
energies

Article

Lyapunov-Function-Based Feedback Linearization Control
Strategy of Modular Multilevel Converter–Bidirectional
DC–DC Converter for Vessel Integrated Power Systems

Peng Chen 1,* , Jilong Liu 2, Fei Xiao 2, Zhichao Zhu 2 and Zhaojie Huang 2

����������
�������

Citation: Chen, P.; Liu, J.; Xiao, F.;

Zhu, Z.; Huang, Z. Lyapunov-

Function-Based Feedback

Linearization Control Strategy of

Modular Multilevel Converter–

Bidirectional DC–DC Converter for

Vessel Integrated Power Systems.

Energies 2021, 14, 4691. https://

doi.org/10.3390/en14154691

Academic Editor: Ricardo J. Bessa

Received: 4 July 2021

Accepted: 29 July 2021

Published: 2 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical Engineering, Southeast University, Nanjing 214135, China
2 National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University

of Engineering, Wuhan 430033, China; 66976@163.com (J.L.); Xfeyninger@gmail.com (F.X.);
ly11078899@163.com (Z.Z.); 18696422297@163.com (Z.H.)

* Correspondence: seueelab_cp@163.com

Abstract: The modular multilevel converter–bidirectional DC–DC converter (MMC–BDC) has been
proposed to be utilized in the vessel integrated power system to interconnect the medium voltage
bus and the distributed energy storage elements. In the shipboard applications, MMC–BDC faces
unbalanced sub-module power operation because of the inconsistent state-of-charge (SOC) of the
energy storage elements. Researchers have investigated into the unbalanced operation principle
of MMC–BDC and proposed some unbalanced operation control strategies, but these traditional
strategies do not perform well in both aspects of operating range and efficiency. Therefore, this
paper proposes a novel Lyapunov-function-based feedback linearization control strategy for the
independent sub-module voltage control of MMC–BDC, which not only shows wide unbalanced
operation range and high efficiency, but also realizes the decoupling and symmetrical control of the
sub-module capacitor voltages.

Keywords: integrated power system; DC distribution; energy storage; feedback linearization; Lya-
punov function

1. Introduction

The vessel integrated power system (IPS) has been acknowledged as a revolutionary
technology for marine energy systems, which is characterized by unified energy form, high
power density, high energy efficiency and low vibration noise [1–3].

The next generation of vessels feature MVDC voltage networks and distributed energy
storage elements [1]. Therefore, a new topology should be proposed as the DC power
distribution converter to interconnect the MVDC voltage bus and the energy storage
elements. MMC–BDC is suitable for this application scenario for its flexible power control,
high power density and fault-tolerant operation ability.

The application of MMC–BDC in the civil power system has been researched. The
fundamental topology of MMC–BDC is proposed in [4] and compared with several types
of cascaded modular topologies. A decoupling control and energy management strategy
for MMC–BDC is proposed in [5]. To enhance the reliability of the power supply of MMC–
BDC, the fault diagnosis method is studied in [6], and energy balancing control is proposed
consequently by the authors in [7]. In [8], a type of cascaded MMC–BDC composed of
MMC and DAB is proposed, which is recognized as a prospective topology for MVDC
power distribution.

However, in the shipboard integrated power system, MMC–BDC confronts more
severe working conditions than in the civil applications. The ageing and replacement of the
energy storage elements, launching of pulse loads and fault-tolerant operation enlarge the
difference in the SOC of the energy storage elements. Consequently, MMC–BDC operates
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under unbalanced sub-module power distribution conditions to reduce the difference
in order to eliminate the risk of over-charging or over-discharging of the energy storage
elements. Ref. [9] has investigated into the unbalanced operation principle of MMC–BDC.
The imbalance boundary is proposed and the unbalanced operation strategy based on
common sub-module (SM) voltage control is designed to decrease the voltage stress of the
components. Ref. [10] proposes another unbalanced operation strategy for MMC–BDC,
which features independent sub-module voltage control.

However, in the common sub-module voltage control strategy proposed in [9], the
sub-module with lower power suffers unnecessary high voltage stress. On the other hand,
in the independent sub-module voltage control strategy in [10], the imbalance boundary
is more limited because of the restriction of the sub-module voltage. A novel unbalanced
operation control strategy should be proposed to achieve both a wide imbalance boundary
and high efficiency.

Feedback linearization control strategy has been utilized in the field of power electron-
ics by researchers. Compared with traditional local linearized control methods, the flexible
nonlinear system can be turned into a global linearized system with feedback linearization
control, which makes the dynamics of the system more controllable [11–20]. Feedback
linearization control shows higher control accuracy, better dynamic performance and better
decoupling characteristics than traditional PI control methods.

In the feedback linearization control, if the system order (or the number of state
variables) is greater than the total relative order [13], there may be problems of internal
dynamic instability. If the internal dynamic is unstable, the nonlinear system is called a
non-minimum phase system, which is harder for control design. Various methods have
been proposed to solve this problem [13,21–23].

• First, the total relative order of the system can be forced equal to the system order by
redefining the output. However, in this way, only the redefined output variables are
controlled by the designed control laws, while the original output variables do not
obey the expected convergence rule, although they are convergent in other manners.

• The second way to deal with the non-minimum phase nonlinear system is to keep
differentiating the state functions until the system order equals the total relative order,
neglecting the input appearing in the intermediate process. However, this method is
only suitable for the weakly non-minimum phase systems.

• The third way is to reconstruct the topology to eliminate the non-minimum phase
characteristic, which is undoubtedly costly. Additionally, it is also difficult to find the
scheme of reconstruction.

• Ref. [23] proposes a novel Lyapunov-function based feedback linearization method,
which solves the non-minimum phase problem by transforming the feedback lin-
earization control law with help of a Lyapunov function. This method guarantees the
stability of the internal dynamic from the aspect of Lyapunov stability, without much
influencing the convergence rule of other variables.

In this paper, a novel unbalanced operation control strategy based on independent
sub-module voltage control is proposed. To solve the internal dynamic instability problem,
the feedback linearization method based on the Lyapunov function is improved and
implemented. The contribution of this paper can be listed as follows.

• Traditional unbalanced operation control strategies for MMC–BDC are briefly intro-
duced and compared.

• A novel unbalanced operation control strategy based on independent sub-module
voltage control is proposed, which performs well both from the aspects of imbalance
boundary and efficiency.

• A Lyapunov-function based feedback linearization control strategy is proposed to
realize the decoupling and symmetrical control of the variables. Integral terms are
added to eliminate the steady-state error.
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The rest of the content of this paper is organized as follows. In Section 2, the fun-
damental principle of MMC–BDC is introduced, and the basic mathematical model is
derived. In Section 3, traditional unbalanced operation control strategies are analyzed
to illustrate their characteristics in imbalance boundary and efficiency. In Section 4, the
internal dynamic instability problem of MMC is illustrated, the control law of the proposed
Lyapunov-function-base is derived, and the dynamics of the state variables are analyzed.
An overall comparison of the two traditional strategies with the proposed strategy is
revealed. Section 5 introduces the simulation verification and Section 6 draws conclusions.

2. Fundamentals of MMC–BDC

In this paper, a cascaded MMC–BDC is studied, which is shown in Figure 1. The
duplicate chopping circuit (DCC) is cascaded at the modular multilevel converter (MMC)
sub-module capacitor, which connects the distributed energy storage elements. In the next
generation of vessel integrated power systems, the MVDC bus, which is indicated by UMV,
is supplied by multi-phase rectified generators.

Figure 1. Topology of MMC–BDC.

In Figure 1, UMV and iMV are DC voltage and DC current at the MVDC side, Ubi
(i = 1, . . . , N) is the voltage of ith energy storage element, uai is the voltage generated at
the MVDC side by the half bridge sub-modules, and uat is the sum of these. Tmiu and Tmid
are IGBTs of MMC, TD11~TD14, . . . , TDN1~TDN4 are IGBTs of DCCs, LMV is the filtering
inductor at the MVDC side, CSM is the capacitor of the MMC sub module, and Lb and Cb
are filtering inductors and filtering capacitors of DCC, respectively.

According to the characteristics of the inductor and capacitor, one obtains:

LMV
diMV

dt = UMV −
N
∑

i=1
d′MiuSMi

CSM
duSMi

dt = d′MiiMV − PSMi
uSMi

(1)

where, i = 1, . . . , N, uSMi is the capacitor voltage of ith MMC sub-module, and d′Mi is
the duty ratio of upper IGBTs of MMC. Supposing that the ripple of iMV and uSMi can be
neglected, and letting the left side of the first formula of the equation be 0, we obtain:

UMV =
N

∑
i=1

d′MiuSMi (2)

It can be seen that the sum of the product of the sub-module voltage and the corre-
sponding upper IGBT duty ratio is fixed, which equals the MVDC bus voltage. Letting
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the left side of the second equation of (1) be 0, we obtain the expression of the sub-
module power:

PSMi = d′MiuSMiiMV (3)

from which, the expression of the sub-module power ratio, or so-called power imbalance
degree, can be deduced as:

δi ,
PSMi
Ptot

=
d′MiuSMi

N
∑

i=1
d′MiuSMi

=
d′MiuSMi

UMV
(4)

It can be seen that, as the duty ratio of the upper IGBT and the sub-module voltage are
both restricted, the imbalance degree is also limited. In this paper, this limitation is called
the imbalance boundary of MMC–BDC. For a more detailed discussion of the imbalance
degree, one can refer to [9]. Under different control strategies, the boundary is different.

In the normal operation of MMC–BDC, the sub-module power is evenly distributed,
which means δi = 1/N (i = 1, 2, . . . , N). However, as has been noted in Section 1, in the
application of vessel integrated power systems many factors can result in the unbalanced
distribution of SOC of the distributed energy storage elements. In order to balance the
SOC level, inconsistent sub-module power should be conducted in MMC–BDC. When
charging the energy storage elements, in order to balance the unbalanced SOC levels, the
charging power reference for the low-SOC element should be larger than the high-SOC
element. On the contrary, when discharging the energy storage elements, the discharging
power reference for the low-SOC element should be smaller than the high-SOC element.
For example, when the SOC levels are 30%, 50%, 50% and 50%, respectively, if we want
to balance the SOC in the charging ways, we should set the power reference for the first
element larger than that of the other three ones. The specific difference in the references
is a degree of control freedom. As long as PSM1 > PSMi (i = 2, 3, 4), the SOC level can
be balanced.

3. Traditional Control Strategies

This section analyzes the imbalance boundary and the voltage stress of components
under two traditional control strategies for MMC–BDC featuring different types of sub-
module voltage control, which are common voltage control strategies (CVCS) and inde-
pendent voltage control strategies (IVCS). In the independent voltage control strategy, the
sub-module voltage is controlled by DCC, so it is abbreviated as DCC-driven IVCS.

3.1. Common Voltage Control Strategy

Under CVCS, the sub-module voltage of MMC is controlled identically. The block
diagram of CVCS is shown in Figure 2. In the CVCS, MMC is used to control the sub-
module capacitor voltage uSMi, and DCC is responsible for controlling the charging and
discharging current of the energy storage element. MMC controls the average voltage of the
sub-module capacitors uSMave through double-loop PI control, where the control variable
of the inner loop is the MVDC side current iMV. The output of the double-loop control dMC
is consistent for all sub-modules. Additionally, the voltage balancing is achieved through
a single-loop PI control. The positive or negative of ∆dMi is determined according to the
direction of iMV. Single-loop PI current control is adopted by each phase of DCC.
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Figure 2. Block diagram of CVCS.

The calculation of the sub-module voltage reference is given as:

uSMref =

{
min(uSM) δmax ≤ δs0
δmaxUMV δs0 ≤ δmax ≤ δs1

(5)

where, δS0 = min(uSM)/UMV, which is the maximum imbalance degree corresponding
to minimum sub-module voltage min(uSM). The sub-module voltage is clamped by the
DCC diodes, so that min(uSM) ≥max(Ubi). In addition, in order to realize the volt–second
balance of the MVDC side inductor, min(uSM) ≥ UMV/N. Thus, the minimum sub-module
voltage of MMC–BDC under CVCS is obtained as:

min(uSM) = max
[

max(Ubi),
UMV

N

]
(6)

δS1 = max(uSM)/UMV, which is the maximum imbalance degree under maximum
sub-module voltage. max(uSM) is determined by the maximum withstanding voltage
capability of the components.

According to (4), the imbalance boundary of CVCS can be deduced from the range of
duty ratio and sub-module voltage. The range of the upper IGBT duty ratio is (0,1). The
range of sub-module voltage is:

max
[

max(Ubi),
UMV

N

]
≤ uSM ≤ max(uSM) (7)

Therefore, the imbalance boundary of CVCS is obtained as:

0 ≤ δi ≤
max(uSM)

UMV
(8)

Only when the imbalance degrees of all N sub-modules satisfy (8) can the converter find
the steady-state operation point.

Under CVCS, when δs0 ≤ δmax ≤ δS1, according to (5), the voltage stress of all sub-
modules is determined by the sub-module with the largest power imbalance degree, which
can be expressed as:

str(uSMi) = UMVmax(δi), (i = 1, . . . , N) (9)

3.2. DCC-Driven Independent Voltage Control Strategy

Under DCC-driven IVCS, the sub-module voltage is controlled independently by
DCCs. The block diagram is shown as Figure 3. MMC controls the MVDC side current,
which reflects the total power, while DCC controls the sub-module voltages. This control
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strategy adopts common duty ratio controls in MMC. In order to reduce the voltage stress,
when designing the sub-module voltage references of DCC, the voltage reference is chosen
to make the duty ratios of all sub-modules of MMC be 1 (there will be a margin in practical
application, such as 0.9).

Figure 3. Block diagram of DCC-driven IVCS.

The calculation of the sub-module voltage reference is expressed as:

uSMrefi = δiUMV δs0 ≤ δi ≤ δs1 (10)

In this case, δS0 = min(uSMi)/UMV, which corresponds to the imbalance degree correspond-
ing to the minimum allowed voltage of the ith sub-module. The minimum sub-module
voltage is constrained by the corresponding energy storage element, which may be differ-
ent. δS1 = max(uSMi)/UMV is the imbalance degree corresponding to the maximum allowed
voltage of the ith sub module. Generally, δS1 is consistent for each sub-module.

It can be seen that under the DCC-driven IVCS, in order to reduce the voltage stress
of the sub-modules, the duty ratio of the upper IGBT of the MMC is controlled at 1. Then,
according to (4), the distribution of the imbalance degree is only related to the sub-module
voltage. Under DCC-driven IVCS, the minimum value of sub module voltage can be less
than UMV/N under the condition that:

N

∑
i=1

uSMi ≥ UMV (11)

min(uSMi) is still clamped by DCC, so the range of sub-module voltage is:

Ubi ≤ uSMi ≤ max(uSM) (12)

Hence, the imbalance boundary of DCC-driven IVCS should be:

Ubi
UMV

≤ δi ≤
max(uSM)

UMV
(13)

Under DCC-driven IVCS, when δs0 ≤ δi ≤ δS1 for all sub-modules, the voltage stress of
each sub-module is determined by their own imbalance degree, which can be expressed as:

str(uSMi) = UMVδi, (i = 1, . . . , N) (14)

Since the switching loss of MMC is approximately proportional to the sub-module
voltage, the ratio of the switching loss of MMC under DCC-driven IVCS to that under
CVCS can be calculated as:

µ =

N
∑

i=1
δi

Nmax(δi)
=

1
Nmax(δi)

(15)
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3.3. Problems of the Existing Strategies

Comparing the above two methods, the imbalance boundary of CVCS is larger, but the
efficiency is lower. The DCC-driven IVCS reduces the voltage stress of the less unbalanced
sub-modules, but its imbalance boundary is more constrained due to the limitation of the
sub-module voltage. Therefore, this paper proposes an MMC-driven independent voltage
control strategy (MMC-driven IVCS) where MMC controls the sub-module voltage, aiming
at good performance both in efficiency and at the imbalance boundary.

4. MMC-Driven IVCS

According to the characteristics of MMC, the feedback linearization control strategy
proposed in [23] is improved in this paper. Different from [23], the integral term is intro-
duced in the control law of this paper to overcome the error caused by the inaccuracy
of the model. Using the proposed method, the decoupling control of the voltage of each
MMC sub-module can be realized, and the maximum imbalance boundary operation can
be realized. In addition, the proposed method can make the dynamic characteristics of
sub-module voltage symmetrical.

4.1. Internal Dynamic of MMC

According to (1), there are (N + 1) state variables in the MMC model, which are N
sub-module capacitor voltages and the MVDC inductor current, which indicates that the
system order of MMC is (N + 1). It can be seen that the relative order of each sub-module
voltage is 1. Therefore, if we choose the N sub-module voltages as the control output
in the feedback linearization, the total relative order N is smaller than the system order
(N + 1), and the MVDC current is the internal dynamic variable. We should first justify if
the internal dynamic is stable.

Assuming that all the controlled state variables (all the sub-module voltages) have
been controlled to the target values, according to (1), the steady-state duty ratios are:

dMi = 1− PSMi
iMVuSMi

(16)

where, i = 1, 2, . . . , N. Substituting (16) into the inductor current state equation in (1),
we obtain:

LMV
diMV

dt
= UMV −

Ptot

iMV
= −UMV(iMVref − iMV)

iMV
(17)

where, iMVref is the steady-state reference of the MVDC current. Denoting the error of the
MVDC inductor current as:

eI = iMVref − iMV (18)

(17) can be rewritten as:

LMV
.
eI =

UMVeI

iMV
(19)

which shows that the product of the current error and its derivative is positive, illustrating
that the internal dynamic is unstable. Hence, MMC is a multi-input-multi-output non-
minimum phase nonlinear system.

4.2. Design of Control Law

In order to solve the problem of the unstable internal dynamic, the Lyapunov-based
method in [23] is studied and modified in this paper. In the stability analysis of electrical
nonlinear systems, the Lyapunov function is often written in the form of reactive component
energy. However, in order to introduce the integral term into the control law, the Lyapunov
candidate function designed in this paper is:

V =
N

∑
i=1

VUi +
N

∑
i=1

VIntUi + VI =
1
2

CSM

N

∑
i=1

e2
Ui +

1
2

CSM

N

∑
i=1

γIntUie2
IntUi +

1
2

LMVe2
I (20)
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where, VUi, VIntUi and VI represent the terms corresponding to the sub-module voltage
error eUi, the sub-module voltage integral eIntUi and the MVDC current error eI in the
Lyapunov function, respectively. γIntUi is the coefficients of the integral term. Obviously,
the above Lyapunov function is no less than 0. After deriving the function, one obtains:

.
VUi +

.
VIntUi = CSMeUi

( .
eUi + γIntUieIntUi

)
.

VI = LMVeI
.
eI

(21)

In order to calculate the state equation of current error, a reference system is defined:

LMV
diMVref

dt
= UMV −

N

∑
i=1

(1− dMiref)uSMi (22)

Subtracting (22) by the first equation of (1), we have:

LMV
.
eI =

N

∑
i=1

uSMieMdi (23)

where eMdi is the error in the duty ratio. Substitute (23) into Lyapunov function, and:

.
VUi +

.
VIntUi = CSMeUi

( .
eUi + γIntUieIntUi

)
.

VI = eI
N
∑

i=1
uSMiedi

(24)

To make the derivative of VI not greater than 0, let

N

∑
i=1

uSMieMdi = −βIeI where, β1 > 0 (25)

Then, .
VI = −βIe2

I ≤ 0 (26)

In Equation (22), if the derivative of the MVDC current reference is considered small, then:

N

∑
i=1

uSMidMiref =
N

∑
i=1

uSMi −UMV (27)

Then subtract (25) by (27):

N

∑
i=1

uSMidMi =
N

∑
i=1

uSMi −UMV + βIeI (28)

When the control input meets the above equation, iMV can be stable if the control
variable dM1~dM(N−1) is set through the partial feedback linearization method [21], which is:

dMi = −CSM
iMV

vi + 1− PSMi
iMVuSMi

vi = αUieUi + γIntUieIntUi
(29)

where, vi is the auxiliary control input. which determines the dynamics of the control
output after linearization. Under partial feedback linearization control, the dynamics of
the first (N − 1) sub-module voltages can be expressed as follows:

.
eUi + αUieUi + γIntUieIntUi = 0 (30)
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which is a typical second-order system. Combining (30) and (21), the derivative of the Lya-
punov functions of the error of the sub-module voltage and the integral can be obtained as:

.
VUi +

.
VIntUi = CSMeUi

.
eUi + γIntUiCSMeUieIntUi = −αUiCSMe2

Ui (31)

which indicates that the term corresponding to the integral of the error of the first (N − 1)
sub-module voltages can be eliminated, and the final result is not greater than 0.

Combining (29) into (28) we obtain:

dMN = 1− UMV

uSMN
+

Ptot − PSMN

uSMNiMV
+

CSM

uSMNiMV

N−1

∑
i=1

uSMi(αUieUi + γIntUieIntUi) +
βI

uSMN
eI (32)

By substituting dMN into the term corresponding to the Nth sub-module voltage in
the Lyapunov function, we obtain:

.
VUN +

.
VIntUN = CSMeUN

( .
eUN + γIntUNeIntUN

)
= eUN

[
PSMN
uSMN

− (1− dMN)iMV

]
+ CSMγIntUNeUNeIntUN

= eUN
uSMN

[
Ptot −UMViMV + βIiMVeI + CSM

N−1
∑

i=1
αUiuSMieUi + CSM

N
∑

i=1
γIntUiuSMieIntUi

] (33)

Assuming that the regulation of the MVDC current iMV is much faster than that of the
sub-module capacitor voltage, then:

iMV = iMVref, eI = 0 (34)

Consequently:

.
VUN +

.
VIntUN =

eUN

uSMN

[
Ptot −UMViMVref + CSM

N−1

∑
i=1

αUiuSMieUi + CSM

N

∑
i=1

γIntUiuSMieIntUi

]
(35)

As long as:

iMVref =
Ptot

UMV
+

CSM

UMV

N−1

∑
i=1

αUiuSMieUi +
βUN

UMV
uSMNeUN +

CSM

UMV

N

∑
i=1

γIntUiuSMieIntUi (36)

it can be derived that: .
VUN +

.
VIntUN = −βUNe2

UN (37)

which shows the asymptotic stability of the sub-module voltages.
Assuming that:

αUN =
βUN

CSM
(38)

the MVDC current reference can be calculated as:

iMVref =
Ptot

UMV
+

CSM

UMV

N

∑
i=1

αUiuSMieUi +
CSM

UMV

N

∑
i=1

γIntUiuSMieIntUi (39)

Overall, the proposed Lyapunov-function-based feedback linearization control law is
summarized as:

dMi = −CSM
iMV

vi + 1− PSMi
iMVuSMi

where, vi = αUieUi + γIntUieIntUi

dMN = 1− UMV
uSMN

+ Ptot−PSMN
uSMNiMV

+ CSM
uSMNiMV

N−1
∑

i=1
uSMi(αUieUi + γIntUieIntUi) +

βI
uSMN

eI where, eI = iR
MV − iMV

(40)



Energies 2021, 14, 4691 10 of 16

4.3. Dynamic Analysis and Control Parameter Design

As is known from (26), the dynamic characteristic of iMV is:

LMV
.
eI + βIeI = 0 (41)

which is a typical first-order system. Assuming that

αI =
βI

LMV
(42)

Then:
.
eI + αIeI = 0 (43)

Assuming the cut-off frequency to be f CI, the control parameter should be:

αI = 2π fcI (44)

According to (30), the dynamic of the first (N − 1) sub-module voltage is:

..
eUi + αUi

.
eUi + γIntUieUi = 0 (45)

where i = 1, 2, . . . , N − 1. According to (37) and (38), the dynamic of the Nth sub-module
voltage can be obtained as:

.
eUN + αUNeUN + γIntUNeIntUN = 0 (46)

In order to make the dynamics of each sub-module voltage similar, we should make:

αU1 = αU2 = . . . = αUN = αU
γIntU1 = γIntU2 = . . . = γIntUN = γIntU

(47)

Setting the damping ratio to be ξ and the natural oscillation frequency to be f cU, the control
parameters can be designed as:

αU = 2ξ
√

γIntU

γIntU = (2π fcU)
2 (48)

According to the above analysis, the proposed Lyapunov-function-based feedback
linearization control strategy can realize the decoupling control of each state variable, and
ensure the symmetry of dynamics of the N sub-module voltages.

4.4. Imbalance Boundary and Voltage Stress Analysis

The complete block diagram of MMC-driven IVCS is shown in Figure 4. The indepen-
dent voltage reference can be given as:

uSMrefi =

{
min(uSMi) δi ≤ δs0
δiUMV δs0 ≤ δi ≤ δs1

(49)

The definition of δs0 and δS1 is the same as the DCC-driven IVCS. The difference
between MMC-driven IVCS and DCC-driven IVCS is that the imbalance boundary of
MMC-driven IVCS is wider due to the more adjustable duty ratio.
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Figure 4. Block diagram of MMC-driven IVCS.

Under MMC-driven IVCS, the range of duty ratio is (0,1), and the range of the sub-
module voltage is:

Ubi ≤ uSMi ≤ max(uSM) (50)

So, the imbalance boundary is:

0 ≤ δi ≤
max(uSM)

UMV
(51)

Under MMC-driven IVCS, when δs0 ≤ δS1, the voltage stress of each sub-module is
determined by their own imbalance degree, which can be expressed as:

str(uSMi) = UMVδi/d′Mi, (i = 1, . . . , N) (52)

According to the voltage stress, the ratio of the switching loss of MMC under MMC-driven
IVCS to that under CVCS can be calculated as:

µ =

N
∑

i=1
δi

Nmax(δi)
=

1
Nmax(δi)

(53)

which is the same as the DCC-driven IVCS.
Obviously, the proposed MMC-driven IVCS combines the advantages of CVCS and

DCC-driven IVCS. It not only has a wide imbalance boundary, but also has a high operating
efficiency. The characteristics of the three strategies are shown in Table 1.

Table 1. Comparisons of the three kinds of control strategies.

Strategy Imbalance Boundary MMC Switching Loss Ratio

CVCS 0 ≤ δi ≤
max(uSM)

UMV
1

DCC-driven IVCS Ubi
UMV
≤ δi ≤

max(uSM)
UMV

µ = 1
Nmax(δi)

MMC-driven IVCS 0 ≤ δi ≤
max(uSM)

UMV
µ = 1

Nmax(δi)

In the practical application, in order to leave some margin for duty ratio regulation,
the voltage reference of the sub-module is set as:

uSMrefi =

{
min(uSMi) δi ≤ δs0
δiUMV/0.8 δs0 ≤ δi ≤ δs1

(54)

where the steady-state lower IGBT duty ratio is 0.8 instead of 1.
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Additionally, as can be inferred from the control law in (40), the control system is at
its singular point when iMV = 0. Hence, in the actual application, the MMC–BDC is started
up under CVCS, and then switched into MMC-driven IVCS.

5. Simulation Verification

The parameters of the MMC–BDC prototype studied in this paper can be referred to
in Table 2.

Table 2. Parameters of the MMC–BDC prototype.

Parameter Value

Number of sub-modules N 4
MVDC side inductor LMV (mH) 4
Sub-module capacitor CSM (mF) 0.6

MVDC bus voltage UMV (V) 850
Maximum allowed sub-module voltage (V) 380
Minimum allowed sub-module voltage (V) 300

Switching frequency f s (Hz) 5000

According to Section 4, the imbalance boundary of CVCS, DCC-driven IVCS and
MMC-driven IVCS in this case is (0,0.4471), (0.1412,0.4471) and (0,0.4471). Compared with
DCC-driven IVCS, the imbalance boundary of the proposed method is increased by 31.58%.

In consideration of the 5 kHz switching frequency, the control parameters are designed
as in Table 3.

Table 3. Control parameters of the case study.

Parameter Value

αI 1800
αU 125

γIntU 8000

To test the proposed unbalanced operation control strategy, the power reference of
the sub-modules, which is also the power reference of DCC, is given in a stepwise manner,
which is shown in Table 4. In this case study, the SOC level of all the four energy storage
elements are assumed as 30%, 50%, 50% and 50%, and the rated quantity of electricity of
each ESE is set at 200 C to see the changes in the SOC level.

Table 4. Stepwise sub-module power reference.

Stage PSM1 (W) PSM2 (W) PSM3 (W) PSM4 (W)

I 900 900 900 900
II 1200 900 900 900
III 1350 900 900 900
IV 1500 900 900 900

Under the power reference shown in Table 4, considering the voltage reference shown in (54), the theoretical
steady-state sub-module voltage of each stage can be listed as Table 5.

Table 5. Corresponding sub-module voltage reference.

Stage uSM1 (W) uSM2 (W) uSM3 (W) uSM4 (W)

I 300 300 300 300
II 326 300 300 300
III 354 300 300 300
IV 379 300 300 300
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According to Section 4, the MMC switching loss ratios of the four stages are
(1,0.8125,0.75,0.7), respectively. The improvement of the imbalance boundary and MMC
switching loss ratios is summarized in Table 6.

Table 6. The indicator improvement of MMC-driven IVCS.

Indicators CVCS DCC-Driven IVCS MMC-Driven IVCS

Imbalance boundary [0,0.4471] [0.1412,0.4471] [0.1412,0.4471]

MMC switching loss ratio

Stage I 1 1 1
Stage II 1 0.8125 0.8125
Stage III 1 0.75 0.75
Stage IV 1 0.7 0.7

In the simulation, the operation mode of MMC is switched from CVCS to MMC-driven
IVCS in 0.3 s. At 0.5 s, the power reference of the first sub-module is switched from 900 W to
1200 W. At 1.3 s, the power command is further changed to 1350 W. At 1.8 s, the last power
reference switchover is implemented and the operation enters Stage IV. The simulation
waveforms are shown in Figure 5.

The following conclusion can be drawn from Figure 5.

• At 0.3 s, when the control strategy is switched from CVCS to MMC-driven IVCS,
there is no obvious fluctuations in the waveforms. This is because the error terms in
the control law (36) are close to zero under CVCS. The system can enter the steady-
state operation point of MMC-driven IVCS directly. In practical application, due to
the uncertainty or inaccuracy of the parameters, it may need to go through a short
adjustment process.

• At 0.5 s, the power command of the first sub-module is 1 to 1200 W. According to (50),
the voltage reference of the first sub-module is 326 V. Because of ramp setting of the
power command, the sub-module voltage reference starts to exceed the initial value
of 300 V at about 0.66 s, and the total regulation process takes about 0.5 s. From the
slope waveform of the sub-module voltage, the proposed control strategy has good
tracking performance.

• At 1.3 s, the power command of the first sub-module is increased to 1350 W. The volt-
age reference of sub-module voltage increases to 354 V accordingly. The adjustment
process takes about 0.15 s. Finally, at 1.8 s, the power command of the first sub-module
is changed to 1500 W. The sub-module voltage reference is 379 v. Additionally, the
adjustment process takes about 0.16 s.

• The MVDC current ripple increases. This is because the unbalanced operation of
MMC results in the unbalanced distributed duty ratios, which ruins the equivalent
frequency multiplying effect of the phase-shifted modulation of MMC, which is out of
the scope of this paper.

• In the last sub-figure in Figure 5, the initial SOC level is (0.3,0.5,0.5,0.5). At 0.3 s,
the SOC level is (0.3185,0.5185,0.5185,0.5185). While at 0.5 s, the SOC distribution is
(0.3259,0.5259,0.5259,0.5259). Before 0.5 s, all energy storage elements are charged with
balanced power, so the change in the SOC level is consistent. At 1.3 s, which is the end
of Stage II, the SOC distribution becomes (0.3660,0.5555,0.5555,0.5555). At 1.8 s, which
is the end of Stage III, the SOC is (0.3940,0.5739,0.5739,0.5739). At 2.3 s, which is the end
of the whole charging process, the SOC distribution is (0.4251,0.5924,0.5924,0.5924).
Throughout the unbalanced charging, the difference in the SOC level is reduced from
0.2 to 0.1673 by 16.35%, which shows the effect of our proposed method in balancing
the SOC level.
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Figure 5. Simulation results of the proposed MMC-driven IVCS.

6. Conclusions

Aiming at the unbalanced operation of MMC–BDC, a feedback linearization control
strategy based on Lyapunov function is proposed to realize the independent control of
MMC sub-module capacitor voltage. Compared with the traditional MMC–BDC unbal-
anced operation control strategy, the proposed control strategy has wider imbalance bound-
ary and higher operation efficiency. Compared with the traditional feedback linearization
control strategy, the proposed strategy gifts each sub-module voltage symmetrical dynam-
ics. The control law acts directly on the state trajectory of the sub-module voltage, rather
than on the virtual control output. In the paper, the control law is derived in detail and
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compared with the existing unbalanced operation control strategy. Simulation verification
is implemented. In the studied case, compared with traditional independent voltage con-
trol, the imbalance boundary of the proposed method is increased by 31.58%. Compared
with traditional common voltage control, the MMC switching loss of the proposed method
is reduced by 30% at most. The simulation result proves the effectiveness of the proposed
control strategy.

Author Contributions: Conceptualization, P.C., J.L. and F.X.; methodology, P.C.; software, J.L.;
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