.4 will be the optimum nearest level constant because the THD and
magnitude of lower order harmonics will be very low at that point [23–25]. The switching
angle for each level can be estimated as

θx =
x − 0.6

N
, x = 1, 2, 3, . . . N (4)

Using (4). In the equation, the value 0.6 is obtained by subtracting the nearest level
constant from 1.
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Figure 4. NLCPWM with (a) Synthesizing the Terminal Voltage from Reference (b) Switching
Function of NLM method.

2.4. Efficiency Estimation

In this section, the theoretical loss calculation is presented to calculate the efficiency of
the proposed inverter topology. The major losses associated with the cascaded H-Bridge
inverter system fed by independent dc sources are conduction and switching losses [26].
The estimation is performed by assuming that the load is purely resistive and the voltage
available at the inverter output terminal is staircase waveform [27].

2.4.1. Conduction Loss

The conduction loss in a multilevel converter occurs when IGBT switches are turned
ON and conducting current. For the proposed inverter topology, the losses incurring in
each of the IGBT switches employed in the polarity conversion unit, MLGU and Auxiliary
units are estimated separately for calculating total conduction loss. In the proposed Inverter,
H-Bridge is used as a Polarity conversion unit in which two IGBTs (either H1 & H4 or
H2&H3) are in load Current path at any instant of time. In this case, the conduction loss
for the quarter of the fundamental cycle is obtained by

PCon,H =
4
π

π/2∫
0

I2
L (t)Ron,Tdt (5)

where Ron,T and IL(t) are the transistor on-state resistance and load current, respectively.
The load current can be assumed to be sinusoidal if the proposed topology generates a
higher number of output voltage levels by connecting a greater number of auxiliary units.
Therefore, the load current can be written as

IL = IP sin(wt) (6)
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Using (5) and (6), the average conduction loss of the H-Bridge is obtained as below

PCon,H =
4
π

π/2∫
0

I2
p sin2(wt)Ron,T dt (7)

For the auxiliary unit, one unidirectional IGBT switch is in conduction throughout the
fundamental cycle. For the period of π

2 , the loss in AU is calculated as

PCon,Aux =
2
π

π/2∫
0

I2
p sin2(wt) Ron,T dt (8)

For m auxiliary units, the conduction loss is calculated as given below

PCon,Aux, Total = m × PCon,Aux (9)

where m = 1,2 . . .
The MLGU contains a bidirectional switch (S1) and two unidirectional switches

(S2 & S3). The MLGU bidirectional switch is used only to synthesize voltage from V2
source, during that time one IGBT and one diode of the bidirectional switch (S1) is in the
conduction path. Out of the two unidirectional switches either S2 or S3 are in conduction
through the fundamental cycle. The conduction loss for the MLGU can be obtained by

PCon,MLGU = 2
π

{[
π/2∫
0

I2
p sin2(wt) Ron,T dt

]
+

[
t3∫

t2

I2
p sin2(wt) (Ron,T + Ron,D)dt

]
+[

t6∫
t5

I2
p sin2(wt) (Ron,T + Ron,D)dt

]} (10)

The total conduction loss for the full cycle of the output waveform can be obtained
from Equations (7), (8) and (10). Because of the quadrant symmetry of the output voltage
waveform, the conduction loss is estimated for the period of the quarter cycle and the
result is multiplied by four to find the average conduction loss

PCon,T = 4 × 1
2π

(PCon,H + PCon,AU + PCon,MLGU) (11)

2.4.2. Switching Loss

In IGBT switches, during the transition from on state to off state or vice versa, the
switching loss occurs due to the overlapping of voltage and current. The energy loss during
turn on and turn off period of the IGBT switches is obtained as follows

EON =
VON I

6
ton (12)

where VON, I, ton are the IGBT on-state voltage, the current through IGBT after turning on
and turn on time respectively

EOFF =
VOFF I

6
to f f (13)

where VOFF, IOFF, toff are IGBT off-state voltage, the current flowing through IGBT before
turning off and turn off time respectively. Equations (12) and (13) are used to estimate the
average switching power loss in the proposed topology and it is calculated for switches in
each unit separately. In PCU, there is one turn ON and one turn Off of the IGBT switches
for half period of the fundamental cycle, and switching loss in PCU is evaluated as follows

Psw,PCU = 2 × f × (EON + EOFF) =
1
3

f × I ×
(

VONton + VOFFto f f

)
(14)
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where f is the fundamental switching frequency. Similarly, for AU in total, there is one
turn on and one turn off during the half period and the equation is equivalent to the one
obtained for PCU which is given as

Psw,AU = 2 × f × (EON + EOFF) =
1
3
× f × I

(
VONton + VOFFto f f

)
(15)

The MLGU contains three switches and the number of transitions that happened in
half cycle is found to be nine out of which six turn on and three turn off. The switching
MLGU is obtained as follows,

Psw,MLGU = 2 × f × (6EON + 3EOFF) = f × I
(

2VONton + VOFFto f f

)
(16)

The total switching loss for a full cycle can be calculated as

Psw,T = f × (Psw,PCU + Psw,AU + Psw,MLGU) (17)

The total power loss and the efficiency of the proposed inverter are calculated by
using (11) and (17)

PLoss,T = PCon,T + Psw,T
η = Pout

Pin+PLoss,T

(18)

Based on the above formulation, the efficiency of the proposed topology has been
estimated and is shown in Figure 5. For the estimation of the efficiency of the proposed
topology, the data of TOSHIBA IBGT GT50J325 switch has been used with varying output
power. As indicated from Figure 5, the peak efficiency of the proposed topology is 98.5% at
an output power of 1000 W. For higher output power, the efficiency decreases, however,
the drop is not significant as at 5 kW, the efficiency is 96.2%.

Figure 5. Efficiency plot of the proposed topology.

2.5. Algorithms to Fix Voltage Magnitude in Extended Topology

The effectiveness of the topology depends on the ability to generate a greater number
of levels and maximum voltage at its output terminal by utilizing fewer IGBT switches
along with the associated driver circuits. The auxiliary unit’s source voltage is predicted
using two proposed algorithms based on the generation of maximum voltage and more
numbers of levels with less number of power components. The number of switches used
in each of the AU has to be constant to obtain the maximum number of levels and the
equalities is given by

N1 = N2 = N3 = . . . = N (19)

where N1, N2, . . . Nm is the number of switches in the first, second up to ‘m’ AU modules
connected in series to increase the output voltage level.
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2.5.1. First Algorithm

In this algorithm, the auxiliary units (AU) dc source voltage at all the stages are equal
and it is equal to 3V1

V11 = V21 = . . . = Vm1 = 3V1 (20)

Stage 1:
When Single AU is connected to the MLGU, the maximum output voltage value and

number of levels are obtained as follows

Vo,11(max) = 2(N1 + 1)V1 (21)

NL,11 = 6N1 + 1 (22)

Stage 2:
On connecting the second AU, the maximum output value and levels are found

as follows
Vo,21(max) = 3(N2 + 1)V1 (23)

NL,21 = 9N2 + 1 (24)

For the mth stage, the maximum voltage and the maximum number of levels in the
voltage waveform can be obtained by using the Equations (19) and (21)–(24)

VoF,m1(max) = (m + 1)(N + 1)V1 (25)

NLF,m1 = 3N(m + 1) + 1 (26)

2.5.2. Second Algorithm

In the second algorithm, each of the AU dc source values is different and the dc
source value to obtain maximum output voltage and the maximum number of levels can
be derived as follows

Stage 1:
The dc source magnitude of the first AU connected is given as

V11 = (N1 + 1)V1 (27)

The maximum voltage and number of levels in this stage are found as follows

Vo,11(max) = 2(N1 + 1)V1 (28)

NL,11 = 6N1 + 1 (29)

Stage 2:
The second AU dc source voltage magnitude connected is given

V21 = 2(N2 + 1)V1 (30)

The corresponding maximum voltage and levels obtained during this stage are

Vo,21(max) = 4(N2 + 1)V1 (31)

NL,21 = 12N2 + 1 (32)

For ‘m’ AU’s, the equations can be obtained using the Equations (19) and (27)–(32)

Vm1 = m(N + 1) (33)

VoS,m1(max) =

(
1
2

m2 +
1
2

m + 1
)
(N + 1)V1 (34)
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NLS,m1 = 3(Nm+1) + 1 (35)

where VoS,m1(max) & NLS,m1 are the maximum output voltage and the maximum number of
levels synthesized using the second algorithm.

2.6. Optimization of Structures

The optimization of the proposed topology in terms of number of IGBTs, number of
driver circuits, and number of dc sources required to synthesize the maximum number of
levels for both algorithms are related by considering various aspects is presented below

The number of IGBT (NSW) in the proposed topology is obtained by

NSW = (N1 + N2 + . . . + Nm + 8) (36)

For m stages, the number of IGBT required can be estimated as

NSW,m =

(
m

∑
i=1

Ni

)
+ 8 = Nm + 8 (37)

The Equations (25), (26), (34) and (35) can be used to find the relation between levels
and various circuit parameters and the same can be used to determine the optimal structures
with which the maximum number of voltage levels can be obtained with a minimum
number of IGBTs drivers and dc sources.

2.6.1. Optimization of the Proposed Cascade Converter for Maximizing the Number of
Levels with Constant Power Switches

By using Equations (26), (35) and (37) the topology is optimized to obtain a maximum
number of levels with a constant number of IGBT’s for the proposed algorithms. The
number of levels obtained using the first and second algorithms is given as follows

NLF,m1 = NSW,F ×
3N(m + 1) + 1

Nm + 8
(38)

NLS,m1 = NSW,S ×
(3Nm+1) + 1

Nm + 8
(39)

Here NSW,F and NSW,S denote the number of switches in the first and second algo-

rithms which is kept constant. If the ratios 3N(m+1)+1
Nm+8 & (3Nm+1)+1

Nm+8 are minimum for a value
of ‘m’ value then the condition is favorable to generate more levels with a constant number
of switches. From Figure 6a, it is found that at m = 1 gives the optimal condition for
both algorithms.
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Figure 6. Optimization of structures for maximizing the number of levels for constant (a) number of
switches (b) number of drivers and (c) number of dc sources.

2.6.2. Optimization of the Proposed Cascade Converter for Maximizing the Number of
Levels with Constant Driver Circuits

The maximum number of levels generated to the constant number of driver circuits
for the first and second algorithm is given by Equations (40) and (41) and it is computed
from Equations (3), (25) and (36)

NLF,m1 = NDr,F ×
3N(m + 1) + 1

Nm + 7
(40)

NLS,m1 = NDr,S ×
(3Nm+1) + 1

Nm + 7
(41)

The topology could able to generate more number of levels with constant driver

circuits when the ratio’s 3N(m+1)+1
Nm+7 and (3Nm+1)+1

Nm+7 of the first and second algorithms are
minimum. The minimum ratio value for both the algorithms are obtained when m = 1 and
it can be seen from Figure 6b.
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2.6.3. Optimization of the Proposed Cascade Converter for Maximizing the Number of
Levels with Constant DC Sources

The relationship between the number of dc sources and the number of levels for the
proposed algorithms can be, respectively, obtained by

NLF,m1 = NDC,F ×
3N(m + 1) + 1

m + N
(42)

NLS,m1 = NDC,S ×
(3Nm+1) + 1

m + N
(43)

It is evident from Figure 6c, m = 1 presents the optimal topology for generating
more levels with constant Dc sources for both algorithms. The Equations (20)–(22) and
Equations (23)–(25) provides the relation between the number of switches, number of drivers,
and number of DC sources to the number of levels for the first and second algorithm respectively.

3. Simulation and Experimental Results
3.1. Simulation Results

To verify the performance of the proposed topology, a simulation is carried out using
the PLECS software. The magnitude of voltage sources is selected as V1 = 50 V, V2 = 100 V,
and V11 = 150 V. Initially the inverter is made to feed a resistive load of 50 Ω. With the size
of each step as 50 V, the peak voltage obtained at the inverter terminals is 300 V with six
steps. A corresponding load current with a peak magnitude of 6A is observed at the load
as shown in Figure 7a. When the topology was made to feed an R-L load 50 Ω and 100 mH,
the load current is obtained as 5.07 A, with the load impedance being 50 + j31.41 Ω. The
inductive reactance of the load naturally filters the current waveform. Therefore, the load
current observed in the inductive load appears to be a smoother sine wave as shown in
Figure 7b when compared to its resistive load counterpart.

Figure 7. Cont.
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Figure 7. Simulation results (a) Terminal voltage and Load current for R load. (b) Terminal voltage
and Load current for R-L load.

To analyze the dynamic response of the system the modulation index is subjected to
a sudden change and the response of the system is observed. With an R-L load of 50 Ω
and 100 mH, the voltage and current transition is smooth while the modulation index is
changed at 0.10 s as shown in Figure 8a. Further, the number of levels obtained at the
modulation index of 1.0 is six when compared to four at a modulation index of 0.67. The
topology is also subjected to a simultaneous change in load from R to R-L and a change in
modulation index from 0.50 to 1.0 as shown in Figure 8b. In that case, the load current is
observed to be smoothened at 0.10 s since the inductive load is a natural filter. The three
positive and negative levels lost at a modulation of the index of 0.5 is regained at 0.1 s.
Thus, validating the seamless performance of the topology under dynamic conditions.
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Figure 8. Terminal voltage and Load current for (a) change of MI with R-L load and (b) change of MI
and load from R load to R-L load.

3.2. Experimental Results

In order to verify the simulation results, a hardware prototype is built. TOSHIBA
IBGT GT50J325 is used as a switching device. dSPACE CP1104 is used to generate the
gate pulses and is made suitable for switches via the gate driver circuit. The hardware
prototype developed is shown in Figure 9. For the experimental results. The magnitude of
dc voltage sources is selected as V1 = 40 V, V2 = 80 V, and V11 = 120 V.
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Figure 9. Experimental Prototype.

Figure 10a shows the experimental results with output voltage and current waveforms
with a resistive load. For a peak load voltage of 240 V, the peak current is observed as 4A at
a load of 60 Ohm as shown in Figure 10a. When the load is changed to 60 ohms with an
inductance of 300 mH to form the existing R-Load, the peak load current is obtained as 2A
and it has got smoother as shown in Figure 10b. In both cases, a modulation index (MI) of
1.0 is used. Figure 10c shows the harmonic spectrum of output voltage and the THD comes
out to be 6.3%.

Figure 10. Cont.
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Figure 10. Terminal voltage and Load current for (a) R load and (b) R-L load, and (c) harmonic
spectrum of output voltage.

When the experimental prototype is subjected to a sudden change in modulation
index, that is if the modulation index is lowered to 0.4 from 1.0, the peak voltage reduces
to 100 V, and the load current is observed as 1.3A as shown in Figure 11a. Similarly, for the
R-Load of 60 ohms and an inductance of 300 mH, the inverter has undergone a smooth
switchover and the load voltage and current waveform obtained are shown in Figure 11b
as MI is changed from 1.0 to 0.4.
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Figure 11. Terminal voltage and Load current with a change of MI with (a) R load and (b) R-L load.

Further, when the topology is subjected to the sudden load addition from no load to a
load of 60 ohm and 300 mH, the current waveform undergoes a smooth transition with
zero overshoot as shown in Figure 12a. Figure 12b shows the response of the inverter for
a consequent disturbance of change in load with a modulation index of 1.0. Firstly, the
load terminals are open, which results in zero load current. After few cycles of the output
voltage, a load of 120 ohm is connected across the load terminals, which draws a current
of 2A, peak, and after few cycles of the output voltage, another resistance of 120 ohm is
connected in parallel to the existing 120 ohm. Thus, the effective load resistance becomes
60ohm, hence a peak load current of 4A is drawn from the inverter. From Figure 12b, it
can be observed that both the disturbances are taken seamlessly by the inverter. From all
these simulations and experimental results, it can be concluded that the performance of
the proposed topology is satisfactory steady as well as dynamic loading conditions. The
dynamic load test is essential for the application of the proposed topology for electrical
drive application. The results with a change of load, change of modulation index, doubling
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of load current confirm the satisfactory performance of the proposed topology under
dynamic loading conditions.

Energies 2021, 14, x FOR PEER REVIEW 20 of 22 
 

 

drive application. The results with a change of load, change of modulation index, dou-
bling of load current confirm the satisfactory performance of the proposed topology under 
dynamic loading conditions. 

 
(a) 

 
(b) 

Figure 12. Terminal voltage and Load current for dynamic change in load with a change of load 
from (a) no-load to 60 ohm + 300 mH and (b) no-load to 120 ohm to 60 ohm. 

4. Conclusions 
A new hybrid MLI topology is proposed in this paper with a reduced number of 

switches and dc voltage sources. The proposed topology is able to produce a higher num-
ber of levels at the output by connecting several auxiliary units to the proposed basic unit. 
The efficiency of the topology is estimated as 98.5%. From the components and cost com-
parison made, it has been observed that the number of components required for building 
the topology is less when compared to the topologies proposed in recent literature and 
consequently the cost of the topology is less. For the proposed 13 levels, a THD of 6.3% 
has been obtained with the NLCPWM. The performance of the topology is validated with 
simulation and experimental results. A 500W low power laboratory prototype has been 
used for the validation of the proposed topology and different loading conditions have 
been tested. The loading conditions used for the validation of the proposed topology in-
clude fixed as well as dynamic load. Change of load, change of modulation index, and 
doubling of load current has been validated with the proposed topology. One of the major 

Figure 12. Terminal voltage and Load current for dynamic change in load with a change of load from
(a) no-load to 60 ohm + 300 mH and (b) no-load to 120 ohm to 60 ohm.

4. Conclusions

A new hybrid MLI topology is proposed in this paper with a reduced number of
switches and dc voltage sources. The proposed topology is able to produce a higher
number of levels at the output by connecting several auxiliary units to the proposed basic
unit. The efficiency of the topology is estimated as 98.5%. From the components and
cost comparison made, it has been observed that the number of components required for
building the topology is less when compared to the topologies proposed in recent literature
and consequently the cost of the topology is less. For the proposed 13 levels, a THD of
6.3% has been obtained with the NLCPWM. The performance of the topology is validated
with simulation and experimental results. A 500 W low power laboratory prototype has
been used for the validation of the proposed topology and different loading conditions
have been tested. The loading conditions used for the validation of the proposed topology
include fixed as well as dynamic load. Change of load, change of modulation index, and
doubling of load current has been validated with the proposed topology. One of the major
limitations of the proposed topology has been the use of an H-bridge. Another limitation
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has been the requirement of a higher number of isolated sources. Further research related
to the proposed topology will be the reduction in the voltage stress of H-bridge switches
with improved modulation techniques. Further, the application of solar PV panels with the
proposed topology will be another future task. Modulation index has an important role in
the performance improvements like improved power loss with the better harmonic profile
of the output voltage and current. Therefore, an improved modulation technique needs to
be developed and tested with the proposed topology.
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