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Abstract: Existing Reynolds Averaged Navier–Stokes-based transition models do not accurately
predict separation induced transition for low pressure turbines. Therefore, in this paper, a novel
framework based on computational fluids dynamics (CFD) driven machine learning coupled with
multi-expression and multi-objective optimization is explored to develop models which can improve
the transition prediction for the T106A low pressure turbine at an isentropic exit Reynolds number of
Re2is = 100,000. Model formulations are proposed for the transfer and laminar eddy viscosity terms
of the laminar kinetic energy transition model using seven non-dimensional pi groups. The multi-
objective optimization approach makes use of cost functions based on the suction-side wall-shear
stress and the pressure coefficient. A family of solutions is thus developed, whose performance is
assessed using Pareto analysis and in terms of physical characteristics of separated-flow transition.
Two models are found which bring the wall-shear stress profile in the separated region at least
two times closer to the reference high-fidelity data than the baseline transition model. As these
models are able to accurately predict the flow coming off the blade trailing edge, they are also able to
significantly enhance the wake-mixing prediction over the baseline model. This is the first known
study which makes use of ‘CFD-driven’ machine learning to enhance the transition prediction for a
non-canonical flow.

Keywords: machine learning; multi-objective optimization; low pressure turbine; transition; turbu-
lence modeling

1. Introduction

As air travel is predicted to see continued growth, the aviation industry is focused
on further improving the efficiency of gas turbines. Any technological advances which
incrementally increase gas turbine efficiency can save millions of dollars, reduce carbon
emissions, and create a sustainable future. One place to bring about such a change is at the
grassroots level of engine component design by understanding and enhancing the ability to
model the flow physics of these components in an increasingly holistic, yet cheaper manner.

Low-pressure turbines (LPT) are one of the most important components which drive
the efficiency of gas turbines. If the efficiency of the LPT increases by 1%, the specific
fuel consumption will decrease by 0.6–0.8% [1], translating into considerable fuel savings
and emissions reductions, considering the volume of operations. LPT design and analysis
is challenging as there is a large variation in flow physics between the aircraft taking
off and entering cruise conditions. The Reynolds number of LPTs ranges from 0.5 × 105

at cruise to 5 × 105 at takeoff [2]. This causes a change in the boundary layers from
turbulent at takeoff to transitional at cruise, which is the major portion of the flight.
At lower Reynolds numbers (cruise), boundary-layer transition and separation play an
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important role in determining engine performance. There are three modes of transition:
natural, bypass and separated-flow [3]. In LPTs, bypass and separated-flow transitions
are the most common transition modes. Natural transition begins with weak instabilities
in the laminar boundary layer, which lead to three-dimensional instabilities resulting in
turbulent spots [4]. However, when free-stream turbulence intensities are greater than
1%, boundary layers typically proceed from laminar to fully turbulent states without the
occurrence of linear instabilities, thus bypassing various stages of natural transition. This
is called bypass transition. Transition may also occur in the free shear-layer flow that
results when a laminar boundary layer separates. The flow could reattach and form a
laminar-separation/turbulent-reattachment bubble or could remain detached resulting
in an open separation. Separated-flow transition occurs in regions of adverse pressure
gradients near the leading edge or after peak suction in LPTs. Separated-flow transition also
plays an important role in periodic unsteady transition wherein unsteady incoming wakes
from previous blade rows interact with the separation bubble on the LPT suction-side [5].
Separated boundary layers with longer separation bubbles produce greater loss and cause
larger deviation in exit flow angles [6], and they are thus to be avoided. At low Reynolds
numbers, transition controls the extent of the separation bubble and a reliable prediction of
these aspects is crucial for the design of blades with high-lift.

With the increase of computational power, high-fidelity simulations [1,7] that are able
to accurately predict the transition phenomena have become feasible. However, they are
still not viable as an iterative industrial design tool, due to the associated high cost. Thus,
industry remains quite heavily dependent on RANS (Reynolds Averaged Navier–Stokes)
calculations as they are a cost-effective way of modeling turbulent flows for engineering
solutions. Several transition models are at the disposal of turbomachinery designers [8].
The γ− Reθ model [9] uses two transport equations for the intermittency (γ) and transition
momentum thickness Reynolds number (Reθ), in addition to the turbulent kinetic energy
(TKE) and specific dissipation. A class of models uses the laminar kinetic energy (LKE)
concept [10,11], wherein an additional transport equation is solved for the LKE. The kv2ω
model solves an additional transport equation for v2, which represents wall-normal velocity
fluctuations responsible for transition initiation. However, all of these existing RANS-based
transition models struggle to accurately predict the onset and extent of separation on the
suction-side of the aft portion of the LPT blade. Therefore, novel methods and models
have to be explored in order to enhance the accuracy of transition prediction in the context
of RANS.

Data-driven turbulence modeling is a field that has gained tremendous momentum in
recent years [12]. In fact, many leading researchers [13–15] view data-driven turbulence
modeling as a promising avenue for bridging the gap between the accuracy of high and low
fidelity simulations, while maintaining the same order of cost as low-fidelity calculations.
With the help of machine learning processes, high-fidelity datasets can be harvested to
extract meaningful physics-based insights to improve the accuracy of RANS calculations.
Many different data-driven approaches have been applied to a large variety of industrially
relevant cases. Neural networks embedding Galilean invariance to modify the anisotropy
tensor were proposed by Ling et al. [16]. With these neural networks, they improved the
Reynolds stress and velocity field predictions over linear eddy viscosity models for duct
flows and flow over wavy walls. Milani et al. [17] extended the work of Ling et al. [16] and
developed a deep neural network to model the scalar-flux of turbulent diffusivity for two
different jets in crossflow. Milani et al. [18,19] also used random forests to improve heat-
flux modeling for film cooling applications. A more comprehensive overview of existing
data-driven methods for turbulence model development can be found in [12,20,21].

It is evident that neural networks are the most popular way to improve the Reynolds
stress and mean flow prediction. However, one major drawback lies in their ‘black box’
nature—they are difficult to interpret as physics-based information remains hidden in
the network. An alternative that addresses this issue is symbolic regression, which pro-
duces interpretable and explicit model forms. Ferreria [22] introduced gene expression
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programming (GEP) which was a new evolutionary algorithm for solving regression
based problems. Weatheritt and Sandberg [23] developed GEP for turbulence modeling,
which creates Galilean invariant turbulence closures, also known as explicit algebraic
Reynolds stress models (EARSM). The GEP algorithm for turbulence model development
produces tangible symbolic expressions which can be correlated to physical phenomena
and can be directly inserted into RANS codes. For example, Akolekar et al. [24] corre-
lated different models from GEP to physical mechanisms such as laminar separation and
wake–wake interactions in LPTs with unsteady inflow conditions using a zonal model
development approach.

GEP also offers the added advantage of less computational cost over neural networks,
in both the development and implementation phases. GEP has been successfully applied
to a number of canonical and industrial (complex flows) turbulence modeling problems
by enhancing the flow prediction capability for RANS and LES. Akolekar et al. [25] devel-
oped EARSMs for enhancing the prediction of LPT wake flow originating from open and
closed separated boundary layers using ‘frozen’ [26] high-fidelity databases (the ‘frozen’
methodology only solves the RANS equations for those quantities which cannot be directly
obtained from a high-fidelity database—for example, the specific dissipation rate (ω) is not
readily available from a high-fidelity database and is thus derived from a RANS calculation
while keeping all other values constant—i.e., as derived from high-fidelity calculations).
They also tested these EARSMs successfully on high-pressure turbine (HPT) flows [27],
thus demonstrating the robustness of the models developed. Weatheritt et al. [28] devel-
oped GEP-based EARSMs for HPTs and assessed their performance in an a priori sense.
Recently, Zhao et al. [29] introduced a novel ‘CFD-driven’ (computational fluid dynamics)
framework for turbulence model development based on GEP. This algorithm uses RANS
feedback as part of the model training process. It was found that this method has high
potential for offering robust turbulence closures to enhance the wake mixing prediction
across different high and low pressure turbine operating conditions and blade geome-
tries [30]. Waschkowski et al. [31] recently proposed a multi-objective and multi-expression
extension to the ‘CFD-driven’ framework. The multi-objective approach makes use of
different cost functions simultaneously, whereas the multi-expression capability develops
coupled turbulence closures across different regions of the flow field.

Efforts to enhance the accuracy of transition modeling with machine learning have
only recently begun. Zafar et al. [32] developed a convolutional neural network based
transition model capable of accurately predicting the transition onset location for in-
compressible, two-dimensional attached flows in a physically informed manner, without
requiring direct computations, from linear instability theory. Yang and Xiao [33] developed
a framework to improve transition models using field inversion and machine learning for
airfoils. There are no studies, however, which focus on enhancing transition prediction of
RANS models using machine learning for LPTs. There is thus immense scope to improve
the performance of existing RANS models for transition prediction with machine learning
techniques. GEP is an ideal algorithm to formulate new transition models as expressions
can be formulated which yield physical insights into the modeling process.

This study, therefore, proposes a novel machine learning framework based on GEP
to generate models which enhance the prediction of separated-flow transition in LPTs.
First, a brief overview of the LKE transition model [11], which is the baseline model used
in this study, is presented. The functional forms of the LKE model’s production and
transfer terms are then modified using non-dimensional pi groups [34] based on local
flow quantities. An extensive discussion ensues on the scientific ideology of making use
of these particular pi groups. Using the recently developed multi-objective cost function
based GEP algorithm [31] and the ‘CFD-driven’ [29] framework, models which enhance
the separated-flow transition are proposed. The performance of these models is evaluated
in terms of Pareto analysis and physical characteristics such as wall-shear stress, blade
loading and turbulent wake mixing. This is the first known study which makes use of ‘CFD-
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driven’ machine learning to enhance the separation-induced transition prediction based on
multi-objective and multi-expression optimization using non-dimensional pi groups.

2. Transition Modeling

The LKE transition model [11] is used as the baseline model. This section discusses
the transport equations used for the LKE transition model. It also discusses the intricacies
of making possible improvements in the LKE model using non-dimensional pi groups.

2.1. Laminar Kinetic Energy Model

This study makes use of a transition model developed by Pacciani et al. [11] which is
based on the LKE concept, as introduced by Mayle and Schulz [35], and takes into account
the pre-transitional rise of the fluctuating kinetic energy. The modeled transport equation
for the LKE (kl), with ν as the kinematic viscosity, is

Dkl
Dt

= Pl − 2ν
kl
y2 + ν∇2kl − R. (1)

The gradual rise of pre-transitional energy in the separated region is modeled using
a production term (Pl) based on the mean shear rate (S) and a laminar eddy viscosity
concept [36]. It is expressed as

Pl = νlS2,

νl = C1 f1
√

klδΩ,

f1(Tu) = max
[
0.8, 2.0 · tanh

(( Tu
4.5

))]
,

δΩ = maxy

(U
Ω

)
,

(2)

where νl is the laminar eddy viscosity, C1 = 0.01, f1 is defined as a function of the inlet
free-stream turbulence intensity (Tu), δΩ is the maximum in the normal-to-the-wall di-
rection shear-layer vorticity thickness which is assumed as a length scale representative
of separated laminar flow and l is a proper length scale, characteristic of the transition
mode to be represented (natural, bypass or separated-flow). Ω is the vorticity magnitude
and U is the magnitude of velocity. The choice of a vorticity-based length scale for the
LKE production term was motivated by the fact that the most unstable wavelength in the
separated shear-layer is related to the shear-layer thickness. The fluctuating energy is then
gradually transferred to the turbulence field via a transfer term (R) which is defined as

R = C2β∗ f2ωkl ,

f2 = 1− e−ψ/C3 ,

ψ = max(0, Ry − C4),

Ry =

√
ky
ν

,

(3)

with C2 = 0.3, C3 = 8, C4 = 10 and β∗ = 0.09. f2 is a damping function and Ry is the
wall distance Reynolds number with y as the wall-normal wall distance. The quantity ψ
can be considered as the transition parameter as it controls the transfer of energy from
the laminar to the turbulent state, which occurs when the wall distance Reynolds number
Ry reaches the threshold value of C4. The term R appears in both laminar and TKE (k)
transport equations which indicates no net change in the total fluctuating kinetic energy.
This term implies that there is a transfer of energy from kl to k. The TKE transport equation
is written as

Dk
Dt

= Pk − β∗ fkkω +
∂

∂xj

[
(ν + σkνT)

∂k
∂xj

]
+ R, (4)
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where σk = 0.5 and the TKE production (Pk) is modeled as

Pk = τij
∂ui
∂xj

= fµνtS2, (5)

where τij is the Reynolds stress tensor from the Boussinesq approximation [37], S is the
magnitude of the strain-rate tensor and νT is the turbulence eddy viscosity. The closure
damping functions are

fµ = 1− 0.975 exp
(−ReT

2.5

)
; fk = 1− 0.722 exp

[
−
(ReT

4.5

)4]
, (6)

where ReT is the turbulence Reynolds number and is equal to k/(νω). The transport
equation of the specific dissipation rate is given as

Dω

Dt
= α

ω

k
Pk − βω2 +

∂

∂xj

[
(ν + σωνT)

∂ω

∂xj

]
, (7)

with α = 3/40, β = 5/9 and σω = 0.5.

2.2. Proposed Model Formulation

In the LKE transition model, the LKE production (Pl) and transfer (R) terms play a
crucial role in determining the transition onset and extent. It is proposed in this study
to modify certain parts of these terms. The scientific ideology as well as the method of
achieving this is discussed below.

2.2.1. Scientific Ideology

The LKE model, with some success, was applied to the prediction of separated-flow
transition in LPT cascades by Pacciani et al. [11,38], where the vorticity thickness of the
separated shear-layer was assumed as a length scale. However, the eddy viscosity equation
(Equation (2)) has two significant drawbacks. Firstly, it involves non-local quantities
(e.g., the shear-layer vorticity thickness). Secondly, it does not account for the free-stream
turbulence level. This latter deficiency was addressed by introducing the function f1, which
is expressed in terms of the inlet free-stream turbulence intensity Tu. Such a modification
yielded satisfactory results on isolated cascades, as shown by Pacciani et al. [39]. However,
the νl term has to consequently be modified in order to include only local quantities.

The transfer term R is formulated following Walters and Cokljat [10]. Equation (3)
has proven to be reliable in RANS calculations of separated-flow transition as it results
in separation bubble lengths, transition onset locations and pressure recovery prior to
reattachment that are in good agreement with experimental data [11,38]. On many accounts,
it is observed that the transition onset is dependent on the Reynolds number, pressure
gradient and free-stream turbulence intensity. It is therefore argued that the term Ry − C4
in the ψ function is too crude for triggering the transition onset. A better formulation,
which is representative of the flow physics, has to be found for ψ.

In addition, the LKE model [11] was conceived for separated-flow transition prediction
as the adopted length scale is a useful measure of the most unstable Kelvin–Helmholtz
(KH) modes. The length scale also bears a loose relation with fluctuations developing
in attached boundary-layers (Tollmien–Schlichting waves and Klebanoff streaks). A step
forward towards a true LKE-based multi-mode model requires a more general framework
that is able to address the growth of pre-transitional fluctuations in attached and separated
boundary layers under the effects of the turbulent scales coming from the free-stream.
Therefore, we propose the use of non-dimensional pi groups in order to modify certain
terms of the LKE model. The use of machine learning (see Section 3) will make the process
more efficient and holistic.
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2.2.2. Non-Dimensional Pi Groups

The transition problem is based on a number of local independent dimensional vari-
ables. In order to best capture the effect of these independent dimensional variables on the
dependent variables (for example, the ψ term), the Buckingham pi theorem [34] is used
to create dimensionless groups, called pi groups. Seven non-dimensional pi groups are
considered as possible input parameters to modify the LKE production term (Equation (2))
and the transfer term (Equation (3)) as

Π1 =
kl

νΩ
; Π2 =

Ωy
U

; Π3 =
y
lt

; Π4 =

√
ky
ν

;

Π5 =
k

νΩ
; Π6 =

Sy
U

; Π7 =
ω

Ω
,

(8)

where ν is the kinematic viscosity and the turbulence length scale is defined as lt =
√

k
ω . The

particular choice for the pi groups is motivated by their widespread use as transition sensor
functions in a variety of models (Π4, Π5 and Π6 [8]), by their nature of scale-determining
terms for laminar fluctuations (Π1, Π2 and Π6) or for turbulent fluctuations coming from
the free-stream (Π3 and Π7). Π1 can be regarded as the ratio of two time scales: the
time scale for the convection of disturbances in the laminar boundary layer (1/omega)
and the time scale for the diffusion of large-scale fluctuations (e.g., KH instabilities) from
the edge of the shear-layer (kl/νω2). Π2 and Π6 are relevant scales for the separated
shear-layer thickness with the advantage of being local parameters. In the construction
of such groups, the use of the vorticity magnitude in favor of the strain rate appeared
somewhat arbitrary. It was therefore decided to include both formulations, letting the
machine learning framework determine the respective roles. Π3 is a scale-determining
term for the turbulent fluctuations coming from the edge of the boundary layer. Π4 is a
turbulent Reynolds number based on wall distance. It accounts for the rise of turbulent
kinetic energy inside the boundary layer. Its use as a transition onset parameter is extremely
common in transition frameworks coupled with kω turbulence models [8–10]. In this role,
it is a fundamental component of the original model formulation and it has proven effective
in switching on the transfer term when transition is initiated. Π5 is a well-established
shear-sheltering parameter. Shear-sheltering is the phenomenon by which small-scale,
high-frequency, freestream perturbations are damped out by the laminar boundary layer.
Π7 is again the ratio of two time scales, where the laminar fluctuation time scale is now
compared with the turbulent time scale (1/ω).

Based on the shortcomings of the LKE model (Section 2.2.1), we propose to modify
the laminar eddy viscosity (νl) term from the LKE production term (Pl) and the transition
parameter (ψ) from the transfer term (R) using the non-dimensional pi groups. If a local
formulation for νl has to be found in terms of non-dimensional pi groups and local flow
quantities, it can be represented as

νl = f1ay
√

kl , (9)

where f1a = f (Πi). The machine learning processes in the model development process are
tasked to find an expression for f1a based on symbolic regression. There is no restriction on
the order or the number of terms in the expression of f1a. In order to ensure realizability of
the production term, only the terms which ensure f1 > 0 are selected for model evaluation,
which is enforced by a limiter. It was also found that, to keep an upper limit on the value
of f1a, an additional limiter min( f1, f1a) is also used. This limiter ensures stability and ease
of convergence in the calculations. It also ensures that f1a is activated only in the regions of
interest, and not everywhere, as is evident in Section 5.2.3.

In its current form, ψ can be represented in terms of the non-dimensional pi groups as
ψ = max(Π4 − C4, 0). Initially, an attempt was made to find an expression for ψ without
the use of a limiter. However, it was found that it was creating non-physical and unstable
solutions in the laminar boundary layer as it was activating the transfer term which should
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be zero in the laminar boundary layer. Another consideration was to model the entire
transfer term (R); however, the machine learning algorithm was not proposing a transfer
function which would tend to zero when moving closer towards the wall. A consideration
was also made on whether only the LKE production term or transfer term can be modified,
without modifying the other one. However, since there is strong coupling between the
two terms, both have to be modified together. Therefore, using any linear or non-linear
combination of the non-dimensional pi groups, an expression is to be found for

ψ = max( f2a(Πi), 0). (10)

3. Machine Learning Framework

This section discusses the various aspects of the machine learning transition mod-
eling framework. The advantages of the ‘CFD-driven’ algorithm and the extensions by
Waschkowski et al. [31] are explained. The methodology of this framework is also elucidated.

3.1. Advantages

GEP-based EARSM development had been centered around the ‘frozen’ approach [24,25]
until the integration of CFD with GEP was made by Zhao et al. [29]. The ‘CFD-driven’
approach is feasible with GEP, because the GEP algorithm returns explicit model equations
that can be instantly and automatically be implemented into RANS solvers during the
model development process. Since RANS calculations are then performed as part of the
training loop, the resulting ‘CFD-driven’ models are tested in their target environment and
are thus ready to be directly implemented into industrial design tools. Another advantage
of the ‘CFD-driven’ training is that the definition of the cost function is more flexible as
compared to the ‘frozen’ approach. Rather than being restricted to the quantities that can
be directly calculated from the model equations, such as the anisotropy tensor or TKE
production, the cost functions used in the ‘CFD-driven’ approach can be tailored to capture
any important flow feature of interest. One can specify any mean or secondary statistic
profiles in order to derive a suitable model. In fact, if large databases of high-fidelity
data are unavailable and only few experimental or high-fidelity profiles are available,
this approach has the potential to offer suitable models based on this limited data. This
approach also ensures that the models generated are numerically stable as they have
already been executed in CFD calculations. This ‘CFD-driven’ framework has so far been
successfully applied to turbulence model improvement for wake mixing problems [29,30].

All current machine learning frameworks in the context of data-driven turbulence
modeling, including GEP-based model development (both ‘frozen’ and ‘CFD-driven’),
are limited to developing one model per training run and only use one cost function (or
a single training objective). However, the recent study of Waschkowski et al. [31] intro-
duced multi-expression and multi-objective capabilities as extensions to the ‘CFD-driven’
approach to overcome these limitations. By developing expressions for multiple mod-
els, e.g., an anisotropy and a turbulence heat flux model, simultaneously and assigning
a shared cost function value to the trained models, multi-expression training is able to
take the coupling effects of these models on the RANS predictions into account. This
extension derived significantly improved turbulence models for a vertical natural convec-
tion flow with strongly coupling momentum and thermal fields. The second extension
by Waschkowski et al. [31] made the use of multiple cost functions feasible for the ‘CFD-
driven’ framework. A multi-objective optimization algorithm based on the concept of
Pareto dominance was implemented. Previously, with only one cost function available,
several quantities of interest were combined into a composite function, which required
weighting these quantities before training. The multi-objective extensions allows a trade-off
between the cost functions after analyzing the training results. Additionally, this extension
yields a diverse set of candidate solutions, which was demonstrated to be an important
asset in order to select physically plausible models.
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3.2. Methodology

Figure 1 depicts the methodology of the transition modeling framework used in
this study.

Evaluation
Cost function 1
Cost function 2

GEP 
Algorithm

RANS

RANS

Expr. 1
Expr. 2

Expr. 1
Expr. 2

... ...

...

Generation loop:

Set of candidate
transition models

Figure 1. ‘CFD-driven’ transition model development with the multi-objective and multi-
expression approach.

Initially, a population of candidate models is created. In contrast to previously develop-
ing EARSMs, the GEP algorithm formulates two expressions per candidate solution—one
each for f1a and f2a. The ‘CFD-driven’ approach reads the candidates’ functional forms
into RANS solvers and performs a series of RANS-based CFD calculations in parallel. The
converged CFD solutions are then evaluated against one or more cost functions. This
work makes use of two cost functions—the normalized mean squared errors between
RANS and time-averaged high-fidelity data of the wall-shear stress and the pressure co-
efficient. Section 5.2.1 discusses these cost functions in greater detail. Finally, based on
the cost function values or fitness of the candidate models, a new generation of candi-
dates is formed through natural selection and genetic modifications (refer to [23,40] for
additional details). The updated models are evaluated again through integrated CFD
calculations. This training process iterates and the population of candidate models evolves
over numerous generations.

4. Numerical Setup and Configuration

The numerical setup and the flow configuration are briefly discussed in this section.
The T106A LPT linear cascade was used to develop transition models with the ‘CFD-driven’
multi-objective framework. Steady, compressible and 2D RANS calculations with steady
inflow conditions were conducted using the TRAF solver [41]. The focus of this study was
the midspan section of the T106A LPT blade, which is the highest source of loss [6] in an
LPT cascade. The midspan section can be approximated as a 2D (quasi-3D) case.

The flow configuration was chosen so that the inflow conditions, Reynolds number
and Mach number match the experimentally-validated direct numerical simulation (DNS)
data of Michelassi et al. [1]. The isentropic exit Reynolds number and Mach numbers were
Re2is = 100,000 and Ma2is = 0.4, respectively. The inlet free-stream turbulence intensity
(Tu) was set to 4%.

Figure 2 shows the LPT domain used with the real (C) and axial chords (Cax) shown.
At the inlet, the stagnation pressure and temperature along with the direction of the velocity
vector (46.1◦ anti-clockwise from the horizontal at the blade leading edge) are specified.
The upper and bottom edges of the domain have pitchwise periodic boundary conditions.
The grid, which has been used for previous studies [30,40], has approximately 83,000 points
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in the domain, with an O block around the blade and an H-block stitched on for the wake
region. There are more than 30 points in the boundary layer with a y+ < 1 for the first-off-
the-wall points on both sides of the blade. An extensive grid convergence study for this
grid was conducted by Akolekar [40]. All the viscous terms for the RANS calculations are
discretized using second-order central difference schemes, whereas the inviscid fluxes use
a second-order cell-centered scheme for discretization.

Figure 2. The T106A blade geometry and computational domain with boundary conditions.

The axial distance between the inlet boundary and the blade LE was established to
be consistent with the position of the turbulence generating grid in the test rig where the
measurements used for validation in [38,39] were taken. Such a configuration ensured
a good mesh quality and was not altered in the present work. The location of the outlet
boundary of the computational domain was chosen to allow wake traversing for a range of
axial distances where a possible downstream blade row is expected to sit. The presence
of the H-type stitched block ensures mesh density of sufficient quality to prevent the
wake from being smeared. The wake profile comparisons, which give indications on the
predicted level of wake mixing, are thus expected to be significantly reliable.

5. Results and Discussions

Using single and multi-objective optimization, models are developed using the ma-
chine learning framework outlined in Section 3 for the T106A LPT linear cascade at
Re2is = 100,000. This section discusses the performance of the models developed in terms
of mean quantities such as the wall-shear stress, pressure coefficient and stagnation pres-
sure loss profiles. Pareto analysis is also conducted to discuss the performance of the
models developed via multi-objective optimization.

5.1. Single-Objective Optimization

Initially, a single-objective cost function was used to develop expressions for f1a and
f2a. The baseline RANS case, cost function used and the performance of the developed
model are discussed in this section.

5.1.1. Baseline RANS Calculation

Figure 3 shows the suction-side wall-shear stress (τw) from the baseline RANS case
(i.e., using the LKE model with the relations outlined in Section 2.1) and DNS data [1].
At Re2is = 100,000, the boundary layer separates and then reattaches, thus depicting a
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closed separation. In Figure 3, it is also very clear that the current baseline model does
not predict the wall-shear stress accurately. What matters the most from the perspective
of the boundary layer loss and subsequent downstream wake mixing loss is the accuracy
of the prediction of the wall-shear stress close to and downstream of the separation onset
(x/Cax ≈ 0.84).

Figure 3. (a) Suction-side wall-shear stress from the baseline LKE model and DNS. (b) Zoomed view of the wall-shear stress
in the separated flow region, near the blade trailing edge.

As shown in Figure 3, the baseline LKE model offers a suitable prediction of the
separation onset and extent, although the predicted reattachment occurs slightly earlier
than for the high-fidelity data. The transition location, which occurs at the minimum
wall-shear stress (x/Cax = 0.972), is predicted quite closely with respect to the DNS data.
However, there is still plenty of scope to improve the prediction of the wall-shear stress in
the separated flow regions, especially in the region leading to and immediately after the
transition location (i.e., overshooting in the wall-shear stress profile).

5.1.2. Cost Function

Initially, a single-objective cost function was used in the ‘CFD-driven’ framework.
This cost function revolved around minimizing the difference between the wall-shear
stress obtained from RANS with respect to the one from DNS. Since the main objective
of this study was to improve the separation prediction, the wall-shear stress data from
0.75 ≤ x/Cax ≤ 1 was selected. The cost function (JSO) using a single-objective function
(SO-Model) is

JSO =
1

∑
x/Cax=0.75

(
τDNS

w − τRANS
w

)2
. (11)

5.1.3. Analysis of the SO-Model

The ‘CFD-driven’ framework was able to provide suitable functional forms for f1a and
f2a that significantly reduced the value of JSO. For the baseline case, the value of the cost
function is 4.147× 10−6, and, for the SO-model, the value of JSO is 0.192× 10−6. In order
to obtain this solution, 90 generations, similar to the ‘CFD-driven’ model development
for LPT wake mixing [30], were required with a population of 125 candidates. The new
formulations of f1a and f2a were applied across the entire blade, even though they were
developed using reference data from 0.75 ≤ x/Cax ≤ 1. The wall-shear stress plot is shown
in Figure 4a and the pressure coefficient plot (Cp) is shown in Figure 4b. The framework
produces a model that results in a close match with the DNS wall-shear stress in the
separated-flow region. It even gets the reattachment location predicted correctly. Since the
region immediately upstream of x/Cax = 0.75 was not included in the cost function, there
is not much change in the wall-shear stress behavior there. The SO-model, however, also
improves the prediction of the leading-edge separation, even though that region was not
included as part of the training data.
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Figure 4. (a) Suction-side wall-shear stress and (b) pressure and suction-side pressure coefficient for the SO-Model, baseline
case and DNS.

Even though the wall-shear stress prediction has improved with the SO-model, the
pressure coefficient (Cp) distribution has worsened over the baseline case, especially in
the separated flow region on the suction-side. As the baseline case and DNS both show,
there should be a plateau in the pressure coefficient plot when the flow separates. The
SO-model, unlike the baseline case, does not predict a strong peak in the separated flow
region in the wall-shear stress plot. The strong peak in the wall-shear stress is a peculiarity
of the LKE framework, as it is the result of the turbulence ‘ignition’ by the transfer term. In
the authors’ experience, the position of the minimum wall-shear stress and the subsequent
ramp in wall-shear stress is crucial to get the correct pressure coefficient distribution in the
separated region. As the SO-model does not show this behavior, it tends to worsen the
pressure coefficient predictions over the baseline case.

5.2. Multi-Objective Optimization

Next, the multi-objective optimization approach is used to develop transition models.
This section discusses the cost functions and the performance of the solutions obtained
with respect to the cost functions and physical characteristics.

5.2.1. Cost Functions

The main motivation to explore the avenue of multiple cost functions was due to the
worsening in the pressure coefficient prediction in the separation region on the suction-
side over the baseline case when a single objective function was used. In order to at
least maintain the pressure coefficient distribution as obtained from the baseline case, an
additional cost function was created based on the pressure coefficient from close to peak
suction right to the blade trailing edge (TE)(0.6 ≤ x/Cax ≤ 1—this region includes the
separation plateau). The two cost functions used are

JMO1 =
1

∑
x/Cax=0.6

(
τDNS

w − τRANS
w

)2
,

JMO2 =
1

∑
x/Cax=0.6

(
CDNS

p − CRANS
p

)2
.

(12)

The multi-objective optimization was run for 90 generations with a population of
125 individuals. In order to obtain the final solution (at n = 90), the multi-objective
approach used about 1500 core hours, which was about three times that of the single-
objective approach. This is because the multi-objective approach evaluates many more
possible candidate solutions as opposed to a single best solution in the single-objective
approach. If the data from baseline RANS calculations are fed into the cost functions, then
JMO1 = 5.24× 10−6 and JMO2 = 3.816× 10−4.
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5.2.2. Pareto Analysis

The best way to analyze the evolution of the models generated with the multi-objective
optimization approach is with Pareto analysis. In order to compare two candidate solutions,
this optimization approach uses the concept of Pareto domination. One candidate is said
to dominate the other candidate when its cost function values are all lower or equal (≤) to
the dominated candidate’s values with one value being strictly lower (<). When Pareto
domination is applied to the entire population via pairwise comparison, each candidate
solution is assigned a rank r. Within one rank, no solution dominates another solution.

However, all solutions of rank r = k1 dominate all solutions of rank r = k2, where
k1 and k2 are integer values and k1 < k2. The solutions of rank r = 1 are not dominated
by any other solution in the population and define what is commonly referred to as the
Pareto front. Figure 5 shows the Pareto front evolution up to 90 generations (n). The value
of JMO1 and the natural logarithm of JMO2 are shown on the x and y axes, respectively.
As the generations go on increasing, the number of candidate solutions on the Pareto
front go on increasing, which indicates that a better set of solutions (in terms of the
cost functions) are being found with each generation. The Pareto front shifts closer to
the x and y axes, indicating that the objective functions are being minimized with each
progressive generation. At n = 90, all the solutions on the Pareto fronts have a value
of JMO1, which is more than two times smaller than the baseline case. However, not all
solutions offer reductions in the value of JMO2 over the baseline case. The shaded green
area in Figure 5 denotes the region in which the value of JMO2 is less than the baseline
value of JMO2 = 3.816× 10−4.

Figure 5. Evolution of the Pareto front across 90 generations.

5.2.3. Analysis of Solutions

At the last generation (n = 90), every model on the Pareto front was analyzed for its
performance in terms of the wall-shear stress and the pressure coefficient. It was found
that only those models which reduced the value of JMO2 over the baseline case were able to
produce numerically stable solutions. Of these, solutions A and B best represented the flow
physics on the blade and in the wake. Although solutions C–F reduced the value of JMO2

over the baseline case and had lower values of JMO1 than solutions A and B, they either
predicted an early transition onset location or were unable to provide a strong peak in the
separated region in the wall-shear stress profile (i.e., similar to the SO-model in Figure 4a).
Absence of a strong peak in the separated flow region of the wall-shear stress profile or
predicting an early onset of transition as compared to the DNS data (even with a strong
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peak in the separated region) resulted in excessive turbulent diffusion and some numerical
instabilities in the wake. The model formulation of solution A is

f1a = Π3(Π2 + Π4 −Π3 −Π7 + 2) + Π2 − 0.21,

ψ = max (1.16− 0.43Π1 + 0.21Π5 −Π6, 0).
(13)

The formulation of the f1a function highlights the leading role of the Π2 term which
is a vorticity scale closely related to the shear-layer vorticity thickness. This is consistent
with the original modeling assumption. Π2 and Π4 introduce the effect of the freestream
turbulence level in LKE production. The Π7 term is large in the wall proximity and rapidly
decays with the distance from the wall. It appears with a negative sign, and thus it tends to
suppress LKE production near the wall. This is consistent with the fact that in separated
laminar flows the amplification of pre-transitional fluctuations occurs in the separated
shear-layer and thus far from the wall. The original formulation of the ψ function employs
the wall distance turbulent Reynolds number (i.e., Π4) to control the transition onset.
In Equation (13), it is replaced by Π5. Some recently developed transition prediction
frameworks [8,10] share this particular feature with the proposed one. The transition onset
parameter, which is originally a constant (i.e., C4), is replaced in Equation (13) by a function
of Π1 and Π6. The effect is to delay transition as the shear-layer thickness increases (e.g.,
long bubbles). Additionally, the limiter min( f1, f1a) was also used as part of the multi-
objective calculations. The use of this limiter improved the stability of the solution in the
wake region. Due to the use of this limiter, the leading-edge separation prediction did not
change with respect to the baseline case.

Figures 6 and 7 show the pressure coefficient and suction-side wall-shear stress,
respectively, for the baseline case, DNS data and the solutions A (MO-A) and B (MO-B).
Both solutions not only predict the separation plateau feature in the pressure coefficient plot,
as opposed to the SO-model, but they also offer an improved prediction in the separation
plateau over the baseline case. This is because both the MO-A and MO-B models predict a
peak (of smaller magnitude than the baseline case) in the separated flow region of the wall-
shear stress profile, a necessary characteristic of the LKE modeling framework to predict a
separation plateau in the pressure coefficient. These models also offer significantly better
predictions of the wall-shear stress over the baseline case. They reduce the magnitude of
both peaks (one at transition onset and the other one after turbulent reattachment) in the
wall-shear stress by more than two times over the baseline case. The MO-A and MO-B
models predict reattachment at x/Cax = 0.987 and x/Cax = 0.988, respectively, which is
quite close to the DNS value of x/Cax = 0.986. This is an improvement over the baseline
case which predicts reattachment at x/Cax = 0.982. Consequently, these models have a
positive impact on the wake mixing prediction.

Figure 6. (a) Pressure coefficient with the various multi-objective optimized models. (b) Zoomed view of the suction-side
pressure coefficient in the separated flow region, near the blade trailing edge.
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Figure 7. (a) Suction-side wall-shear stress with the various multi-objective optimized models. (b) Zoomed view of the
suction-side wall-shear stress in the separated flow region, near the blade TE.

Figure 8 shows the stagnation pressure loss at 25%C downstream of the blade TE (see
Figure 2). The stagnation pressure loss (Ω∗) is defined as

Ω∗(y∗) =
Pt,1 − Pt(y∗)

Pt,1 − P2
, (14)

where Pt,1 is the inlet stagnation pressure, P2 is the exit static pressure, Pt(y∗) is the
stagnation pressure at the location of interest and y∗ is a pitchwise normalized coordinate
defined as y∗ = (y− ymax)/(ymax − ymin).

Figure 8. Stagnation pressure loss profiles 25%C downstream of the blade TE.

Since the MO-A and MO-B models are able to predict the flow coming off the blade TE
quite accurately with respect to the high-fidelity data, the resulting stagnation pressure loss
profiles (and thus the wake mixing) are also better predicted than the baseline case. These
models improve the prediction of the peak wake loss error and increase the width of the
profile, indicating additional diffusion in the wake over the baseline case. It is to be noted
that the Boussinesq approximation was used in the wake region for the baseline and MO
models. The wake mixing prediction can be further improved by using machine-learned
EARSMs. However, further enhancing the wake mixing prediction was not addressed in
this work, as this is considered separately in [25,29,30]. The ‘CFD-driven’ canonical-wake
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EARSM of Akolekar et al. [30] is apt for further improving the wake mixing prediction
for this particular case. The canonical-wake model has been formulated such that it can
improve the wake evolution when the flow coming off the blade TE is accurately predicted.

In summary, including an additional cost function based on the suction-side pressure
coefficient was an immense benefit to formulate models which preserve the integrity of the
LKE modeling framework and improve the prediction of the physical characteristics of the
flow, not only in the separation region but also downstream of the blade TE.

6. Conclusions

This study used a multi-objective ‘CFD-driven’ algorithm to enhance the prediction
of separated flow transition of the T106A LPT blade at Re2is = 100, 000. The existing LKE
transition model struggles to accurately predict the wall-shear stress in the separated flow
region, and thus the wake mixing downstream of the blade TE is also poorly predicted.
Using the ‘CFD-driven’ multi-objective framework and seven non-dimensional pi groups,
model formulations for the transition parameter ψ and the f1a term in the laminar eddy
viscosity are proposed. Initially, a single-objective approach was explored, using the wall-
shear stress from DNS data in the separation region as a reference. The resulting SO-model
was able to predict the wall-shear stress surprisingly close to the DNS. However, as there
was no strong peak in the separation region of the wall-shear stress profile (which is a
result of turbulence ignition by the transfer term), the prediction of the separation plateau
in the pressure coefficient plot worsened over the baseline case.

In order to account for this deficiency of the SO-model, multi-objective optimization
was used and an additional cost function which included the suction-side pressure coeffi-
cient was introduced. Pareto analysis was used to assess the performance of the models
developed. It was found that only those models which reduced the value of the pressure
coefficient cost function over the baseline case produced numerically stable solutions. Two
of these models were able to preserve the integrity of the LKE framework (i.e., strong
peak in the separated region) as well as improved the prediction of physical characteristics
of the transition process such as the reattachment location and magnitudes of the peaks
in the wall-shear stress profile. Thus, the overall structure of the separation bubble was
improved. Since these models were able to closely match the flow coming off the blade
TE, the resulting turbulent diffusion in the wake was increased. This resulted in better
prediction of wake loss profiles with respect to high-fidelity data.

Overall, a promising framework for multi-objective and multi-expression ‘CFD-driven’
model development using non-dimensional pi groups was explored. To the authors’
knowledge, this is the first known study which makes use of data-driven machine learning
tools to enhance the prediction of separation-induced transition in LPTs. Additional
analyses and development is required to test this framework and resulting models across
different operating conditions and geometries.
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Abbreviations
The following abbreviations are used in this manuscript:

CFD Computational fluid dynamics
DNS Direct numerical simulation
EARSM Explicit algebraic Reynolds stress model
GEP Gene expression programming
LES Large eddy simulation
LKE Laminar kinetic energy
LPT Low pressure turbine
MO Multi-objective
RANS Reynolds averaged Navier–Stokes
SO Single-objective
TE Trailing edge
TKE Turbulent kinetic energy
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