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Abstract: Crude oil is a major energy source that is exploited globally to achieve economic growth.
To meet the growing demands for oil, in an environment of stringent environmental regulations
and economic and technical pressure, industries have been required to develop novel oil salvaging
techniques. The remaining ~70% of the world’s conventional oil (one-third of the available total
petroleum) is trapped in depleted and marginal reservoirs, and could thus be potentially recovered
and used. The only means of extracting this oil is via microbial enhanced oil recovery (MEOR). This
tertiary oil recovery method employs indigenous microorganisms and their metabolic products to
enhance oil mobilization. Although a significant amount of research has been undertaken on MEOR,
the absence of convincing evidence has contributed to the petroleum industry’s low interest, as
evidenced by the issuance of 400+ patents on MEOR that have not been accepted by this sector. The
majority of the world’s MEOR field trials are briefly described in this review. However, the presented
research fails to provide valid verification that the microbial system has the potential to address the
identified constraints. Rather than promising certainty, MEOR will persist as an unverified concept
unless further research and investigations are carried out.

Keywords: microbial enhanced oil recovery (MEOR); crude oil; petroleum biotechnology; microbial
metabolic by-products; biosurfactants; microbial metabolic pathways; species properties; reservoir
dynamics; field trials; numerical simulation and modelling

1. Introduction

The global demand for energy is expected to escalate in the coming years due to steady
increases in the population, urbanization, industrialization, and economic development.
The financial situation of most nations is based on crude oil and its products [1]. For
example, India is a large consumer of energy, and in 2019 its consumption was around
806.1 million tonnes of oil equivalent (of which crude oil was 254.39 million metric tonnes),
accounting for 5.8% of the world’s primary energy consumption. As of 31 March 2020,
India had 603.36 million metric tonnes (mmt) of crude oil reserves, and its production
contributed about 32.17 mmt [2]. To meet the energy demands and overcome the constraints
on its resources, oil operators (or companies) will be required to exploit considerably more
complex reservoirs. However, for this purpose, highly advanced technologies will be
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required. Therefore, oil reserves, whether they are undeveloped, mature, or yet to be
discovered, require Enhanced Oil Recovery (EOR) techniques for the extraction of the
trapped oil. Conventional primary and secondary techniques cannot successfully extract
the remaining oil from capillary rock pores, particularly those with a diameter <10 nm. The
reduced pressure in oil reservoirs after a certain period of oil production, the high viscosity
of crude oil, and the reduced flow rates make the recovery of oil difficult [3–8].

The primary objective of all petroleum refineries is to extract the residual oil that
remains following the use of conventional techniques, which amounts to approximately
5 trillion barrels, i.e., 70% of the total oil reserves [9]. A large number of companies
that cannot afford to recover residual oil are currently pursuing profitable and efficient
equipment for salvaging conventional oil. About 35% to 55% of the residual crude oil in
reservoirs is left behind after conventional recoveries; hence, EOR or tertiary methods are
used to enhance the crude oil recovery production [10,11].

These applications are converted into projects only if they best suit the economic
constraints of the current oil market, thereby extending the life span of the wells. Moreover,
they are eco-friendly and an effective alternative to other EOR methods. The microbial
enhanced oil recovery (MEOR) method combines microbial characteristics with petroleum
engineering oil recovery methods to form a new bioengineering technology. This approach
eventually maximizes the recovered oil reserves, extends the life of fields, and increases
the well’s recovery factor [5,6]. MEOR promotes microbial activity, allowing the microbes
to release their metabolic products, such as biosurfactants, biopolymers, biogases, biomass,
bioacids, and biosolvents [12]. Each of these metabolic products contributes to the microbial
system differently and individually improves the recovery of oil. The ability of these
microbes to intensify the oil’s mobility by minimizing its viscosity is considered beneficial.
This property is highly exploited by providing the microbes with adequate nutrients
to produce a sufficient quantity of metabolic by-products and by extending the well’s
life [13,14].

Microorganisms may produce useful, biodegradable, and less toxic products with
the help of low-cost substrates or raw materials. The establishment of MEOR as a viable
alternative to chemically enhanced oil recovery (CEOR), which is mostly considered to be
cost-intensive technology that is not eco-sustainable. In MEOR, particular microbial strains
are used to synthesize compounds analogous to those used in common extravagant CEOR
processes, to escalate the recovery of oil from depleted and marginal reservoirs. Microbial
technologies are becoming ratified universally as lucrative and eco-sustainable methods
for improving oil production [6,15,16].

This review article provides a holistic overview of the oil recovery stages, focusing
mainly on the microbial technique due to the versatile benefits of its secreted metabolic
by-products, particularly biosurfactants. Various studies assessing biosurfactants’ MEOR
potential and economics are summarized. The authors also elaborate on basic MEOR fun-
damentals, in addition to its promising applications and the challenges faced. Furthermore,
the paper deals with the history and current scenario of MEOR, in addition to its dynam-
ics, and provides a brief outline of the mechanism of hydrocarbon-degrading microbes.
Through the examination of case studies throughout the world involving laboratory and
field trials, we assess past performances and the potential of MEOR. The recent trends and
ventures related to MEOR are addressed briefly. This paper also presents potential future
opportunities for the development and utilization of MEOR, in addition to highlighting
the importance of an integrated approach towards numerical modelling and simulation.

2. Phases of Oil Recovery

Oil recovery is usually separated into a trio of phases, namely, the primary, secondary,
and tertiary stages. Conventional primary and secondary methods of oil extraction quickly
exhaust between a fraction of a quarter and half of a well’s oil reserve. This high level of
extraction is addressed with the aid of a tertiary technique, Enhanced Oil Recovery, or EOR
(Figure 1) [17].
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2.1. Primary Recovery Stage

This process of extracting oil occurs either naturally or via artificial lift devices such as
pump jacks. The oil in the reserves occurs in the small pores, thin crevices, and gaps within
the reservoir rocks below the surface of the Earth. In this stage, the pressure of the reservoir
plays a vital role because it causes the proper flow of oil towards the surface. This pressure
depends on the internal energy and properties of the hydrocarbon fluids [9]. This natural
force includes the driving energy of water from a large aquifer (a natural underground
water flow), i.e., aquifer drive, dissolved gas drive, gas cap drive, and expansion by rock
and fluid. Because this technique solely targets the oil and its susceptibility or accessibility,
it has limited extraction potential [6,18].

In the dissolved gas drive, volatile fluids are released to form tiny effervescences of
gas in the reservoir. These bubbles are trapped in the pore and when they expand, cause
oil displacement. Subsequently, when the pressure drops, the gas bubbles merge to form
a continuous rapid gas flow towards the upper portion of the reservoir, leading to the
formation of a gas cap. The more the pressure decreases, the greater the displacement of
the oil, i.e., gas cap drive [6,18]. Artificial lifting is preferred when the natural drive energy
of the reservoir is weak and fails to thrust the oil to the surface. In this case, the pump jacks
are submersed and used to lift the oil, whereas the gas lift technique injects compressed
gas into the well to restore the same pressure [19].

2.2. Secondary Recovery Stage

This stage involves the injection of water or gas into the reservoir to restore the pressure
or to maintain the movement of oil in the reservoir. This is undertaken when the pressure
decreases due to the gradual production of oil in the reservoir, and the low pressure is no
longer able to push the oil to the surface. At this stage, a critical point is reached when
external energy is needed for the recovery of oil. Gas injection is mainly used with a gas
cap to displace the oil in reservoirs. The pores of the rocks are prevented from clogging via
the use of dissolved gases in the water used for flooding. At this point, the viscosity of the
oil is minimized, consistent with thermodynamics. In this situation, a maximum quantity
of oil is displaced under a specifically maintained gradient of pressure. At subsequent
stages, when the quantity of oil relative to the water increases, it is no longer economical to
continue the process, and the oil reserve should be abandoned [18,20,21]. Around 50% to
70% of the world’s unrecoverable crude oil remains in reserves that have been exhausted
by conventional methods [22–24]. Hence, in this paper, we focus on tertiary methods where
the trapped oil is extracted for use from the existing and abandoned reserves.
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2.3. Tertiary Recovery Stage (Enhanced Oil Recovery)

The only objective of this stage is to maximize the utilization of the crude oil that
cannot be recovered during the previous oil recovery stages. This includes both residual oil
and the remaining oil. The former refers to the immobile crude oil residue in the reservoir
pores, whereas the latter refers to un-swept crude oil (which is stuck due to the formation
of heterogeneity). This step is used in fields that are characterized by poor permeability,
heavy oil, or irregular faultlines; it either alters the reservoir fluid properties or the rock’s
characteristics, to make the reservoir more conducive to extraction. The economics of this
method must be valid. Therefore, to determine which type of EOR will suit the reservoir,
each field must be precisely evaluated by screening, reservoir characterization, scoping,
and reservoir modelling, in addition to simulation. This stage aids in improving the crude
oil’s mobility, the properties of the oil-water interface, and the microscopic and macroscopic
sweep efficiency. Further extensive literature and laboratory research is required on the
fluid, the reservoir rocks, and the individual processes of this stage [6,9,25].

In this stage, oil can be recovered using several thermal methods, such as steam flood-
ing [26–30] and in situ combustion or fire flooding [12,28]; chemical methods using alkaline
displacement, surfactants, and polymers [28,31–35]; miscible displacement methods using
CO2, N2, flue gases, kerosene, gasoline, benzene, etc. [28,36]; and via the microbial method.
A study by Alvarado and Manrique [37] showed that these methods are recurrently used
in sandstone reservoirs rather than in other lithologies such as turbiditic and carbonate for-
mations. Figure 2 depicts the number of EOR projects applied to the respective lithologies
and highlights that gas injection has not been heavily applied to the respective lithologies
compared to chemical and thermal methods. However, implementing these techniques
(with the exception of MEOR) requires massive energy consumption for the generation of
steam, the use of costly chemicals, a huge quantity of fresh water, and expensive equipment
for their groundworks, which increases the oil price and the associated ecological risks [38].
Modern technologies, such as seismic [39] or sonic stimulations [40], and electromagnetic
methods [41], are also currently being implemented. These methods are discussed in detail
elsewhere, and this article focuses only on the microbial method.
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2.3.1. Microbial Method (MEOR)

MEOR is a vital tool for organizations searching for a novel means to increase their
returns on older investments. Unfortunately, not all indigenous microbes can ensure the
recovery of oil. The application of microbial knowledge to oil reserves through reservoir en-
gineering designs is often considered to be uncertain due to the lack of understanding of the
mechanism of microbial activity. Although a large amount of theoretical data is available
on MEOR, the lack of standardized field results, the shortage of post-trial investigation, the
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lack of understanding of the mechanism (ecophysiology), and the shortage of structured
research that presents promising evidence of this process contributes to the current low
acceptance of MEOR [42]. Due to its remarkably low operating costs, MEOR has the po-
tential to be implemented [9]. Extremophiles such as halophilic (Salicolamarasensis sp. and
Halobacterium sp.), piezophilic (Shewanella sp., Thermococcus barophilus, and Photobacterium
sp.), alkaliphilic (Natronococcus occultus), and thermophilic (Pyrolobus fumarii and Thermus
aquaticus) bacteria and polyextremophiles (Halonatronum saccharophilum and Natranaerobius
thermophilus) are the only microbes that are sufficiently small in size, can survive harsh
environments (pH, temperature, salinity, pressure), and are capable of producing vital
metabolic products [43–46]. For better adaptation to the surrounding oil environment, these
hydrocarbon-consuming, non-virulent, and naturally occurring microbes are preferred and
have attracted the attention of the researchers of MEOR [47–49].

A synopsis of the MEOR process is depicted in Figure 3. As shown, after the sub-
sequent application of conventional techniques, oil remains in the reservoir substratum.
Several microbes that come into contact with the trapped oil release metabolic products to
alter the Interfacial Tension (IFT) and rock/sand grain wettability conditions that contribute
to emulsion formation and mobility enhancement. The highly permeable zones allow water
to flow to the thief areas via a preferential path. These areas are then plugged by microbes
(selective plugging) that disturb the channel flow and drive the water to areas with low
permeability. This water flows laterally to increase the sweeping efficiency of the crude oil
(reducing the residual oil saturation), and help to manage excess water production. The
microbial consortium clusters can disappear and displace during water flooding, causing a
dynamic stimulation of new flow channels [50–52].
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The strategy of this stage is to characterize microbial communities and to understand
their cultivation methods. This overall biological MEOR method, therefore, depends on
parameters such as depth, the viscosity of oil, permeability, pH, temperature, pressure,
water reduction, the specific gravity of crude oil, brine salinity, porosity, residual oil
saturation, wax content, and the microbial species involved [22,28,53].

The two main justifications for the use of the MEOR technique are oil advancement
and upgrading [10]. In the former technique, the oil films are displaced through the
porous permeable capillaries, creating oil-water IFT where microbial activities alter the oil
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fluidity by viscosity reduction, increasing the sweep efficiency, and restoring the reservoir
pressure [54,55]. In the latter technique, the heavy oil present in the reservoir is degraded to
lighter oil due to microbial activity, helping in the removal of heavy metals and sulphur [56].
In the 21st century, the oil and gas industry considers MEOR to be among the promising
future research areas, and as a technology that is capable of exploiting 377 billion barrels of
hidden oil that could potentially be recovered [10,57].

MEOR has been a popular research subject in recent years and has long been expected
to offer an economic approach to refining retrieval [58]. Field studies have shown that
an ideal projected oil production phase-down curve can be reversed by MEOR because
microbial growth and the produced metabolites can have varying results on different
characteristics of both the reservoir rock and the crude oil [4]. MEOR from unconventional
petroleum deposits, such as oil sands, tar sands, and bituminous sands, are in the ongoing
research phase due to the originality and specific ecological problems of these sources, such
as water scarcity and high hydrocarbon concentrations [59].

Microbial by-products have an effect that is consistent with the consequence of the
previously used chemicals, or those considered for use in an EOR, except for biomass.
Therefore, in principle, MEOR is not an innovative novel oil recovery process, indicating
that MEOR only differs from EOR in terms of the addition of chemicals into the reservoirs.
To be significantly more efficient than EOR, MEOR is usually performed on-site to reduce
logistical costs [12,60].

2.3.2. Microbial Metabolic Products Involved

A variety of microbes produces six chief metabolites (biosurfactants, biopolymers,
biogas, biomass, bioacids, and biosolvents) that perform a dynamic role in the oil recovery
process. These mechanisms include the reduction of oil viscosity, wettability modifica-
tion, microbial plugging, reducing IFT, long hydrocarbon chain breakdown, and release
of acids [14,17], as shown in Table 1. Azarhava et al. [61] reported that when Bacillus
licheniformis LMG 7559 was injected into the oil-saturated heterogeneous porous medium,
it secreted extracellular Poly gamma—(glutamic acid), which enabled oil recovery of up
to 31.45% using biopolymer flooding. Another study by Ashish and Debnath [62] stated
that, when used in a sand-packed method, Candida tropicalis MTCC230 secretes a biosurfac-
tant, namely, lipopeptide surfactin, leading to oil recovery of 39.80%. Many of these case
examples can be observed in the review paper by Saravanan et al. [28].

Table 1. Various microbial metabolic products and their uses [28,55,63].

Metabolic Bioproducts Preferred
Reservoir Type Microbes Role in Oil Recovery

Cell biomass

Stratified
reservoir

swith different
permeable zones

Bacillus licheniformis,
Leuconostoc mesenteroides,
Xanthomonas campestris

Selective and as non-selective
plugging, viscosity relaxation,

wettability alteration, oil
degradation,

and emulsification.

Biosurfactants

Mature water flooded
reservoirs, sandstone or

carbonate
reservoirs with
less than 50 ◦C

(moderate
temperatures)

Acinetobacter calcoacetiens,
Arthrobacter paraffeninues,

Bacillus sp.,
Clostridium sp.,
Pseudomonas sp.

Emulsification, IFT reduction,
viscosity relaxation, and

wettability alteration.

Biopolymers

Stratified
reservoirs

with different
permeable zones

Bacillus polymyxa,
Brevibacterium viscogenes,
Leuconostoc mesenteroides
Xanthomonas campestris

Injectivity profile and
viscosity modification,
mobility checking, and

decrease in permeability in
water-swept regions.
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Table 1. Cont.

Metabolic Bioproducts Preferred
Reservoir Type Microbes Role in Oil Recovery

Biosolvents
Highly oil-wet,
water flooded

reservoirs

Clostridium sp.,
Enterobacter aerogens,

Klebsiella sp.,
Zymomonas mobilis

Increase in permeability and
oil viscosity relaxation with

long-chain hydrocarbon
removal from pore throats.

Biogases Heavy oil
reservoirs

Clostridium sp.,
Enterobacter aerogens,
Methanobacterium sp.

Oil swelling, IFT, and
viscosity relaxation increase
pressure and permeability.

Bioacids
Carbonate or

Carbonaceous
reservoirs

Clostridium sp.,
Enterobacter sp.,
Mixed acidogens

Permeability increases,
emulsification, CO2

production, and dissolves
minerals present in

the reservoirs.

Biomass

Microbes multiply to form clusters of colonies, which act beneficially due to their
plugging effect. This biomass comprises 27% of microbial biofilms and their extracellular
products, water channels, and void space (constituting from 73% to 98% in total). A
bacterial cell multiplies every 20–30 min and is reported to proliferate as quickly as 20 times
under aerobic conditions. This mechanism encompasses high permeability zonal selective
plugging to ensure the growth of microbial cells in the reservoir. This limits the undesirable
water flow through the pore throats, ultimately helping the penetrating water to move
through the small pores under pressure, and thus recover the trapped oil from the wells.
Furthermore, it reduces the viscosity and pour point of the crude oil, and also contributes
to oil desulfurization and emulsification, thus making MEOR strategies more favourable.
Some studies have attempted to starve the microbes to minimize their size and enhance
their penetration depth into the reservoir, and subsequently provide them with nutrients
to form biofilms of biomass [23,64].

Biosurfactants

Chemical surfactants have been used for a long period. However, due to the low
toxicity and eco-sustainability of biosurfactants, the research on these biomolecules has
increased significantly. Biosurfactants are amphipathic compounds [65,66] that ease IFT
and surface tension [67], in addition to enabling O/W or W/O emulsion stabilization, thus
increasing the mobility of insoluble organic compounds [68,69]. They further alter the
wettability of the well-bore rocks to displace more oil films from the rock pores. Because
biosurfactants reduce the interfacial activity and improve the oil recovery proficiency
compared to other by-products, they have gained prominence in MEOR processes [24].
The recent growth of environmental concerns has led to the development of cost-effective,
biodegradable, and low toxicity biosurfactants for use in tolerable conditions, such as tem-
perature, salinity, and pH (especially during tertiary oil recovery). Due to the superiority
of these properties compared to those of chemically synthesized surfactants, biosurfactants
are a high-value product in applications such as cleaning oil tankers, conveying heavy
crude oil through pipelines, use as an anti-corrosive agent, extracting bitumen from tar
sand, use as a demulsifying agent, and recovering oil from reservoir sludge in the oil en-
hancement industry. These applications of biosurfactants, in addition to their use in MEOR,
are being recognized and are expected to expand within the petroleum industry [68,70–72].
Many firms have commercialized products containing biosurfactants, and have further
developed strategies to improve the economics of biosurfactant production [73,74].

Microbial contamination should be seriously considered to prevent oil pollution from
oil spills, oil tanker accidents during transport, and anthropogenic activities [75]. The
categories of biosurfactants produced by various microbes are lipopeptides, phospho-
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lipids, glycolipids, and polymeric fatty acids. The most common are glycolipids (com-
prising sophorolipids, rhamnolipids, trehalolipids, etc.), whereas lipopeptides (surfactin,
syringomycin, viscosin, polymyxin, etc.), phospholipids, and polymeric fatty acids (emul-
san, liposan, alasan, etc.) are complex structures [28,76,77]. At present, the most favourable
biosurfactants are glycolipids, sophorolipids secreted by Candida yeasts, and rhamnolipids
produced by Pseudomonas. A study was conducted by Renard et al. [78] in which his team
analyzed cloud water and found 42% of biosurfactants secreted microbes (from 480 strains).
Of these, the most prominent were Pseudomonas syringae PDD-32b-74 and Xanthomonas
campestris PDD-32b-52, which secreted linear lipopeptides called syringafactin; and Pseu-
domonas sp. PDD-14b-2, which secreted viscosin, cyclic lipopeptides, and massetolide E.
Despite the industrial interest in these compounds, numerous problems persist [7,79,80].

Critical Micelle Concentration (CMC) determines the efficiency of a biosurfactant. The
biosurfactant activity depends on its concentration until CMC is reached because, above
this limit, bilayers, micelles, and vesicles are formed. This formation aids in the reduction
of IFT, and further increases the solubility and the bioavailability of hydrophobic organic
compounds, resulting in a linear function for oil recovery [81]. For more detailed properties
of various species’ strains, see Table 2.

The quality and quantity of the produced biosurfactants depend on the nutrient
medium supplied to the microbial consortia and the carbon substrate [113]. Their activity
is also affected by the concentration of NaCl and pH (optimum range is between 4 and 10).
The sodium ions form sodium acetate with the oil molecules, thus making the oil wetter,
which is detrimental to the recovery process. In contrast to these ions, magnesium ions
alter the surface of calcite by making the oil less sticky, enhancing the process [57,114]. The
total biomass produced is directly proportional to the O/W emulsion formed; the more the
quantity increases, the better the quality. Therefore, a generic microbial technique cannot
be applied to all oil reservoirs [115].

Biopolymers

Several microbial strains secrete polysaccharides in self-defence during short-term
desiccation, predation, and adhesion to surfaces. This mechanism involves selective
plugging of the high permeability zone to modify the permeability of the oil reservoir to
the floodwater, to effectively reach the oil-rich pores. The viscosity of the penetrating water
is further increased using a mobility control agent to improve the oil sweep efficiency and
the mobility stoichiometry by equalizing the permeability across the reservoir. The global
capital market for biopolymers is anticipated to increase 17% and reach USD 10 billion by
2021 [116–118].

The most prominent bacterial commercial biopolymer is Xanthan gum [119], produced
by Xanthomonas sp. and sold at USD 12 kg−1. It is thermally stable, has sheer resistance, and
is salt tolerant, making it a potential candidate for EOR [120]. Other biopolymers include
scleroglucan (USD 50 kg−1) produced by the fungus Sclerotium sp., and levan produced by
the bacterial Bacillus species. The former exhibits high potential for commercialization, is
water-soluble, has viscosifying ability, reduces IFT, and is stable under a variety of abiotic
stresses [117,121,122], whereas the latter exhibits strong adhesivity, high solubility in oil
and water, low intrinsic viscosity, and non-gelling, biocompatibility, and film-forming
properties. As a result, these are promising candidates for EOR [123,124].
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Table 2. Properties of biosurfactants produced by various microorganisms of several strains. Abbreviations—BS: Biosurfactant, ST: Surface tension, CMC: Critical Micelle Concentration,
AOR: Additional oil recovery, E24: Emulsification Index (mostly against kerosene, diesel, or sunflower oil), Temp: Temperature, P: Pressure, API G: American Petroleum Institute Gravity,
OV: Oil Viscosity, Por: Porosity, PV: Pore volume, Sub: Substrate, FR: Flow Rate, d: diesel, k: kerosene and HCCL: Hemi-cellulosic Corncob Liquor.

Microbe BS Type ST
(mN/m)

CMC
(mg/L) AOR (%) E24 (%) IFT

(mN/m) Temp (◦C) P (atm)
API
G
(◦)

OV
(cP) Por PV Sub FR

(ml/min) BS Yield Reference

(a) Various Pseudomonas species

Pseudomonas
putida CB-100 Rhamnolipid 47.5 ± 1.32 430 - 20 - 37 ± 2.0 - - - - - Phenanthrene 0.8 27 [82]

Pseudomonas
nitroreducens Rhamnolipid 37 28 - - - 30 - - - - - Glucose - 5.46 [83]

Pseudomonas
otitidis P4 Glycolipid 33.4 40 - 68.7 - 40 - - - - - 2% Sodium

acetate 100 2.75 ± 0.07 [84]

Pseudomonas
DYNA270 Rhamnolipid 22 20 - - 0.005 120 1.22 - - - - 4% Mannitol - 5.32 [85]

Pseudomonas sp.
TMB2 Rhamnolipid 33.4 120 16.7 78.6 0.8 30 40.7 34.2 12.43

22,
21.3
19.7

21.5,
20.81,
19.25

2% Glucose 0.8 2.8 [86]

Pseudomonas
balearica Z8 Rhamnolipid 41 90 - 44 - 40 - - - - - Oily sludge

waste 1 - [87]

(b) Various Pseudomonas aeruginosa strains

Pseudomonas
aeruginosa

OBP1
Rhamnolipid 31.1 45 - 82 1.5 25 ± 1 - - - - - 2% n-hexadecane 0.4 4.57 [88]

Pseudomonas
aeruginosa WJ-1 Rhamnolipid 24.5 14 23.02 95 - 37 - - - 36.77 - 5% Waste Sun

flower oil - 50.2 [89]

Pseudomonas
aeruginosa
MM1011

Rhamnolipid 26 120 - 80 2 25 0.05 19 - 23 12.6 Sun
flower oil 0.14 0.7 [90]

Pseudomonas
aeruginosa JBK1 Rhamnolipid 33.7 540 10.8 62 4.7 (d)

3.4 (k) 90 - - - - - 3% Raw
Bio-glycerol 0.5 3.9 [91]

Pseudomonas
aeruginosa TMN Rhamnolipid 34 18.75 - 46 - 25 to 37 - - - - -

40 g/L Glucose
or

Glycerol
- 0.30.25 [92]

Pseudomonas
aeruginosa

KVD-HR42
Rhamnolipid 30.14 83 - - 100 37 - - - - - 23.85 g/L

Karanja oil - 5.90 ± 2.1 [93]



Energies 2021, 14, 4684 10 of 30

Table 2. Cont.

Microbe BS Type ST (mN/m) CMC
(mg/L) AOR (%) E24 (%) IFT (mN/m) Temp (◦C) P

(atm)

API
G
(◦)

OV
(cP) Por PV Sub FR

(ml/min) BS Yield Reference

Pseudomonas
aeruginosa

ATCC-10145
Rhamnolipid 31.9 80 - 97.4 - 25 to 30 - - - - - Soy molasses 0.5 11.70 [94]

Pseudomonas
aeruginosa Rhamnolipid - 55.87 - 58.43 ± 0.3 1.17 ± 0.01 55 - - - - - Kitchen waste oil 0.5 2.47 ± 0.03 [95]

Pseudomonas
aeruginosa
SNP0614

Lipopeptide 25.4 45 - 90 - 37 - - - - - Crude oil - - [96]

Pseudomonas
aeruginosa PBS Rhamnolipid 23.76 - 56.18 ± 1.59 50 to 60 - 100 - - - - 29.83 ±0.3 2.17% Sodium

citrate 0.4 2.65 [97]

Pseudomonas
aeruginosa DQ3 Rhamnolipid 33.8 - 5.22 58 - 42 - - 10 15.26 93 - 0.2 - [98]

Pseudomonas
aeruginosa Rhamnolipid - 9.25 ± 0.27 35.26 69 127 30 - 21.9 - 20.49 ± 0.69 - 125 g/L Glycerol 1 0.877 [7]

Pseudomonas
aeruginosa

HAK01
Rhamnolipid 28.1 120 43 60 2.52 40 to 121 1 19.5 1.8 - 0.4 20 g/L Sun

flower oil - 2.07 [99]

Pseudomonas
aeruginosa YM4

Di-
Rhamnolipid 28 50,

60 - 61,
57 <1 25 - - - - - Glycerol

Soybean Oil - 79.7 ± 4.083.5
± 4.6 [80]

Pseudomonas
aeruginosa

KT1115

Rhamnolipid
(Mono as
well as di)

28 167,
8 - 41.4,

52.1 <1 20 to 80 - - - - - Rapeseed oil - 44.39 [100]

Pseudomonas
aeruginosa SG Rhamnolipid 28.1 60 - 76.1 2.09 4 to 100 - - 118.9 - - Soybean oil 0.6 10.32 [101]

(c) Other bacterial strains

Bacillus
mojavensis

JF-2
Lipopeptide - 10 to 40 14 - 1.0 37 - 32 6.0 16.7 29 DNA with

medium E 0.515 - [102]

Fusarium sp.
BS-8 Glycolipid 32 - 46 71 - 30 - - - - 400 9%

Sucrose 36 5.25 [103]

Bacillus
salmalaya

139SI

Cyclic
lipopeptide 27 5% - 65 ± 1.1 - 36 - - - - 10 to 11 1% Sun

flower oil - 1.9 [104]

Candida
tropicalis

MTCC230

Lipopeptide,
Surfactin 32 32.5 39.80 62 - 30 to 90 - - - - 31 0.5% Glucose

+ 1.5% Petrol 1 - [62]
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Table 2. Cont.

Microbe BS Type ST (mN/m) CMC
(mg/L) AOR (%) E24 (%) IFT (mN/m) Temp (◦C) P

(atm)

API
G
(◦)

OV
(cP) Por PV Sub FR

(ml/min) BS Yield Reference

Bacillus subtilis
ANSKLAB03 Surfactin 38 0.01 - 82 - 40 - - - - - 2% Sucrose - 0.324 [105]

Bacillus
atrophaeus

L193

Fengycin,
Surfactin,

Bacillomycin
Iturin

33 9.38 - 51.53 ± 1.39 - 28 - - - - - 1% Colloidal
chitin - 2.04 [94]

Streptomyces sp.
DPUA1559

Glycoproteic
Surfactant 25.34 10,000 - 41,

95 - 4 to 80 - - - - -

1% Residual
frying soybean

oil,
Residual motor

oil

- 1.74 [106]

Serratia
marcescens
UCP 1549

Polymeric
compounds 25.92 1.5% - - - 28 - - - - - 0.2% Lactose

5% Corn oil - - [107]

Bacillus subtilis
ICF-PC Surfactin 27 100 - 65.74 - 30 to 45 - - - - - HCCL + Glucose - 3.95 [108]

Bacillus
licheniformis

DS1
Lipopeptide - 157.5 5.4 65.19 12.0 40 1 - - 12.84 14.84 2% Crude

oil 0.2 - [109]

Rhodococcus
Erythropolis

HX-2
NK 28.89 100 - 90 - 20 to 100 - - - - - 2% Petroleum - 5.0 [110]

Saccharomyces
cerevisiae

URM 6670
Glycolipid 26.64 ± 0.06 - - - 9.12 ± 0.04 40 to 400 - - - - - 1% Waste

Soybean oil 50 5.84 ± 0.17 [111]

Candida
bombicola

URM 3718
Sophorolipid 30.79 ± 0.04 0.5 - 66.77 ± 0.15 0.73 ± 0.05 28 to 50 1 - - - - - - 2 ± 1.02 [112]
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The impressive stability of schizophyllan, which is secreted by the fungus Schizo-
phyllum commune, under high temperature and high salinity, renders its potential in en-
hancing the recovery of crude oil. Cellulose (USD 4 kg−1), curdlan (Agrobacterium sp.),
pullulan (Aureobasidium pullulans, Pullularia pullulans), guar gum (USD 2 kg−1), polyglu-
tamic acid (Bacillus licheniformis, Bacillus subtilis), dextran (Leuconostoc mesenteroides), poly-
βhydroxybutyrate (Azotobacter vinelandii, Bacillus spp., Alcaligenes eutrophus), and chitin
or chitosan (USD 220 kg−1) are other examples of biopolymers [64,117,125]. Bi et al. [16],
showed that the polymer-secreting bacteria Enterobacter cloacae FY-07, in addition to the
surfactant-secreting bacteria Pseudomonas aeruginosa WJ-1, successfully reduced surface
tension and increased crude oil recovery. Another successful case was reported in the Fuyu
oilfield, China, in which a biopolymer was used as a plugging agent. This MEOR field trial
used the strain, Enterobacter sp. CJF-002 secreted insoluble jelly-like biopolymers, aiding in
recovering twice the oil by minimizing the channelling effect and regulating the water flow
across the reservoir [126].

Biogases

During the fermentation of carbohydrates, the bacterial strains release CO2, N2, H2,
H2S, and CH4, which are then also rapidly consumed for other microbial activity. In
addition to methanogens, which uptake H2 for reducing CO2 to CH4, sulphate-reducing
bacteria reduce sulphate to sulphide, and nitrate-reducing bacteria reduce nitrate to nitrite,
and then to N2. These gases help to repress the oil reservoir by altering IFT and the
pH of the formation water and lower the heavy oil viscosity by dissolving the gases in
crude oil. These gases build up in the pressure-depleted areas of the reservoir, aiding the
mobility of the oil, and acting as an ideal alternative to conventional gas flooding. Thus,
gas-producing microbes such as Clostridium sp., Pseudomonas sp., and Methanogens are the
preferred products. Methanogens produce about three-fifths CH4 and two-fifths CO2, from
which the methane separates the oil and gas phases, whereas the carbon dioxide separates
the water phases. Furthermore, they are responsible for changing the pour point of oil and
for plugging in the form of inorganic mineral (CaCO3) precipitates [15,20,52,64,127,128].

Enterobacter sp., Vibrio sp., Staphylococcus sp., Clostridium strains, Bacillus polymyxa, and
Streptococcus sp. are the few microbes that have been shown to release biogases and can
be used for MEOR. Because methane is a cheap gas, methanogenesis is a facile method to
salvage the trapped crude oil. When the gas is sufficiently swollen in the reservoir, the secre-
tion of biogases may stop, aiding in the production of more valuable substances. Therefore,
to hinder methanogenesis, inhibitors (methyl fluoride and 2-bromoethanesulfonic acid)
can be used. It should be noted that harvesting energy in the gaseous form from heavy
oils and tar sand, rather than as hydrocarbons, is economically feasible and a sustainable
approach [64].

Bioacids and Biosolvents

Lactic, acetic, and butyric acids are the most common bacterial acids used to improve
absolute permeability and porosity by dissolving minerals in carbonate rock. They usually
occur in carbonate reservoirs or under specific nutrients during sandstone formation. The
capillary forces contributing to oil retention continue to be reduced [129,130]. For example,
during the anaerobic process, Clostridium sp. produces 0.0034 moles of acid (acetic and
butyric) per kg of molasses [131,132].

Other microbes such as Lactobacillus sp., Clostridium, Dsulfovibrio, Pediococcus sp., mixed
Acidogens, and Bacillus secrete bioacids including carboxylic acids of multiple molecular
weights, butyric acid, formic acid, propionic acid, and low molecular weight fatty acids.
Moreover, biogases such as carbon dioxide and hydrogen sulphide dissociate into the water
to yield bioacids. Various studies further propose that aerobic hydrocarbon degraders
secrete a blend of biosolvents and bioacids, which can then be converted to CH4 via
methanogenic microbial consortia [20].
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Although it may be considered that solvents cannot be produced by microbes, they
sometimes secrete solvents such as ethanol, acetone, and butanol. The microbes partially
oxidize the hydrocarbons to biosolvents including alcohols, aldehydes, and fatty acids.
They help relax oil viscosity and IFT, further acting as a surfactant. Moreover, they can
moderately dissolve the carbonate rocks, enhancing the reservoir permeability and the
porosity. They can also dissolve asphaltene and other heavy components present in the
oil or from the pore throats of the reservoir, further reducing viscosity and aiding in the
migration of oil.

The most common MEOR candidates are usually volatile fatty acids, lower water-
soluble alcohols, and ketones (butanone and acetone). For instance, Bacillus spp. secretes
ethanol and 2,3-butanediol; Clostridium spp. secretes ethanol, butanol, and acetone; and
Lactobacillus sp. releases carbon dioxide, in addition to biosolvents. Other microbes include
Klebsiella, Arthrobacter, and Zymomonas mobilis. Rather than producing biosolvents in large
volumes in a laboratory, indigenous microbes with the capability to secrete bio-solvents
should be used as a green alternative [20,64,129,133].

3. MEOR Dynamics

The global use of MEOR depends on various physical parameters. Moreover, its use
is growing due to the gradual decrease in the development of novel fields and diminishing
mature reserves. The success of MEOR is determined by multiple variables that affect the
microbes, including:

1. Chemical factors such as electrolyte composition, redox potential, and nutrient composition;
2. Physical factors such as pore geometry, salinity, temperature, porosity, pore size,

pressure, dissolved solids, lithology, and permeability;
3. Biological factors such as the type of microbe and extracellular product cytotoxicity.

Large-scale laboratory tests are essential to allow field applications to choose the
appropriate micro-organisms and to understand the need for growth and production.
Improved understanding of the MEOR method and its mechanisms from an engineering
perspective is vital to improve the processes’ productivity, in addition to the methodical
estimation of the principal dynamics affecting this method, such as the characteristics of
the reservoir and the microbial syndicates. Finally, several toxicity tests of the microbes to
be handled in the area should be undertaken to ensure that they are safe to use and pose
no risks for people or the environment. In addition to the dynamics or factors mentioned
below, other dynamics affecting MEOR that should be studied carefully are the additional
oil saturation of the remaining oil, the evaluation and the composition of the fluid, core
laboratory tests, and the economic aspects of the procedure [4,12,14,53,64,73,134].

3.1. Selecting the Reservoir

Following the identification of the problem, a decision can be easily made about
the species or microbial processes that provide the suitable resolution. For instance, for
mobilizing the trapped oil from the porous media, or when facing paraffin problems or
scaling, biosurfactant secreting microbes should be utilized. In the mature field, the residual
oil is recovered through in situ MEOR following primary production and secondary
recovery techniques. The parameters for the selection of an appropriate reservoir are –

• Structural Analysis: The regions of permeability and the area penetrated by oil can only
be determined by this analysis for the plugging of specific pore throats to enhance
the efficiency of sweeping. The depth of the oil well, the spatial distribution of oil
films, and water saturation of water are included. This also comes with a high risk of
drilling uncertainties. If the oil reservoir is not properly analyzed, the microbes will
begin to destroy the method.

• Geological Complexity: This plays a crucial role in the injections of microbes due to the
function they perform, and therefore needs to be carefully studied. The alteration in
any of the different geological elements of salinity, porosity, wettability, or permeability
leads to dysfunctional microbes or their absence.
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• Well Pattern to be Drilled: This parameter is used when economic factors are to be con-
sidered. The pattern, i.e., a horizontal, directional, or extended range drill, determines
the injectors and producers to be used.

• Permeability Analysis: This is critical for choosing the appropriate bacterial strain and
the reservoir composition that are suited to the microbe’s survival and feeding pattern.
This factor should be reduced to be beneficial, as microbial consortium clogging will
occur if the MEOR is not designed or implemented properly. In this case, the microbial
metabolites themselves reduce the permeability by favouring plugging of thief zones
as observed in Figure 3.

• Temperature: This is one of the key drivers for both the bacterial species variation
and the oil reservoir’s hydrocarbon development. Only extremophiles can survive
extreme conditions, making them critical for the reservoir. Among these, Pseudomonas
(predominantly), Arcobacter, Marinobacter, Halomonas, and Caldicoprobacter are found in
the oil pits at high temperatures.

3.2. Selecting the Potential Microbes

Microbes should be capable of fulfilling the vital criteria of adapting to high tem-
perature, pressure, salinity, and other reservoir parameters, and producing the desired
by-products under aerobic conditions, thus ultimately degrading hydrocarbons (called
hydrocarbon-o-clastic). The preferred microbes are usually thermophilic bacteria such
as Thermoanaerobacter and Thermotoga; hyperthermophilic archaea such as Thermococcus
and Thermofilum; methanogenic archaea (both hydrogenotrophic and acetotrophic) such
as Methanobacterium, Methanoregula, Methanosarcina, and Methanoculleus; and mesophilic
bacteria such as Pseudomonas, Geobacter, and Desulfuromonas. In addition to having high
penetration permeability, these microbes are also dormant and resistant to endospores,
thus helping them cope with stressful conditions [15,67,135]. They produce metabolites
that help in the development of stable O/W emulsions, mobilize residual oil, and avert
injection fluids via wet areas of the reservoir by clogging regions of high permeability.
These factors act as a natural step towards reducing residual oil permeation [136].

3.3. Selecting the Right Nutrients

A variety of nutrients are injected into the wells, ranging from fermentable carbohy-
drates to inorganic electron acceptors that enable the micro-organisms to propagate using
oil as the major carbon source. The by-products to be produced by microbes require a food
source (in addition to trace minerals and suitable pH) for their survival, and therefore the
nutrients act as a vital component. An ample quantity of suitable nutrients is required
for microbes to colonize. When nutrients fail to perform this job, the microbes reduce
their metabolic activity until the conditions become suitable to revitalize them. Nutrient
deficiency causes severe damage to the catabolic activity of microbes in hydrocarbon-rich
environments [1,16].

3.4. Pilot Testing

This stage determines the fate of MEOR and involves conducting the projects in
phases with laboratory tests and analysis to identify the vital concerns. The combination
of microbe–nutrient is checked for its compatibility, ability to grow in porous media, and
competitiveness. Overall, the entire reservoir undergoes screening to optimize MEOR
under strict assessment. It should be noted that many MEOR patents are solely centred on
laboratory studies.

4. Microbial Metabolic Pathways Involved

The metabolic pathways associated with hydrocarbon-degrading microorganisms are
either aerobic, i.e., they use O2 as an electron acceptor, or anaerobic, i.e., they use alternative
electron acceptors such as nitrate or sulphate. All metabolic pathways are mediated by
specific enzymes, viz. monooxygenase, dioxygenase, peroxidase, reductase, hydroxylase,
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and dehydrogenase. Under aerobic conditions, the fastest biodegradation of organic hydro-
carbons occurs and is, therefore, thought to be better than anaerobic degradation because
it requires less free energy expenditure, in addition to a lower energy yield per reaction.
Initially, it pursues the oxidative attack route and triggers the incorporation of active oxy-
gen to be catalysed by peroxidase and oxygenase. Subsequently, the hydrocarbons are
converted into intermediate metabolites (as in the Citric Acid Cycle).

Pseudomonas putida comprising Pp alkB genes on OCT plasmid degrades aliphatic
alkanes using the enzyme alkane hydroxylase consisting of membrane-bound oxygenase,
rubredoxin, and rubredoxin reductase (these cofactors help transfer electrons from Nicoti-
namide Adenine Dinucleotide Phosphate (NADPH) to hydrocarbon substrates); and yields
alkanols, which are degraded by alcohol dehydrogenase into alkanals, which are finally
transformed into fatty acids by aldehyde dehydrogenase and then to acetyl CoA by its
synthetase, as observed in Figure 4. Similar to this oxygenase’s di-nuclear iron cluster,
at the centre are methane monooxygenase and ribonucleotide reductase; for example,
n-alkane by Dietzia sp. and Marinobacter falvimaris; octane by Arthrobacter sp.; decane by
Bacillus sp. strain DHT; hexadecane by Haloarculavallismortis; and pristane by Marinobacter
aquaeolei. Not all bacterial species can synthesize the same enzyme. The bacteria secrete
specific enzymes, some of which can metabolize specific alkanes, whereas the others cleave
aromatic hydrocarbons [137–139]. Enzymes associated with alkane degradation include
monooxygenase, cyclohexanol-dehydrogenase, alcohol dehydrogenase, cyclohexanone 1, 2
monooxygenase, and methane monooxygenase [140].
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Alkenes lead to secondary alcohols, followed by ketones, then esters, and eventu-
ally fatty acids by monooxygenase. Bacteria often cleave cyclic rings by forming cis-
dihydrodiols with the aid of oxygenase and dioxygenase, e.g., phenol by Halomonas sp.;
benzoate by Haloferax sp. D1227; gentisate by Rhodococcus sp.; cinnamic acid and ferulic
acid by Halomonasorganivorans; benzene by Halococcus sp.; toluene by Arhodomonas sp.; and
xylene by Marinobacter hydrocarbonoclasticus [137,143]. Biodegradation of any petroleum
hydrocarbon depends solely upon the microbial consortia used. Enzymes involved in
naphthalene degradation are cis-2,3-dihydrobiphenyl-2,3-diol dehydrogenase, naphtha-
lene 1,2-dioxygenase ferredoxin reductase, and salicylaldehyde dehydrogenase, whereas
those related to other petroleum hydrocarbon degradation are toluene dioxygenase and
ethylbenzene dioxygenase [140,144].

Cytochrome P450 hydroxylases are frequently used for the aerobic bacterial activation
of medium chain length alkanes. In addition, P450-monooxygenase is associated with the
activation of aromatic hydrocarbons in mammals and filamentous fungi, suggesting the
mechanism is CoA thioesterification. Hybrid pathways would be truly beneficial for micro-
bial degradation of petroleum hydrocarbon, permitting flexibility and swift adaptation to
inconsistent O2 availability, because both oxic and anoxic conditions require CoA thioester
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substrates [145]. Multiple reactions, specifically oxidation, reduction, dehydrogenation,
and hydroxylation, are common in both anaerobic and aerobic metabolic pathways. Under
anaerobic conditions, aromatic compounds are initially oxidized to organic acids or phenol
and then distorted into long-chain unstable fatty acids, which are eventually metabolized to
CO2 and CH4 [142]. Carboxylation and the addition of fumarate are the initially preferred
biochemical mechanisms for the activation of alkanes [146,147]. The most common activa-
tion mechanism of microbial flora is the addition of fumarate to hydrocarbon aromatics via
the enzyme benzyl-succinate synthase [141]. The mechanisms are summarized as a flow
chart for enhanced understanding, see Figure 5.
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Evidence exists that links the growth of D. alkenivorans strain AK-01 (sulphate-reducing
microbe) to anaerobic oxidation of n-hexadecane and n-pentadecane. An analysis of its
metabolites revealed that C-odd and C-even cellular fatty acids were moulded from C-
even and C-odd n-alkanes, respectively. This similarity was also seen in strain Pnd3 and
Desulfatibacillum aliphaticivorans CV2803T. Furthermore, the latter strain and strain AK-01
secrete 2- to 8- branched ethyl branched fatty acids, in addition to 1-methylalkyl (succinates)
having a chain length that is correlated with those of the parent substrates when catalysed
by glycyl radical enzymes (n-alkanes: alkyl succinate synthase and cycloalkanes: succinate
synthetase), thus signifying that n-alkanes are activated anaerobically by fumarate addition
at the sub-terminal C-atom. Then, the metabolite undergoes a rearrangement of its carbon
skeleton, which produces intermediates on undergoing β-oxidation, and is eventually
transformed into acetyl CoA (benzoyl-CoA in the case of aromatic hydrocarbon), which
is oxidized to CO2. This whole fumarate addition reaction is exergonic, signifying that it
does not need exogenous energy to function. The cyclic alkanes are completely activated
through fumarate addition for additional degradation under anoxic conditions [145–147].

The next mechanism of activation is carboxylation, which, in previous research, was
achieved by the growth pattern of the sulfidogenic strain Hxd3. Based on the study, Hxd3
growth in the presence of H13CO3

− with varying chain lengths showed the formation of
fatty acids that were one C-atom shorter than the parent alkane. It is also known that the
carboxyl group consists of 13 C-atoms, which means that n-alkane is metabolized into fatty
acid intermediates by carboxylation, with the consequent removal of two sub-terminal C-
atoms from the alkane chain and the simultaneous inclusion of carbon at the third position.
Subject to the selective environment, anaerobic degradation may be advanced through
alternative activation mechanisms. As in the case of Pseudomonas chloritidismutans AW-1T,
this can produce O2 via chlorate respiration [145–147].
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The critical anaerobic pathways associated with microbial oil reservoir consortia are
the sulphate-reducing pathway (SRP), nitrate-reducing pathway (NRP), and methanogenic
pathway [8,12]. SRP involves SRB such as Desulfovibrionales, Desulfuromonadales, and
Desulfobacterales [128], which consume sulphate and sulphite, together with hydrocarbons
and fatty acids in the form of terminal electron acceptors (TEA), to reduce them to H2S gas,
and thus leading to crude oil saturation and corrosion in the reservoir [52,75].

When sulphate is present, SRPs outperform methanogens due to their high affinity
for substrates, and they avert electron flow from methanogenesis to sulfidogenesis. When
sulphate acts as a restraint, some SRPs survive by cooperating with syntrophic bacteria and
methanogens [128]. For example, archaeal members of the genus Archaeoglobus and the or-
der Thermococcales usually thrive in hydrothermal and thermophilic environments [64,146].
To rectify this souring, nitrate, which is a powerful metabolic inhibitor, is injected. Nitrate-
reducing bacteria (NRB) then reduce it to nitrite at a temperature range >45 ◦C and <65 ◦C,
and to dinitrogen in temperatures up to 45 ◦C [148,149].

Past research has shown that aliphatic and aromatic hydrocarbons can only be biode-
graded under anoxic conditions in which nitrate, sulphate, and metal ions function be-
cause TEA further helps to convert hydrocarbons into CH4 and CO2 in a process called
methanogenic crude oil biodegradation. This process needs at least two dissimilar microbes
(syntrophic bacteria and methanogenic archaea) due to thermodynamic constrictions [128].
Compared to other forms of anaerobic respiration, this is the least energetically demand-
ing process [146]. The methanogenic pathway converts substrates such as H2, CO2, and
CH3COO− into CH4 [128]. The methanogens eradicate the inhibitory effect of the end
metabolic biological products, thereby smoothing metabolic pathways and increasing oil
displacement [150]. Via this pathway, the microbes degrade the crude oil to heavy oil
deposits that settle at the bottom of the reservoir. To obtain clear reservoir zones, incessant
injection of sulphate-containing, nitrate treated water is added. This restricts NRB to the
wellbore and SRB to deeper regions [148].

5. Concept of Mathematical Modelling in MEOR

Various oil recovery techniques can be evaluated based on their variables (physical,
chemical, and biological) and their practical field relationship through mathematical mod-
elling. This need for improved and detailed models for MEOR is a highly time-consuming
task [151,152]. Numerical calculations help enhance the yield of oil and minimize the cost
of the technique. However, this is not straightforward, because the calculations involve
microbial activities that are subject to strict geo-environmental restrictions [55,153].

The variables in the model are τres, the bacterial residue time in a cylindrical reaction
zone [153] of radius rm, depth h, and porosity φ. They are related as:

τres =

[
π rm.2h φ ( 1 − Sor)

]
Q

(1)

where Sor is the residual oil saturation and Q is the volumetric flow rate to yield the
required concentration creq by time τres [128].

Sor is determined via the capillary number Ncap, which can be demarcated as the ratio
of viscous force to capillary force:

Ncap =
viscous force

capillary force
=

υ µ

σ cos θ
(2)

where υ and µ refer to the velocities of the displacing fluid, σ is the IFT between the forces,
and θ is the contact angle. Because the MEOR mechanism is intricate, mostly due to a
variety of microbial strains and their by-products, as shown in Table 1, Sor is inversely
proportional to Ncap [55,154].

First-order kinetics includes a description of the reaction’s complexity. A balanced
equation can be applied for the formation of metabolic products but its rate of production
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can only be found via experimentation. The multidimensional velocity flow of oil-water
multiphase fluid in porous media, and adsorption and diffusion of by-products, microbes,
and nutrients, are included in the modelling [155]. The model is divided into three portions:
the law of conservation, transport properties, and biofilm clogging. The law of conservation
lies at the heart of computational hydrology and the imitation of oil wells. The wettability
alteration, permeability and porosity alteration, IFT relaxation between oil and water in
porous media, and microbial clogging mechanism increase production of incremental oil
and its sweep efficiency [134]. Three-dimensional modelling, including these parameters
and additional assumptions, has helped in simulating a model for a hypothetical reservoir
with the provided experimental data [21,53,134,150,153,155,156].

The mathematical model can be simulated and modified as per commercial feasibility
and field requirements [157]. Different numerical calculations are based on various com-
positions and displacement mechanisms, and values of diffusion, focus point, adsorption,
residual oil saturation, and fluid viscosity. For instance, Wang used a 1-D two-phase,
five-component mathematical model to mimic the biopolymer flooding process in porous
media [158]. Sugai and his colleagues [159] developed a numerical simulator to estimate
souring induced by SRBs due to the injection of brine water into an oil reservoir. By
comparison, Sivasankar and Govindarajan [160] used a mathematical model to mimic
reservoir temperature and nutrient impact on biosurfactant production; and Hong and
colleagues [152] constructed a model based on a coupled non-isothermal multiphase model
and biokinetics to assess the potential of cold water MEOR in regions of high temperature.

6. A Vast Chronicle of MEOR History and Case Studies

Recent advances in petroleum microbiology have motivated refineries to be more
transparent in assessing and enhancing microbial production. As per the microbe’s compli-
ance with the reservoir, they are used for injecting and in situ oil recovery [161]. Usually,
bacterial strains are preferred due to their capacity to release trapped oil from mineral
rocks, in addition to several other superior characteristics [162]. This mixture of anaerobic
bacteria is recruited to effectively and efficiently produce metabolic bioproducts [11]. An
oil reservoir may undergo either a single well treatment or a full field treatment [13,128].

MEOR methods originate from laboratory-based studies. A timeline depicting the
long chronicle of MEOR history can be seen in Figure 6 [10,13,15,20,60,64,129,161,163].

Oman is a country known for its leading technologies in EOR and has sought to extend
the limits of the existing technology to establish new methods [25,164]. To date, several
field tests and laboratory tests have been carried out globally [165], and several successful
applications and their biological systems were identified by Nikolova and Gutierrez [12].
Five commercially important projects that showed significant incremental oil production
were located in the USA (two projects), Argentina (one project), and the Republic of China
(two projects). These case studies were then analyzed based on their production rate
or yield efficiency, incremental recovery, reduced water consumption, treatment design,
reservoir frequency, and effect of microbes on oil viscosity [4]. Table 3 shows various
project characteristics and compares them based on their screening criteria parameters (oil
viscosity, permeability, temperature, porosity, salinity, and water cut) and oil production
(treatment, shut-in period, well spacing, oil production rate, etc.). The data show that
recent reservoir studies indicate that ranges in temperature of 80–120 ◦C, the salinity of
>10,000 to 350,000 ppm, and permeability of 10 to 50 mD have expanded the horizon of
MEOR parameters [166]. The main reason for oil being left behind (OIP) is the lack of
funds. Theoretically, displaceable oil cannot be retrieved even if there is a route and ample
energy, due to the laws relating to fluid displacement in porous media [167]; however, Liu
and his team [168] showed a 19.58% increase in the oil recovery rate using biosurfactants
produced by Bacillus licheniformis L20.
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Table 3. Comparison of different project characteristics based on their screening parameters and oil production ability.
Abbreviations—OP: Oil Production, BL: Baseline, IP: Incremental Production, OIP: Oil in place, WF: Water flooding, ROS:
Residual Oil Saturation [4,128,169].

Parameters San
Andres

Queen
Sand Tupungato-Refugio Huabei Xinjiang

Location and
discovery

Hockley County,
Texas, USA (in 1945)

Ector County, Texas,
USA (in 1984)

Tupungato County,
Medoza, Argentina

(in 1930)

No. 3 plant, Renqiu,
China (in 1987)

No. 1 plant, Xinjiang
Uygur Autonomous

Region, China
(in 1991)

Comprises 30 producer and 15
injection wells

18 producer and 18
injector wells

Three producer wells
(Victor

Oscuro formation)
Seven producer wells 10 producer wells

Lithology Fractured dolomite

Porous grey
sandstone and

siltstone interbedded
with anhydrite

and salt

Fractured sandstone Sandstone Sandstone

Depth (ft.) 4745 4450 5700 6900 4900

Porosity (fraction) 0.079 0.182 0.18 0.232 0.30

Permeability
[Range] (mD)

1.7
[0.10–10.0]

13.0
[0.6–300]

300
[150–1500]

240
[20–640]

70
[0.2–440]

Temperature (◦F) 115 110 160 180 110

Oil Density (API) 29 30 28 28 29.6

Viscosity (cp) 4.5 11 9 14 50

Pressure (psi) 1000 - 50 732 -

Water cut (%) 91 74 63.5 to 62 60 64 to 54

Drive Mechanism

Solution Gas
(After 1967 water

flooding
was initiated)

Solution Gas
replaced by water
flooding in 1984

Gas drive, water
flooding and water
drive combination

Scattered
water flooding

Dispersed
water flooding

Treatment 19 months of
microbe treating

24 months of
Microbe treating

14 months of
microbe treating

12 months of
microbe treating
(each well thrice)

6 months of
microbe treating
(each well thrice)

Shut-in period 3 days then overnight
shut-in for 3 months

3 days; later, batch
treating took 6 to 12 h

48 h on two wells
and 24 h on the next Not shut Not shut

Spacing 25 acres 30 acres 42 acres - -

Avg. OP per well 14 bpd 42 bpd 90 bpd - -

% Decline
(%/year)

Initially 6.5, after
MEOR, it flattened

to 0.6

Initially 39, after
MEOR, it flattened
for a few months

then resumed at 31

Initially 7.1, after
MEOR, it inclined

to 7.3

Inclined and
flattened at 150 bpd

Sustained a rate of
about 300 bpd

OP Rate Increased by 10%
(40 bpd) Increased by 47% Increased by 29%

(60 bpd) Increased by 552% Increased by 36%
(80 bpd)

BL Production OP of 440 bpd is 10%
over BL

OP of 1000 bpd is
43% over BL

OP of 270 bpd is
29% over BL

OP of 150 bpd is
552% above BL

OP of 300 bpd is 36%
over BL

IP 17,000 bbl, i.e., 7%
over the BL

240,000 bbl, i.e., 34%
above BL

19,000 bbl, i.e., 19%
above BL

41,000 bbl, i.e., 216%
over BL

14,000 bbl, i.e., 43%
over BL

OIP after WF and
MEOR (bbl/ac-ft.) 205 and 199 691 and 660 509 and 442 Due to short duration

of the microbe
treatment, no
samples were

available for the field
treated oil.

Due to the short
duration of the

microbe treatment,
no samples were

available for the field
treated oil.

ROS under WF Drops from 35%
to 34.1%

Falls from 51.4%
to 49.1%

Drops from 38.3%
to 33.3%

Improvement with
MEOR (%) 2.5 4.5 13

As observed in Table 3, the Xinjiang project has the highest viscosity that creates
surplus space for microbial colonization; the lowest temperature, which favours microbial
growth; and the highest porosity and sandstone lithology. From this information, it can be
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argued that the Xinjiang Project is the leading example in the consideration of oil production.
All of these projects had a high water-cut percentage, which, following the application of
MEOR, either decreased or remained constant [4,37]. Table 4 portrays multiple projects in
powerful nations such as India, the U.S., and China [3,13,58,166].

Table 4. Some vital screening criteria parameters of recent projects in powerful nations—India, U.S. and China.

Parameters Institute of
Reservoir Studies U.S. Department of Energy China National

Petroleum Company

Location Ahmedabad, India Washington, DC, U.S. Beijing, China

Lithology Sandstone Sandstone Sandstone

Depth (ft.) 8000 10,000 -

Porosity (fraction) - - 0.17 to 0.25

Permeability (mD) Less than 50 Less than 100 More than 150

Temperature (◦F) 194 160 86 to 140

Oil Density (API) 20 18 to 40 -

Brine Salinity (g/L) More than 10 More than 10 More than 100

pH 6 to 9 - -

Viscosity (cp) 20 - 30 to 150

Residual Oil Saturation (%) Less than 25 Less than 25 -

Pressure (psi) Less than 4267 - -

Water cut (%) 30 to 90 - 60 to 85

Oil production has collapsed in many reserve regions around the world as a result of
oil field development; the best example is the North Sea Field [25,31]. Another important
factor is the challenge to identify novel oil wells as a substitute for previously exploited,
abandoned oil wells. Of the fossil fuels, 80% to 90% of the world’s current energy generation
is based on oil and gas [59]. In recent years, the majority of the oil remaining in reservoirs,
particularly in peripheral and developed reserves, has been due to the lack of a low-cost
operating method [170]. Research is underway in this field, with the results from both novel
and longstanding approaches being carefully assessed [171]. Contemporarily, the oil sector
has reached its peak; improving marginal and abandoned reserves will not only activate
these wells for production but will also help operators to maximize their profit [59]. There
are numerous benefits of employing MEOR compared to EOR [11,15,55,96,129,157,171].
Despite the positive results of field testing, MEOR has not received the attention of the
petroleum refineries due to technical bottlenecks. In addition, a negative perception exists
regarding the use of microbes, although the tests carried out by laboratories have proven
these to be safe [60,156]. Numerous other factors are currently contributing to the lack of
attention being paid to this approach [11,12,22,36,42,51,55,64,74,154,163]. Its limitation and
benefits are listed in Figure 7.
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7. Trends and Ventures in MEOR

Genetically engineered microbial enhanced oil recovery (GEMEOR) and enzyme
enhanced oil recovery (EEOR) are emerging areas of industrial interest. The former uses
genetic engineering techniques, including recombination technology, protoplast fusion,
and mutagenesis, to extract desirable features from multiple organisms and create more
efficient strains, thereby enhancing oil recovery and making the process economically
feasible. This approach has not yet been extensively applied to the fields, and it has been
predominantly investigated in laboratories and pilot-scale testing. Enzymes with EOR
potential are Greenzyme, the Zonase group, and the Novozyme group. The latter uses
enzymes in consortium with other enzymes or surfactants to enhance oil recovery by
altering IFT, wettability, mobility, and capillary action, leading to easy oil recoverability.
The development of novel metagenomics approaches can also be observed as a growing
trend [3,20,64].

Another practical strategy for the development of MEOR is switching its application
direction from microbial processes to bioproduct utilization. Metabolic products, especially
biosurfactants and biopolymers, have been extensively developed. Researchers have
successfully produced these bio-based formulas for Selective Plugging Recovery (SPR),
Flooding Recovery (MFR), Cycle Microbial Recovery (CMR), and Wax Removal (MWR).
These technologies are all based on the contributions of microbes and their metabolic
products [13,58].

Globally, several public and private sector ventures are currently underway concerning
MEOR. Public sector ventures include Durham University (Durham, England, United King-
dom); Sultan Qaboos University (Muscat, Oman); Saudi Arabian Oil Company (Dhahran,
Saudi Arabia); CSIRO—Commonwealth Scientific and Industrial Research Organisation
(Canberra, Australia); Oil and Natural Gas Corporation Limited (ONGC) and The Energy
and Resources Institute (TERI)–ONGC TERI Biotech Limited (New Delhi, India); United
States Department of Energy; Equinor ASA (Stavanger, Norway); RIPI—Research Institute
of Petroleum Industry (Tehran, Iran); DuPont Sustainable Solutions (Virginia Beach, VA,
United States); Royal Dutch Shell (The Hague, The Netherlands); Pemex (Mexico City,
Mexico); BP p.l.c. (London, England, United Kingdom); and Norwegian University of
Science and Technology (Trondheim, Norway). Private sector examples include ONGC
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IRS—Institute of Reservoir Studies (Gujarat, India); Glori Energy Inc. (Houston, TX, United
States); ZFA Technologies Co. Ltd. (Jiangsu, China); Titan Oil Recovery, Inc. (Beverly Hills,
CA, United States); Yara International ASA (Oslo, Norway); Oppenheimer Biotechnology,
Inc. (Austin, TX, United States); Salym Petroleum Development (Moscow, Russia); Delft
Inversion (Delft, The Netherlands); and Rawwater Engineering Company Ltd. (Warring-
ton, England, United Kingdom). These are only a few of the well-known organizations or
institutions that are currently working on or with MEOR [42].

8. Conclusions

• MEOR is undoubtedly a visionary approach to the field of oil recovery, although
concerns have previously been raised about the Industrial Proposal Standards required
to implement field microbial processes.

• A number of challenges and complications must be addressed before MEOR can be
used. Although progress has been made, past approaches should also be scrutinized.

• It is argued that MEOR is cost-effective, eco-friendly, and most suitable for mature oil
wells with a high water cut and that it is a feasible alternative to conventional methods.

• New biological trends such as GEMEOR and EEOR may be the innovative strategies
required to produce the desired breakthroughs. These advances may tilt the global
energy balance towards cheaper prices and encourage domestic production.

• An aspiring advancement program of studies would thus be required to verify the
feasibility of MEOR. Integrated research and cross-disciplinary collaboration between
the fields of petroleum engineering, economics, geology, bioengineering, and microbi-
ology are highly recommended for better results.
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