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Abstract: How to detect uric acid is an important issue. For the purpose of preparing a potentiometric
uric acid biosensor, this research used nickel oxide (NiO) as the sensing film to deposit it onto the
substrate by radio frequency sputtering, then modified it with reduced graphene oxide (rGO) and
silver (Ag) nanowires. Reduced graphene oxide (rGO) not only has excellent electrical conductivity,
but also can make the surface of the film have a larger surface area, while AgNWs have also been
proven to improve catalytic activity; hence, these two materials were chosen as sensor modifiers.
Finally, the stability and the various characteristics of the uric acid biosensor were investigated
using a voltage–time (V–T) system. The results showed that the AgNW–uricase/rGO/NiO uric acid
biosensor has average sensitivity with 4.66 mV/(mg/L). In addition, the sensor has good stability.

Keywords: uric acid biosensor; nickel oxide (NiO); reduced graphene oxide (rGO); silver nanowires
(AgNWs)

1. Introduction

Biosensors are an analysis system or device composed of biosensing components,
including an enzyme [1] and an antibody [2]. The device then converts chemical changes
in the biological substances it comes into contact with—such as glucose [3], chloride ion
concentrations [4], or uric acid [5]—into an electronic or optical signal. Ordinarily, there
must also be some form of signal-amplifying device to enable measurement. According
to the way in which the biosensor converts a signal, they can be divided into various
types: potentiometric [6], amperometric [7], etc. This study proposes a potentiometric
biosensor that relies on physical adsorption to immobilize an enzyme on the NiO-based
sensor in order to measure uric acid concentrations in a solution. For the process of purine
metabolism in the human body, the metabolite uric acid is produced. If human body
is in an abnormal state—such as abnormal metabolism, gout, high blood sugar, or other
symptoms—it may cause the body’s uric acid concentration to reach a high level. This result
causes irreversible damage to the human body. Therefore, in order to prevent and diagnose
uric acid early, the development of a sensor that can effectively detect uric acid from human
urine or human blood is an important objective. In this research, in order to improve the
performance of the sensor, we propose a potentiometric enzymatic biosensor that relies
on physical adsorption to immobilize an enzyme on the NiO sensor in order to measure
uric acid concentrations in a solution, and use modifiers to enhance the performance of
the sensor.

NiO is nontoxic, and there are few studies on using NiO as a sensing film in the field
of biosensors. NiO shows good research potential as a sensing film; it has good catalytic
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activity and is suitable for catalyzing the object under test. Among the many metal oxides,
one of the important reasons why we chose NiO as the sensing film is that it has a very
high isoelectric point (IEP = 10.7) [8]. The relatively strong electrostatic effect can make
the modification, enzyme, and sensing film have a better and tighter combination [9].
Therefore, NiO has great advantages in sensors based on multiple structures. In addition,
NiO has the characteristics of high stability, high electron transfer ability, and excellent
oxygen ion conductivity in solutions with different pH values [10]. Therefore, in this study,
we chose this film as the sensing film of this enzymatic sensor.

Silver nanomaterials have good electrocatalytic ability, and can also enhance the
absorption of an enzyme, and promote electron transfer between any immobilized proteins
and electrode surfaces [11]. However, the unique AgNWs are widely used to improve the
performance of electrochemical biosensors.

Graphene is a unique material with high electron mobility, the lowest resistivity at
room temperature, and a high surface area. In recent years, graphene has seen much
application in the fields of sensors and energy, having been specially applied to surface
plasmon resonance (SPR), and as a biomarker for proteins [12,13]. Based on the above, we
figured out a way to take what we need that combined the advantages of the AgNWs and
the rGO to create a biosensor. However, the strong π–π interactions of the graphene were
due to van der Waals forces, which usually cause problems with regard to how to separate
these layers, posing a considerable challenge [14]. Studies have pointed out that after GO is
reduced to rGO, the remaining functional groups can enhance electrochemical activity, and
because of the high density of edge planar defect sites [15,16], rGO can provide more active
sites. On the other hand, the application of rGO has been proven to effectively enhance the
redox reaction, and has good catalytic activity for uric acid sensors [17]. After this material
is added to the sensor, the performance of the sensor can be effectively enhanced.

2. Materials and Methods

Nickel oxide (NiO), with a target of 99.95% purity, was bought from Shihsin Tech-
nology Corporation Limited (Taiwan), and was used as the material for the sensing film.
The uricase was bought from Sigma-Aldrich Corporation Limited (United States). Uric
acid was obtained from Sigma-Aldrich Corporation Limited (United States). Graphene
oxide (GO) was bought from Uni-Onward Corporation Limited (Taiwan). Silver paste was
bought from Yuan-Hong Instrument Corporation Limited (Taiwan), and was used as the
conductive wire and reference electrode. Epoxy thermosetting polymer (product no. JA643)
was obtained from Yuan-Hong Instrument Corporation Limited (Taiwan). Deionized water
(DI) was used for preparation of aqueous solutions (resistivity = 18.4 MΩ cm−1).

2.1. Fabrication of the NiO Sensor

NiO exists in diversified oxidation states such as nickel trioxide (Ni2O3), nickelous
oxide (NiO), etc. In practice, the NiO was often non-stoichiometric, which means that the
Ni:O ratio was not exactly 1:1. In this study, the chemical composition of the NiO was
73.51 wt% nickel, and 24.49 wt% oxygen, as shown in Figure 1. In this study, the element
ratio of Ni to O was similar to the study of NiO by Adinaveen et al. [18]. According to this
reference, XRD analysis of the prepared NiO confirmed that the EDS based on this ratio
was NiO, not Ni3O. Therefore, it can be determined that the thin film deposited by the R. F.
sputtering system was NiO. The sensing area of the sensor was defined as 2.5 × 2.5 mm2.
Thus, we used a radio frequency (RF) sputtering system to deposit the NiO film onto a
flexible polyethylene terephthalate (PET) substrate. Furthermore, we established the best
RF sputtering parameters for the NiO, which were 3 mtorr of the deposition pressure at
50 W power for 50 min. Finally, the NiO sensor was completed. Figure 2 shows the field
emission scanning electron microscope (FE-SEM) images of the cross-section of the NiO
film, which had a thickness of about 133.1 nm. According to the XRD pattern in Figure 3, it
can be seen that the crystal plane growth directions of (111), (200), and (222) corresponded
to the angles of 38.81◦, 43.61◦, and 79.73◦, respectively. After comparison with the with
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standard cards (JCPDS, No. 04-0835), the angle position of the XRD pattern of the deposited
NiO film is consistent with the value of the standard card, which can be verified, and has
a face-centered cubic (FCC) crystalline structure [19,20]. On the other hand, the XPS full
spectrum analysis was as shown in Figure 4a. In Figure 4b, the XPS pattern shows the main
peak of the Ni 2p3/2 at 853.6 eV and 859.8 eV, and the main peak of the Ni 2p1/2 at 871.8 eV
and 878.2 eV. Droueta et al. [21] pointed out that, between 859 eV and 860 eV, the binding
energy corresponded to Ni2+, and the peak at this position is called the satellite line [22].
The peaks of the Ni 2p1 were at2 871 eV to 878 eV. In Figure 4c, the main peak of O1s is
at 528.4 eV and 530.0 eV. The existence of adsorbed hydroxyl groups or O2− vacancies
confirms a combination of Ni and O bonding, and the results are shown in Figure 4 [23].
According to the XPS pattern of the NiO, the ratio of the Ni to O in NiO film is about
50.97 wt% to 49.03 wt%. After simplification, the ratio of the Ni to O is approximately
1:1.03, which confirmed the ratio of the nickel tooxygen in NiO.
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2.2. Preparation of the AgNWs Solution

There are many methods of producing the AgNWs; we used a general method. The
AgNWs were produced using the polyol method, as follows [24]:

1. First, 0.5 g polyvinylpyrrolidone (PVP) powder and 0.375 mg sodium chloride
(NaCl) crystal were added to 20 mL ethylene glycol (EG), forming a PVP–EG solution,
which was heated to 180 ◦C and stirred until completely dissolved using a magnetic
stirrer hotplate;

2. Next, 0.109 g of silver nitrate (AgNO3) crystal was added to 5 mL of the EG and
stirred for 10 min, which was marked as Ag–EG solution;

3. Ag–EG solution was titrated to PVP–EG solution at a rate of 0.8 mL/min for
4 min. Next, it was continuously heated and stirred for 20 min. Thus, the AgNW solution
was completed;

4. The AgNW solution was cleaned with deionized (DI) water and centrifuged for
10 min, before being washed repeatedly until it turned clear.

Finally, the AgNWs were successfully produced by the polyol method. In order
to confirm the existence of the AgNWs, we used FE-SEM and the UV–Vis spectrum to
establish the features of the material. Ag nanostructures, due to their different shapes
and sizes, exhibit different wavelengths on the surface plasmon resonance (SPR) band.
We measured the Ag nanowire solutions by using the UV–Vis spectrum. Figure 5 shows
the morphology of the AgNWs. Figure 6 shows the optical extinction spectra of the Ag
colloid solutions using PVP (molecular weight: 1,300,000). According to the experimental
results, the AgNWs show two resonance peaks at 356 nm and 385 nm, which are the optical
characteristics of the AgNWs [25].
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2.3. Characteristics of the GO and rGO

Because the PET substrate cannot sustain high temperatures, this experiment used
a low-temperature reduction method to reduce the GO to rGO. The sensing area of the
NiO film-based sensor was titrated with the 3 µL, 0.3 wt% GO solution, and the sensor was
placed in an oven at 125 ◦C for 12 h to dry out entirely [26]. Figure 7a shows the Raman
spectrum of the GO, and we discovered the 2D, G, and D peaks of the rGO, as shown
in Figure 7. The 2D band represented the stacking order by graphene; the G band was a
characteristic feature of the graphitic layers, and corresponded to the tangential vibration
of the carbon atoms; and the D band was related to the disorders of carbon or defects in the
graphene structures [27]. Although both of the Raman spectra obtained from the GO and
rGO specimens showed similarity in form, the position and intensity of different Raman
bands were changed after the reduction processes, with the distinctions in the reduced
features being based on a different reduction method [28]. Figure 8 shows the different
surface morphology of the GO and rGO via SEM images. We can clearly see that the GO of
the restoration step has fewer stacks, which means that the GO was successfully reduced
to rGO.

Energies 2021, 14, x FOR PEER REVIEW 6 of 17 
 

 

 

Figure 6. UV–Vis extinction spectra of the optical characteristics of the AgNW solution. 

2.3. Characteristics of the GO and rGO 

Because the PET substrate cannot sustain high temperatures, this experiment used a 

low-temperature reduction method to reduce the GO to rGO. The sensing area of the NiO 

film-based sensor was titrated with the 3 μl, 0.3 wt% GO solution, and the sensor was 

placed in an oven at 125 °C for 12 h to dry out entirely [26]. Figure 7a shows the Raman 

spectrum of the GO, and we discovered the 2D, G, and D peaks of the rGO, as shown in 

Figure 7. The 2D band represented the stacking order by graphene; the G band was a 

characteristic feature of the graphitic layers, and corresponded to the tangential vibration 

of the carbon atoms; and the D band was related to the disorders of carbon or defects in 

the graphene structures [27]. Although both of the Raman spectra obtained from the GO 

and rGO specimens showed similarity in form, the position and intensity of different Ra-

man bands were changed after the reduction processes, with the distinctions in the re-

duced features being based on a different reduction method [28]. Figure 8 shows the dif-

ferent surface morphology of the GO and rGO via SEM images. We can clearly see that 

the GO of the restoration step has fewer stacks, which means that the GO was successfully 

reduced to rGO. 

  

Figure 7. Raman spectroscopy characterization of the (a) GO and (b) rGO. Figure 7. Raman spectroscopy characterization of the (a) GO and (b) rGO.

Energies 2021, 14, x FOR PEER REVIEW 7 of 17 
 

 

 

Figure 8. FE-SEM image of (a) the GO sheets and (b) the rGO sheets at 5000x magnification. 

2.4. Modified Electrode Based on NiO Film 

To begin with, 2 μl of rGO solution was titrated onto the sensing area of the sensor, 

and then the sensor was dried for 6 h at room temperature. Secondly, 2 μl of uricase solu-

tion was titrated onto the sensing area of the rGO/NiO based-film, and was dried at 4 °C 

for 8 h in a fridge. Then, 1 μl of polydimethylsiloxane (PDMS) solution was titrated onto 

the uricase–rGO/NiO film [29]. The PDMS was a diffusion-limiting film, and it could in-

hibit the permeation of the hydrogen peroxide [30]. Furthermore, 1 μl of Nafion was ti-

trated onto the uricase–rGO/NiO film, and the sensor was placed in the fridge at 4 °C for 

6 h to dry out completely. The Nafion film could serve as a protective layer on the elec-

trode’s surface and promote the transfer of electrons [31]. Finally, the uric acid biosensor 

was successfully completed. However, while fabrication of the AgNW–uricase/rGO/NiO 

biosensor was largely in accordance with that of the uricase–rGO/NiO film, the difference 

was that 2 μl of the AgNWs was deposited onto an rGO layer. Both rGO and AgNWs are 

nanomaterials; as such, they have similar advantages—those nanomaterials can effectively 

increase the surface area and optimize the electron transport ability. However, rGO has 

the characteristic of increasing the catalytic activity. Using the rGO can ensure that the 

enzymatic sensor has a higher sensitivity [32,33]. 

3. Results 

3.1. Roughness Analysis of the Sensing Films 

To investigate the roughness of the surface of the films, we used a scanning probe 

microscope (SPM) and an atomic force microscope (AFM) to analyze the film [34] (scan-

ning area: 3 µm × 3 µm). Figure 9a,b shows the high-resolution image and 3D model for 

the rGO/NiO and AgNW/rGO/NiO film, respectively. Due to the films stacking layer by 

layer in this study, the roughness of the surface was very important, as it could determine 

how many enzymes would attach to the sensing film. For the roughness average (Ra) and 

root mean square of the roughness (Rq), these two conditions are very important to ana-

lyze, as shown in Table 1. Ra represents the roughness of surfaces, while Rq describes the 

standard deviation of the contour heights, and permits the surface roughness to be con-

firmed by statistical methods [35]. Ra for the rGO/NiO and the AgNW/rGO/NiO was 33.6 

nm and 203.0 nm, respectively; Rq for the rGO/NiO and the AgNW/rGO/NiO was 44.8 nm 

and 234.0 nm, respectively. The results showed that Ra and Rq significantly increased be-

cause of the surface being covered with AgNWs, which improved the roughness and spe-

cific surface area, thus enhancing the adsorptive capacity of the enzymes. These results 

show that the AgNWs not only increased the roughness, but also increased the adsorptive 

capacity of the enzymes. 

Figure 8. FE-SEM image of (a) the GO sheets and (b) the rGO sheets at 5000×magnification.

2.4. Modified Electrode Based on NiO Film

To begin with, 2 µL of rGO solution was titrated onto the sensing area of the sensor,
and then the sensor was dried for 6 h at room temperature. Secondly, 2 µL of uricase
solution was titrated onto the sensing area of the rGO/NiO based-film, and was dried at
4 ◦C for 8 h in a fridge. Then, 1 µL of polydimethylsiloxane (PDMS) solution was titrated
onto the uricase–rGO/NiO film [29]. The PDMS was a diffusion-limiting film, and it could
inhibit the permeation of the hydrogen peroxide [30]. Furthermore, 1 µL of Nafion was
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titrated onto the uricase–rGO/NiO film, and the sensor was placed in the fridge at 4 ◦C
for 6 h to dry out completely. The Nafion film could serve as a protective layer on the
electrode’s surface and promote the transfer of electrons [31]. Finally, the uric acid biosensor
was successfully completed. However, while fabrication of the AgNW–uricase/rGO/NiO
biosensor was largely in accordance with that of the uricase–rGO/NiO film, the difference
was that 2 µL of the AgNWs was deposited onto an rGO layer. Both rGO and AgNWs are
nanomaterials; as such, they have similar advantages—those nanomaterials can effectively
increase the surface area and optimize the electron transport ability. However, rGO has
the characteristic of increasing the catalytic activity. Using the rGO can ensure that the
enzymatic sensor has a higher sensitivity [32,33].

3. Results
3.1. Roughness Analysis of the Sensing Films

To investigate the roughness of the surface of the films, we used a scanning probe
microscope (SPM) and an atomic force microscope (AFM) to analyze the film [34] (scanning
area: 3 µm × 3 µm). Figure 9a,b shows the high-resolution image and 3D model for the
rGO/NiO and AgNW/rGO/NiO film, respectively. Due to the films stacking layer by layer
in this study, the roughness of the surface was very important, as it could determine how
many enzymes would attach to the sensing film. For the roughness average (Ra) and root
mean square of the roughness (Rq), these two conditions are very important to analyze, as
shown in Table 1. Ra represents the roughness of surfaces, while Rq describes the standard
deviation of the contour heights, and permits the surface roughness to be confirmed by
statistical methods [35]. Ra for the rGO/NiO and the AgNW/rGO/NiO was 33.6 nm
and 203.0 nm, respectively; Rq for the rGO/NiO and the AgNW/rGO/NiO was 44.8 nm
and 234.0 nm, respectively. The results showed that Ra and Rq significantly increased
because of the surface being covered with AgNWs, which improved the roughness and
specific surface area, thus enhancing the adsorptive capacity of the enzymes. These results
show that the AgNWs not only increased the roughness, but also increased the adsorptive
capacity of the enzymes.
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Table 1. Ra and Rq of the rGO/NiO and the AgNW/rGO/NiO films.

Films
Roughness

Ra (nm) Rq (nm)

rGO/NiO 33.6 44.8

AgNWs/rGO/NiO 203.0 234.0

3.2. Sensing Performance of Uricase/rGO/NiO and AgNW–Uricase/rGO/NiO Uric
Acid Biosensors

The sensing performances of the uricase/rGO/NiO and AgNW–uricase/rGO/NiO
uric acid biosensors are measured by the voltage–time (V–T) system, which is as shown in
Figure S1. The linearity and average sensitivity of the uric acid biosensor for each sample
were measured 10 times. Figure 10 shows the average sensitivity for the uricase/rGO/NiO-
based sensor, which was 3.01 mV/(mg/L). Figure 11 shows the average sensitivity for the
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AgNW–uricase/rGO/NiO-based sensor, which was 4.66 mV/(mg/L). The response volt-
age of the AgNW–uricase/rGO/NiO film remained constant at 20–40 mg/L in Figure 11;
however, at 20–40 mg/L, some difference could still be recognized under the multiple mea-
surements. Therefore, we could integrate the data from the response voltage and multiple
measurements to recognize the concentration of 20 mg/L or 40 mg/L. After the electrode
was modified by AgNWs, which had high surface area and good electrical conductivity,
the impedance could be decreased, and the electron transfer ability improved. Studies have
pointed out that although AgNWs may emit Ag+ [36], which has potential toxic effects on
the human body, this is not associated with acute toxicity to human cells. Only long-term
exposure to AgNWs will have an impact on cell viability [37]. In this study, the uric acid
biosensor we prepared was not an invasive sensor. When using the sensor, a solution with
uric acid is dropped onto the sensor to detect the uric acid concentration. The sensor does
not easily come into contact with the human body, so it has little effect on the sensor. The
reason why AgNWs were chosen is because they can improve the catalytic activity and
make the sensor more efficient. AgNWs have also been proven to enhance the catalysis of
H2O2, and the use of the silver nanowires and rGO to modify the sensor at the same time
has been proven to produce a synergistic effect and a better redox reaction. AgNWs and
rGO are mutually exclusive. There will be covalent bonds between them, which can reduce
the phenomenon of random attachment of the AgNWs, thereby creating a porous structure
and a continuous conductive path stacked by AgNWs, and promoting the reaction with
the molecules of the analyte [38].
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3.3. Interference Effect of the Uric Acid Biosensor

To investigate the stability of the biosensor, some widespread interfering substances in
human blood might cause the biosensor to become unstable, which should be examined—
for example, glucose, lactate (LA), urea, dopamine (DA), and ascorbic acid (AA). The
above-selected concentrations of the substances can be found in normal human blood.
In this study, we prepared the concentrations of interfering substances in human blood,
as shown in Figure 12. In this experiment, the main discussion was the selectivity of
the sensor, and we used urease as a modifier. Therefore, when the sensor is in contact
with various interfering substances, studies have pointed out that uricase catalyzes UA
into hydrogen peroxide, and the analyte only reacts electrochemically with UA [39]. This
phenomenon occurs because urease has excellent selectivity for UA. As shown in Figure 12,
these substances were added to the test solutions, which have no significant variation for
the NiO uric acid biosensor. However, when uric acid is added to the test solutions, the
response voltage clearly shows a high improvement. Thus, the NiO uric acid biosensor has
an outstanding anti-interference capability.
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3.4. Temperature Effect of the Uric Acid Biosensor

The potentiometric uric acid biosensor deduces its sensing mechanism according to
the Nernst equation [40]. Thus, in this study, we investigated the effect of temperature,
which was determined via Equation (1), so as to establish the temperature variety of
the sensitivity:

E = E0 ±
(

RT
nF

)
ln a1 (1)

where E is the film potential, E0 is the standard potential for a1 = 1 M, R is the general
gas constant, T is the absolute temperature in degrees Kelvin, n is the total number of
charges on the ion, F is the Faraday constant, and a1 is the activity of the analyte [41]. After
uric acid was subjected to enzymatic catalyzation by uricase, the allantoin and hydrogen
peroxide were generated by the enzymatic reaction shown below in Equation (2):

Uric acid + 2H2O + O2
Uricase→ allantoin + CO2 + H2O2 (2)

The mechanism of the potentiometric biosensor is to measure the accumulation of
charge potential on the working electrodes and compare it with the reference electrodes [42].
Hence, the uric acid biosensor was measured through the change in concentration of the
hydrogen peroxide. However, uric acid was oxidized as easily as hydrogen peroxide, so



Energies 2021, 14, 4696 10 of 15

that the hydrogen peroxide was converted to oxygen and H+ by the redox reaction [43], as
shown below in Equation (3):

H2O2 → 2H+ + O2 + 2e− (3)

Therefore, the H+ concentration of this reaction will also change under very small
changes in film conditions; accordingly the potential response voltages were produced to
achieve the detection of the uric acid. The temperature effect of the uric acid biosensor is
shown in Figure 13. The operating temperature of the uric acid biosensor is in the range of
5–65 ◦C. When at 45 ◦C, the uric acid biosensor displayed high linearity and high average
sensitivity—0.985 and 59.00 mV/(mg/L), respectively—due to uricase having the best
biological activity for the range [44,45]. Table 2 showed the average sensitivity and linearity
of the AgNW–uricase/rGO/NiO uric acid biosensor in the temperature range of 25–65 ◦C.
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ture range of 25–65 ◦C.

Table 2. Average sensitivity and linearity of the uric acid biosensor based on AgNW–
uricase/rGO/NiO film in the temperature range of 25–65 ◦C.

Temperature (◦C) Average Sensitivity mV/(mg/L) Linearity

25 4.71 0.959
35 5.43 0.964
45 5.90 0.985
55 4.53 0.978
65 3.71 0.901

3.5. Stability of the Uric Acid Biosensor

For the purpose of investigating the stability of the uric acid biosensor, we carried
out a reproducibility test in this study. Figure 14 and Table 3 show the detailed average
sensitivity of the uric acid biosensor based on AgNW–uricase/rGO/NiO films. In this
work, the reproducibility test measured the average sensitivity of each biosensor—from
a total of 12 biosensors—which was 4.68 mV/(mg/L), and the standard deviation (RSD)
was ±0.04 mV/(mg/L). It can be seen that the uric acid biosensor based on AgNW–
uricase/rGO/NiO films showed the highest reproducibility in this study, likely because
the silver materials have a high specific surface area and suitable materials for covalent
bonding with enzymes [46].
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Table 3. Average sensitivity for each AgNW–uricase/rGO/NiO uric acid biosensor.

Number Average Sensitivity
mV/(mg/L)

1 4.76
2 4.71
3 4.60
4 4.73
5 4.61
6 4.66
7 4.71
8 4.65
9 4.68

10 4.70
11 4.73
12 4.69

3.6. Lifetime of the AgNW–Uricase/rGO/NiO Uric Acid Biosensor

In order to verify the long-term stability of the sensor, we also studied its life cycle.
When the average sensitivity of the sensor drops below 90 % [47], we define this time
interval as the lifetime of the sensor. To confirm the change in the average sensitivity of
the sensor during this time, we measured the average sensitivity of the sensor every three
days. At other times, there were no measurements. We stored the sensor at 4 ◦C, and
measured it every 3 days. The decay rate can be calculated from the response–voltage curve
in Figure 15; its value is 0.06 mV/(mg/L), and the lifetime of the sensor is approximately
8 days. The average sensitivity of the sensor, which depends on the different storage time,
is shown in Table 4. The immobilization of enzymes may change the activity, specificity, or
selectivity of the sensor. In many cases, when measuring immobilized enzymes, a decrease
in enzyme properties can be observed. The reason for this is the interaction between the
carrier and the enzyme, which leads to the deformation of the enzyme which, in turn,
affects the activity of the immobilized enzyme [48]. Therefore, we can observe a significant
decrease in the average sensitivity.
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Table 4. Average sensitivity of the uric acid biosensor, dependent on storage time.

Day Average Sensitivity
mV/(mg/L) Relative Average Sensitivity (%)

1 4.71 100.00
4 4.67 99.15
7 4.31 91.51
10 4.02 85.35
13 3.83 81.32
16 3.60 76.43
19 2.77 58.81
21 2.20 46.70

3.7. Detection Limit of the AgNW–Uricase/rGO/NiO Uric Acid Biosensor

The LOD is calculated by Equation (4), as shown below:

CLOD =
3σ
S0

+ c (4)

where σ is the standard deviation of immersion in pure PBS solution, S0 is the sensing
degree of the sensor, and C is the response voltage corresponding to the sensor immersed
in pure PBS. The AgNW–uricase/rGO/NiO uric acid biosensor has an LOD of 0.68 (mg/L);
we found that the sensor based on this structure had a smaller detection limit than other
uric acid sensors, which means that the it could be expected to accurately detect low
concentrations of uric acid.

3.8. Discussion

Table 5 summarizes the reported comparisons of the various types of biosensor. In
Table 5, all of the sensors are potentiometric sensors. Kuo et al. [49] researched a low-power
instrumentation amplifier, which they used to measure the data of a uric acid sensor. Chou
et al. [50] researched a uric acid biosensor modified by magnetic beads and graphene;
in this study, compared with previous research on potentiometric sensors, the sensor
with the AgNW–uricase/rGO/NiO structure showed better average sensitivity. Since
little research has studied potentiometric uric acid biosensors, we selected some uric acid
sensors using composite nanomaterials for comparison. Jindal et al. [51] studied the electron
transfer efficiency of p-type CuO microclusters (µCs) to modify a ZnO uric acid biosensor.
Mohammed et al. [52] studied a sensor modified with Fe3O4, rGO, and Ag nanoparticles,
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which showed excellent stability and reproducibility. Verma et al. [53] studied a sensor
based on Au–rGO nanocomposite thin films, which can enhance the performance of the
sensor based on synergy. Comparing the different uric acid biosensors, we can observe that
the sensor in this study has a lower detection limit and can detect lower concentrations of
uric acid; due to the addition of nanomaterials, the sensing characteristics were improved.
In conclusion, the novelty in this work was to make feasible a potentiometric sensor
modified by AgNWs with rGO. According to the results of our research, such a sensor
can also be developed in the direction of integrating a microfluidic system. For example,
Gagliano et al. [54] used a drive pump, optical monitoring, and LabVIEW software to realize
a control system that can control two kinds of microfluidic system. The sensor can reduce
the number of reagents used by the microfluidic system, so as to achieve a convenient
and accurate experimental process. Therefore, the development of a microfluidic system
contributes to the improvement of the efficiency of the experiment.

Table 5. Comparisons of the characteristics for the different sensing films.

Sensing
Film Linear Range Average

Sensitivity Type Lifetime
(days)

LOD
(mg/L) Reference

RuO2
0.1–0.5 mM

(20–100 mg/L)
0.715

mV/(mg/L)
Potentiometric

N/A N/A [49] 2021

MBs–uricase/rGO/NiO 0.1–0.5 mM
(20–100 mg/L)

3.828
mV/(mg/L) 15 0.574 [50] 2021

Uricase/CuO/ZnO
arrayed p–n junction

heterostructure

0.05–1.00 mM
(9–180 mg/L)

174.000
(µA mM−1 cm−2)

Amperometric

~5 months 0.980 [51] 2017

Uricase/Au-rGO/ITO 50–800 µM
(0.18–1440 mg/L)

86.62 ± 0.19
(µM mM−1) ~6 months 1.130 [52] 2019

Uricase/Fe3O4/rGO/Ag
/ITO

10–800 µM
(0.18–1440 mg/L)

0.076
(µA mM−1 cm−2) N/A 0.932 [53] 2021

AgNW–
uricase/rGO/NiO

0.1–0.5 Mm
(20–100 mg/L)

4.660
mV/(mg/L) Potentiometric 8 0.680 This work

4. Conclusions

Uric acid biosensors were analyzed for various basic properties, including the temper-
ature effect, reducibility, and interference. Moreover, we used SEM and AFM to analyze the
characteristics of the materials. The results show that temperature from 25 to 45 ◦C was a
suitable range to maintain the stability of the enzyme activity in this study, which exhibited
a linearity of 0.985 and a high average sensitivity of 5.90 mV/(mg/L) at 45 ◦C, while in the
test of stability, the interference and the reducibility showed the sensor to be stable. We
prepared interference solutions to examine the AgNW–uricase/rGO/NiO uric acid biosen-
sor in this work, and observed no signals of interference. For investigating the reducibility
of the biosensor, the average sensitivity of 12 measurements was 4.68 mV/(mg/L), and
the RSD was ± 0.04 mV/(mg/L). Finally, the sensor showed a lifetime of 8 days, and its
linearity and average sensitivity were 0.966 and 4.66 mV/(mg/L), respectively. The LOD
of the sensor was 0.68 mg/L. In conclusion, the stability test showed that the NiO uric acid
biosensor was successfully modified by the AgNW–uricase/rGO film.
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